This page intentionally left blank
Paper and Paperboard Packaging Technology
Packaging Technology Series

Series Editor: Geoff A. Giles, Global Pack Management, GlaxoSmithKline, London.

A series which presents the current state of the art in chosen sectors of the packaging industry. Written at professional and reference level, it is directed at packaging technologists, those involved in the design and development of packaging, users of packaging and those who purchase packaging. The series will also be of interest to manufacturers of packaging machinery.

Titles in the series:

Design and Technology of Packaging Decoration for the Consumer Market
Edited by G.A. Giles

Materials and Development of Plastics Packaging for the Consumer Market
Edited by G.A. Giles and D.R. Bain

Technology of Plastics Packaging for the Consumer Market
Edited by G.A. Giles and D.R. Bain

Canmaking for Can Fillers
T.A. Turner

PET Packaging Technology
Edited by D.W. Brooks and G.A. Giles

Food Packaging Technology
Edited by R. Coles, D. McDowell and M.J. Kirwan

Paper and Paperboard Packaging Technology
Edited by M.J. Kirwan

Packaging Closures and Sealing Systems
Edited by N. Theobald
Contents

<table>
<thead>
<tr>
<th>Contributors</th>
<th>xviii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xix</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxi</td>
</tr>
</tbody>
</table>

1 Paper and paperboard – raw materials, processing and properties 1

MARK J. KIRWAN

1.1 Introduction – quantities, pack types and uses 1

1.2 Choice of raw materials and manufacture of paper and paperboard 5

1.2.1 Introduction to raw materials and processing 5

1.2.2 Sources of fibre 7

1.2.3 Fibre separation from wood (pulping) 8

1.2.4 Whitening (bleaching) 10

1.2.5 Recovered fibre 10

1.2.6 Other raw materials 11

1.2.7 Processing of fibre at the paper mill 12

1.2.8 Manufacture on the paper or paperboard machine 14

1.2.9 Finishing 19

1.3 Packaging papers and paperboards 20

1.3.1 Introduction 20

1.3.2 Tissues 21

1.3.3 Greaseproof 21

1.3.4 Glassine 21

1.3.5 Vegetable parchment 21

1.3.6 Label paper 22

1.3.7 Bag papers 22

1.3.8 Sack kraft 22

1.3.9 Impregnated papers 23

1.3.10 Laminating papers 23

1.3.11 Solid bleached board (SBB) 23

1.3.12 Solid unbleached board (SUB) 24

1.3.13 Folding boxboard (FBB) 24

1.3.14 White lined chipboard (WLC) 25

1.4 Packaging requirements 26

1.5 Technical requirements of paper and paperboard for packaging 27

1.5.1 Requirements of appearance and performance 27

1.5.2 Appearance properties 28

1.5.2.1 Colour 28

1.5.2.2 Surface smoothness 29

1.5.2.3 Surface structure 30
1.5.2.4 Gloss 30
1.5.2.5 Opacity 31
1.5.2.6 Printability and varnishability 31
1.5.2.7 Surface strength 32
1.5.2.8 Ink and varnish absorption and drying 32
1.5.2.9 Surface pH 33
1.5.2.10 Surface tension 33
1.5.2.11 Rub resistance 33
1.5.2.12 Surface cleanliness 33

1.5.3 Performance properties 34
1.5.3.1 Introduction 34
1.5.3.2 Basis weight (substance or grammage) 36
1.5.3.3 Thickness (caliper) 36
1.5.3.4 Moisture content 36
1.5.3.5 Tensile strength 38
1.5.3.6 Stretch or elongation 39
1.5.3.7 Tearing resistance 39
1.5.3.8 Burst resistance 40
1.5.3.9 Stiffness 40
1.5.3.10 Compression strength 41
1.5.3.11 Creasability and foldability 42
1.5.3.12 Ply bond (interlayer) strength 43
1.5.3.13 Flatness and dimensional stability 43
1.5.3.14 Porosity 45
1.5.3.15 Water absorbency 45
1.5.3.16 Gluability/Adhesion/Sealing 46
1.5.3.17 Taint and odour neutrality 47
1.5.3.18 Product safety 48

1.6 Specifications and quality standards 48
1.7 Conversion factors for substance (basis weight) and thickness measurements 49

References 49

2 Environmental and waste management issues 50

MARK J. KIRWAN

2.1 Introduction 50
2.2 Sustainable development 52
2.3 Forestry 53
2.4 Environmental impact of manufacture and use of paper and paperboard 60
 2.4.1 Issues giving rise to environmental concern 60
 2.4.2 Energy 61
 2.4.3 Water 65
 2.4.4 Chemicals 66
 2.4.5 Transport 67
2.4.6 Manufacturing emissions to air, water and solid waste 67
 2.4.6.1 Emissions to air 68
 2.4.6.2 Emissions to water 68
 2.4.6.3 Solid waste residues in paper industry 71

2.5 Used packaging in the environment 71
 2.5.1 Introduction 71
 2.5.2 Waste minimisation 72
 2.5.3 Waste management options 72
 2.5.3.1 Recovery 72
 2.5.3.2 Recycling 73
 2.5.3.3 Energy recovery 76
 2.5.3.4 Landfill 77

2.6 Life cycle assessment 78

2.7 Conclusion 79

References 82

3 Paper-based flexible packaging 84
 MARK J. KIRWAN

 3.1 Introduction 84
 3.2 Packaging needs which are met by paper-based flexible packaging 87
 3.2.1 Printing 87
 3.2.2 Provision of a sealing system 87
 3.2.3 Provision of barrier properties 88
 3.2.3.1 Introduction to barrier properties 88
 3.2.3.2 Barrier to moisture and moisture vapour 88
 3.2.3.3 Barrier to gases such as oxygen, carbon dioxide and nitrogen 90
 3.2.3.4 Barrier to oil, grease and fat 90
 3.2.3.5 Barrier to light 91
 3.3 Manufacture of paper-based flexible packaging 91
 3.3.1 Printing and varnishing 91
 3.3.2 Coating 92
 3.3.2.1 Solvent-based coatings 92
 3.3.2.2 Water-based coatings 92
 3.3.2.3 Coatings applied as 100% solids, including wax and PE 92
 3.3.2.4 Metallisation 94
 3.3.2.5 Hot melt coatings 95
 3.3.2.6 Cold seal coating for pack closure/sealing 96
 3.3.3 Lamination 97
 3.3.3.1 Lamination with water-based adhesives 98
 3.3.3.2 Dry bonding 98
 3.3.3.3 Extrusion lamination 99
 3.3.3.4 Lamination with wax 101
3.4 Medical packaging
 3.4.1 Introduction to paper-based medical flexible packaging 101
 3.4.2 Sealing systems 104
 3.4.3 Typical paper-based medical packaging structures 106
3.5 Packaging machinery used with paper-based flexible packaging 107
3.6 Paper-based cap liners (wads) and diaphragms 111
 3.6.1 Pulpboard disc 112
 3.6.2 Induction sealed disc 112
3.7 Tea and coffee packaging 113
3.8 Sealing tapes 114
References 115
Websites 115

4 Paper labels
MICHAEL FAIRLEY

4.1 Introduction 116
4.2 Types of labels 118
 4.2.1 Glue-applied paper labels 120
 4.2.1.1 Glue-applied paper label substrates 120
 4.2.1.2 Label application 120
 4.2.2 Pressure-sensitive labels 121
 4.2.2.1 Self-adhesive label substrates 121
 4.2.2.2 Self-adhesive label application 122
 4.2.2.3 Linerless self-adhesive labels 123
 4.2.3 In-mould labels 123
 4.2.3.1 In-mould label substrates 123
 4.2.3.2 In-mould label application 124
 4.2.4 Plastic shrink-sleeve labels 124
 4.2.4.1 Shrink-sleeve label films 125
 4.2.4.2 Shrink-sleeve label applications 125
 4.2.5 Stretch-sleeve labels 125
 4.2.5.1 Stretch-sleeve label films 125
 4.2.5.2 Stretch-sleeve label application 126
 4.2.6 Wrap-around film labels 126
 4.2.6.1 Wrap-around label films 126
 4.2.6.2 Wrap-around film label application 126
 4.2.7 Other labelling techniques 127
4.3 Label adhesives 127
 4.3.1 Adhesive types 128
 4.3.1.1 Hot-melt adhesives 128
 4.3.1.2 Water-based adhesives 128
 4.3.1.3 Solvent-based adhesives 129
 4.3.1.4 Curable adhesives 129
 4.3.2 Label adhesive performance 129
4.4 Factors in the selection of labels 131
4.5 Nature and function of labels 131
 4.5.1 Primary labels 132
 4.5.2 Secondary labels 132
 4.5.3 Logistics labels 132
 4.5.4 Special application or purpose labels 133
 4.5.5 Functional labels 134
 4.5.6 Recent developments 134

4.6 Label printing and production 135
 4.6.1 Letterpress printing 136
 4.6.2 Flexography 138
 4.6.3 Lithography 140
 4.6.4 Gravure 141
 4.6.5 Screen process 142
 4.6.6 Hot foil blocking/stamping process 143
 4.6.7 Variable information printing, electronically originated 144
 4.6.7.1 Ion deposition 145
 4.6.7.2 Laser printing 145
 4.6.7.3 Direct thermal printing 145
 4.6.7.4 Thermal transfer printing 145
 4.6.7.5 Dot matrix printers 146
 4.6.7.6 Ink jet printers 146
 4.6.8 Digital printing 146

4.7 Print finishing techniques 147
 4.7.1 Lacquering 147
 4.7.2 Bronzing 148
 4.7.3 Embossing 148

4.8 Label finishing 148
 4.8.1 Introduction 148
 4.8.2 Straight cutting 149
 4.8.3 Die-cutting 149
 4.8.4 Handling and storage 150

4.9 Label application, labelling and overprinting 152
 4.9.1 Introduction 152
 4.9.2 Glue-applied label applicators 152
 4.9.3 Self-adhesive label applicators 153
 4.9.4 Shrink-sleeve label applicators 154
 4.9.5 Stretch-sleeve label applicators 155
 4.9.6 In-mould label applicators 155
 4.9.7 Modular label applicators 155

4.10 Label legislation, regulations and standards 156
 4.10.1 Acts of Parliament 156
 4.10.2 EC Regulations and Directives 156
 4.10.3 Standards 156

4.11 Specifications, quality control and testing 157
 4.11.1 Introduction 157
5 Paper bags

WELTON BIBBY & BARON LTD

5.1 Introduction 161

5.1.1 Paper bags and the environment 162

5.2 Types of paper bags and their uses 162

5.2.1 Types of paper bag 162

5.2.2 Flat and satchel 162

5.2.2.1 Flat bags 162

5.2.2.2 Satchel bags – bags with side gussets 163

5.2.2.3 Medical and hospital bags 164

5.2.3 Strip window bags 164

5.2.4 Self-opening satchel bags (SOS bags) 165

5.2.4.1 SOS bags for pre-packing 165

5.2.4.2 SOS bags for use at point of sale 166

5.2.5 SOS carrier bags with or without handles 166

5.2.5.1 SOS carrier bags for pre-packing 166

5.2.5.2 SOS carriers for use at point of sale 166

5.3 Types of paper used 168

5.3.1 Kraft paper – the basic grades 168

5.3.2 Grease resistant and greaseproof papers 168

5.3.3 Vacuum dust bag papers 168

5.3.4 Paper for medical use and sterilisation bags 168

5.3.5 Wet-strength kraft 168

5.3.6 Recycled kraft 169

5.3.7 Coated papers 169

5.3.8 Laminations 169

5.3.9 Speciality papers 169

5.3.10 Weights of paper 169

4.12 Waste and environmental issues 159

Websites 160
5.4 Principles of manufacture
 5.4.1 Glue-seal bags
 5.4.1.1 Flat and satchel bags
 5.4.1.2 Self-opening satchel bags (SOS bags)
 5.4.2 Heat-seal bags
 5.4.3 Printing on bag-making machines
 5.4.4 Additional processes on bag-making machines
 5.4.4.1 Punching
 5.4.4.2 Paper handles
 5.4.4.3 Lacquers and adhesives
 5.4.4.4 Metal strips
 5.4.4.5 Reinforcement strips
 5.4.5 Additional operations after bag making
5.5 Performance testing
 5.5.1 Paper
 5.5.2 Paper bags
 5.5.2.1 Hospital bags
 5.5.2.2 Dust bags
 5.5.2.3 Paper bags for food use
 5.5.2.4 Physical strength
5.6 Printing methods and inks
 5.6.1 Printing methods
 5.6.1.1 Flexographic printing, off-line
 5.6.1.2 Flexographic printing, in-line
 5.6.1.3 Photogravure
 5.6.1.4 Silkscreen
 5.6.2 Inks
5.7 Conclusion
 5.7.1 Development of the paper bag industry
 5.7.2 The future
Reference

6 Composite cans
CATHERINE ROMAINE

6.1 Introduction
6.2 Composite can (container)
 6.2.1 Definition
 6.2.2 Manufacturing methods
 6.2.2.1 Convolute winding
 6.2.2.2 Spiral winding
 6.2.2.3 Linear draw
 6.2.2.4 Single wrap
6.3 Historical background
6.4 Early applications
6.5 Applications today by market segmentation 180
6.6 Designs available 181
 6.6.1 Shape 182
 6.6.2 Size 182
 6.6.3 Consumer preferences 182
 6.6.4 Clubstore/institutional 182
 6.6.5 Other features 183
 6.6.6 Opening/closing systems 183
 6.6.6.1 Top end closures 184
 6.6.6.2 Bottom end closures 185
6.7 Materials and methods of construction 185
 6.7.1 The liner 186
 6.7.2 The paperboard body 188
 6.7.3 Labels 188
 6.7.4 Nitrogen flushing 189
6.8 Printing and labeling options 189
 6.8.1 Introduction 189
 6.8.2 Flexographic 190
 6.8.3 Rotogravure 190
 6.8.4 Lithography (litho/offset) printing 191
 6.8.5 Labeling options 192
6.9 Environment and waste management issues 192
 6.9.1 Introduction 192
 6.9.2 Local recycling considerations 193
6.10 Future trends in design and application 193
 6.10.1 Introduction 193
 6.10.2 Sorbents 193
 6.10.3 Valved membrane end 194
 6.10.4 Resealable plastic overcap 194
6.11 Glossary of composite can related terms 194
Reference 196
Further reading 196
Websites 196

7 Fibre drums 197
 FIBRESTAR DRUMS LTD

 7.1 Introduction 197
 7.2 Raw material 198
 7.3 Production 200
 7.3.1 Sidewall 200
 7.3.2 Drum base 201
 7.3.3 Lid 202
 7.4 Performance 203
 7.5 Decoration, stacking and handling 206
 7.6 Waste management 207
8 Multiwall paper sacks 208
THE ENVIRONMENTAL AND TECHNICAL ASSOCIATION
FOR THE PAPER SACK INDUSTRY

8.1 Introduction 208
8.2 Sack designs 208
 8.2.1 Types of sacks 209
 8.2.1.1 Open mouth sacks 209
 8.2.1.2 Valved sacks 212
 8.2.2 Valve design 214
 8.2.2.1 Valve designs for sewn sacks 214
 8.2.2.2 Valve designs for pasted sacks 214
 8.2.3 Sewn closures 217
 8.2.3.1 Single sewing or chain stitch 217
 8.2.3.2 Double sewing 217
 8.2.3.3 Sewn closure constructions 217
8.3 Sack materials 218
 8.3.1 Sack body material 218
 8.3.1.1 Sack krafts 218
 8.3.1.2 Extensible sack krafts 219
 8.3.1.3 Coated sack krafts 219
 8.3.1.4 Laminated sack krafts 220
 8.3.1.5 Non-paper materials 220
 8.3.1.6 Special purpose sack krafts 220
 8.3.1.7 Summary of sack body materials 220
 8.3.2 Ancillary materials 223
 8.3.2.1 Sewing tapes 223
 8.3.2.2 Sewing threads 223
 8.3.2.3 Filler (filter) cords 223
 8.3.2.4 Plastic handles 223
 8.3.2.5 Adhesives 224
 8.3.2.6 Printing inks 224
 8.3.2.7 Slip-resistant agents 224
8.4 Testing and test methods 224
 8.4.1 Sack materials 224
 8.4.1.1 Strength tests 225
 8.4.1.2 Other physical properties/tests 226
 8.4.2 Sack testing 228
 8.4.2.1 Quality of finished sacks 228
 8.4.2.2 Performance tests 229
8.5 Weighing, filling and closing systems
 8.5.1 Open mouth sacks
 8.5.1.1 Weighing
 8.5.1.2 Sack applicators
 8.5.1.3 Filling
 8.5.1.4 Summary of weighing equipment for open mouth sack filling
 8.5.1.5 Closing
 8.5.2 Valved sacks
 8.5.2.1 Applicators
 8.5.2.2 Weighing and filling
 8.5.2.3 Rotary packing system
 8.5.2.4 Output levels of valved sack systems
 8.5.3 Sack identification
 8.5.4 Sack flattening and shaping
 8.5.5 Baling systems

8.6 Standards and manufacturing tolerances
 8.6.1 Standards
 8.6.2 Manufacturing tolerances

8.7 Environmental position
Useful contacts
Websites

9 Rigid boxes
MICHAEL JUKES

9.1 Overview
9.2 Rigid box styles (design freedom)
9.3 Markets for rigid boxes
9.4 Materials
 9.4.1 Board and paper
 9.4.2 Adhesives
 9.4.3 Print
9.5 Design principles
9.6 Material preparation
9.7 Construction
 9.7.1 4-Drawer box
9.8 Conclusion
References
Websites

10 Folding cartons
MARK J. KIRWAN

10.1 Introduction
10.2 Paperboard used to make folding cartons
10.3 Carton design 265
 10.3.1 Surface design 265
 10.3.2 Structural design 266
10.4 Manufacture of folding cartons 275
 10.4.1 Printing 275
 10.4.2 Cutting and creasing 279
 10.4.2.1 Flatbed die 280
 10.4.2.2 Rotary die 284
 10.4.3 Creasing and folding 287
 10.4.4 Embossing 293
 10.4.5 Hot-foil stamping 294
 10.4.6 Gluing 294
 10.4.7 Specialist conversion operations 296
 10.4.7.1 Windowing 296
 10.4.7.2 Waxing 297
10.5 Packaging operation 297
 10.5.1 Speed and efficiency 297
 10.5.2 Side seam–glued cartons 298
 10.5.3 Erection of flat carton blanks 300
 10.5.4 Carton storage 302
 10.5.5 Runnability and packaging line efficiency 302
10.6 Distribution and storage 306
10.7 Point of sale, dispensing, etc. 309
10.8 Consumer use 311
10.9 Conclusion 314

References 315
Further reading 315
Websites 316

11 Corrugated fibreboard packaging 317
JOËL POUSTIS

11.1 Introduction 317
 11.1.1 Overview 317
 11.1.2 Types of corrugated fibreboard packaging 318
11.2 Corrugated board – definitions 321
 11.2.1 Structure 321
 11.2.1.1 Weight per unit area (grammage) and thickness (calliper) 323
 11.2.1.2 Strength properties 323
 11.2.2 Corrugated fibreboard manufacture 333
11.3 Corrugated fibreboard – functions 337
 11.3.1 Box stackability 337
 11.3.1.1 Pallet arrangements 337
 11.3.1.2 Intrinsic compression 337
 11.3.1.3 Lifetime and safety factors 344
11.3.2 Containability and protection 348
 11.3.2.1 Cushion performance 348
 11.3.2.2 Drop protection 349
 11.3.2.3 Puncture protection 352
 11.3.2.4 Preservation of the hardness 353
11.3.3 Boxboard packing line considerations 356
 11.3.3.1 Flatness of corrugated fibreboard 356
 11.3.3.2 Closure of corrugated cases 358
11.3.4 Visual impact and appearance 360
 11.3.4.1 Flexographic printing 360
11.3.5 Packaging for food contact 368
11.4 Good manufacturing practice 369
11.5 Corrugated fibreboard and recyclability 369
References 371
Websites 372

12 Solid fibreboard packaging 373
MARK J. KIRWAN

12.1 Overview 373
12.2 Pack design 374
12.3 Applications 375
 12.3.1 Horticultural produce 375
 12.3.2 Meat and poultry 378
 12.3.3 Fish 378
 12.3.4 Beer (glass bottles and cans) 378
 12.3.5 Dairy products 378
 12.3.6 Footwear 378
 12.3.7 Laundry 378
 12.3.8 Engineering 378
 12.3.9 Export packaging 379
 12.3.10 Luxury packaging 379
 12.3.11 Slip sheets 379
 12.3.12 Partitions (divisions and fitments) 380
 12.3.13 Recycling boxes 382
12.4 Materials 382
12.5 Water and water vapour resistance 383
12.6 Printing and conversion 384
 12.6.1 Printing 384
 12.6.2 Cutting and creasing 384
12.7 Packaging operation 384
12.8 Waste management 384
12.9 Good manufacturing practice 384
Reference 385
Websites 385
13 Paperboard-based liquid packaging 386
MARK J. KIRWAN

13.1 Introduction 386
13.2 Packaging materials 391
 13.2.1 Paperboard 391
 13.2.2 Barriers and heat sealing layers 391
13.3 Printing and converting 394
 13.3.1 Reel-to-reel converting for reel-fed form, fill, seal packaging 394
 13.3.2 Reel-to-sheet converting for supplying printed carton blanks for packing 395
13.4 Carton designs 395
 13.4.1 Gable top 395
 13.4.2 Pyramid shape 396
 13.4.3 Brick shape 396
 13.4.4 Pouch 397
 13.4.5 Wedge 397
 13.4.6 Multifaceted and curved designs 398
 13.4.7 Square cross section with round corners 399
 13.4.8 Round cross section 399
 13.4.9 Bottom profile for gable top carton 400
13.5 Opening, reclosure and tamper evidence 401
13.6 Aseptic processing 405
13.7 Post-packaging sterilisation 407
13.8 Transit packaging 408
13.9 Applications 409
13.10 Environmental issues 410
 13.10.1 Resource reduction 410
 13.10.2 Life cycle assessment 411
 13.10.3 Recovery and recycling 411
13.11 Systems approach 412
References 412
Further reading 413
Websites 413

14 Moulded pulp packaging 414
CHRIS HOGARTH

14.1 Introduction 414
14.2 Applications 414
14.3 Raw materials 418
14.4 Production 418
14.5 Product drying 420
14.6 Printing and decoration 421
14.7 Conclusion 422
Website 422

Index 423
Contributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETAPS</td>
<td>The Environmental and Technical Association for the Paper Sack Industry, 64 High Street, Kirkintilloch, Glasgow G66 1PR, UK</td>
</tr>
<tr>
<td>Michael Fairley</td>
<td>Labels & Labelling Consultancy, Maple House, High Street, Potters Bar, Herts EN6 5BS, UK</td>
</tr>
<tr>
<td>Fibrestar Drums Ltd</td>
<td>Redhouse Lane, Disley, Stockport, Cheshire SK12 2NW, UK</td>
</tr>
<tr>
<td>Christopher Hogarth</td>
<td>Cullen Packaging, 10 Dawsholme Avenue, Dawsholme Industrial Estate, Glasgow G20 0TS, UK</td>
</tr>
<tr>
<td>Michael Jukes</td>
<td>London Fancy Box Company, Poulton Close, Dover, Kent CT17 0XB, UK</td>
</tr>
<tr>
<td>Mark J. Kirwan</td>
<td>Consultant and Lecturer in Packaging Technology, London, UK</td>
</tr>
<tr>
<td>Joël Poustis</td>
<td>Smurfit Worldwide Research (Europe), 351 Cours de la Libération, 33405 Talence, France</td>
</tr>
<tr>
<td>Catherine Romaine</td>
<td>Integrated Communication Consultants, 4 Running Springs Court, Greer SC 29650, USA (chapter commissioned by Sonoco, 1 North Second Street, Hartsville, SC 29550, USA)</td>
</tr>
<tr>
<td>Welton Bibby & Baron Ltd</td>
<td>Station Road, Midsomer Norton, Radstock BA3 2BE, UK</td>
</tr>
</tbody>
</table>
Preface

This book discusses all the main types of packaging based on paper and paperboard. It considers the raw materials and manufacture of paper and paperboard, and the basic properties and features on which packaging made from these materials depends for its appearance and performance. The manufacture of twelve types of paper- and paperboard-based packaging is described, together with their end-use applications and the packaging machinery involved. The importance of pack design is stressed, including how these materials offer packaging designers opportunities for imaginative and innovative design solutions.

Authors have been drawn from major manufacturers of paper- and paperboard-based packaging in the UK, France and the USA. The editor has spent his career in technical roles in the manufacture, printing, conversion and use of packaging.

Packaging represents the largest usage of paper and paperboard and therefore both influences and is influenced by the worldwide paper industry. Paper is based mainly on cellulose fibres derived from wood, which in turn is obtained from forestry. The paper industry is a major user of energy, and is therefore in the forefront of current environmental debates. This book discusses these issues and indicates how the industry stands in relation to the current requirement to be environmentally sound and the need to be sustainable in the long term. Other issues discussed are packaging reduction and the options for waste management.

The book is directed at those joining companies which manufacture packaging grades of paper and paperboard, companies involved in the design, printing and production of packaging, and companies which manufacture inks, coatings, adhesives and packaging machinery. It will be essential reading for students of packaging technology.

The 'packaging chain' comprises:

- Those responsible for sourcing and manufacturing packaging raw materials.
- Printers and manufacturers of packaging, including manufacturers of inks, adhesives, coatings of all kinds and the equipment required for printing and conversion.
- Packers of goods, for example within the food industry, including manufacturers of packaging machinery and those involved in distribution.
- The retail sector, supermarkets, high street shops, etc., together with the service sector, hospitals, catering, education, etc.

The packaging chain creates a large number of supplier/customer interfaces, both between and within companies, which require knowledge and understanding. The papermaker needs to understand the needs of printing, conversion and use. Equally, those involved in printing conversion and use need to understand the
technology and logistics of papermaking. Whatever your position within the packaging chain, it is important to be knowledgeable about the technologies both upstream and downstream from your position.

Packaging technologists play a pivotal role in defining packaging needs and cooperating with other specialists to meet those needs in a cost-effective and environmentally sound way. They work with suppliers to keep abreast of innovations in the manufacture of materials and innovations in printing, conversion and use. They are aware of trends in distribution, retailing, point-of-sale/dispensing, consumer use, disposal options and all the societal and environmental issues relevant to packaging in general.
Acknowledgements

My thanks go to the contributing authors and their companies. It is not easy these days to find time for such additional work, and their contributions are much appreciated.

The text has been greatly enhanced by the diagrams kindly provided by a large number of organisations and by the advice and information that I have received from many individuals in packaging companies and organisations.

In particular, I would like to acknowledge the help that I have received from the following:

Iggesund Paperboard, The Institute of Packaging, the Confederation of European Paper Industries (CEPI), Pira International, Pro Carton, British Carton Association, Swedish Forest Industries Federation, PITA, Paper Federation of Great Britain, INCPEN, M-real, Stora Enso, Bobst SA, AMCOR (flexibles for food and healthcare packaging), Billerud Beetham (manufacturer of medical packaging paper, formerly Henry Cooke), Bill Inman (former Technical Manager at Henry Cooke), Alexir Packaging (folding cartons), Papermarc Merton Packaging, Kappa Packaging, Kappa Lokfast, Tetra Pak, Elopak, SIG Combibloc, Rose Forgrove, Marden Edwards, Robert Bosch Packaging Machinery, Rovema Packaging Machines, IMA (tea packaging machinery), Dieinfo, Bernal, Atlas, Michael Pfaff (re. rotary cutting and creasing), Diana Twede (School of Packaging, Michigan State University), Neil Robson (re. packaging issues in relation to the Developing World), National Starch and Chemical (adhesives), Sun Chemical (inks), Paramelt (coating and laminating waxes), Smith Anderson (recycling and packaging products), Interflex Group (wax/paper flexible packaging), John Wiley & Sons (publishers).

This book would not have been attempted without the experience gained in my packaging career, for which I thank former colleagues, especially those with whom I have been in contact recently: Reed Medway Sacks, Bowater Packaging (carton, paper bag and flexible packaging manufacture), Cadbury Schweppes (foods packaging), Glaxo (ethical and proprietary pharmaceuticals packaging), Thames Group (paperboard manufacture) and, in particular, Iggesund Paperboard, who encouraged me to become involved in technical writing.

I would like to thank Richard Slade (Findus and Cadbury Schweppes) for involving me in packaging development from the 1960s onwards; Dennis Hine, who led much of the investigative work on carton performance and packaging machine/packaging materials interactions at PIRA; and Richard Coles who involved me in lecturing on packaging technology at BSc and Institute of Packaging Diploma level at West Hertfordshire College.
I am indebted to Professor Frank Paine, whom I first met as a colleague in Bowater in the 1960s, for his cheerful support and encouragement during the writing, and for reading and commenting constructively on the drafts of the manuscript. He has nearly 60 years of international experience in packaging technology and a substantial involvement in authorship and editing. His practical advice and patience has been much appreciated.

Mark J. Kirwan
1 Paper and paperboard – raw materials, processing and properties

Mark J. Kirwan

1.1 Introduction – quantities, pack types and uses

Paper and paperboard are manufactured worldwide. The world output for the years quoted is shown in Table 1.1. The trend has been upward for many years.

Paper and paperboard are produced in all regions of the world. The proportions produced per region in 2003 are shown in Table 1.2.

Paper and paperboard have many applications. These include newsprint, books, tissues, stationery, photography, money, stamps, general printing, etc. The remainder comprises packaging and many industrial applications, such as plasterboard base and printed impregnated papers for furniture. In 2000, paper and paperboard produced for packaging applications accounted for 47% of total paper and paperboard production (PPI, 2002).

<table>
<thead>
<tr>
<th>Year</th>
<th>Total tonnage (million tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>171</td>
</tr>
<tr>
<td>1985</td>
<td>193</td>
</tr>
<tr>
<td>1990</td>
<td>238</td>
</tr>
<tr>
<td>1995</td>
<td>276</td>
</tr>
<tr>
<td>1998</td>
<td>300</td>
</tr>
<tr>
<td>1999</td>
<td>315</td>
</tr>
<tr>
<td>2000</td>
<td>324</td>
</tr>
<tr>
<td>2001</td>
<td>318</td>
</tr>
<tr>
<td>2002</td>
<td>339</td>
</tr>
</tbody>
</table>

Source: PPI, 2002.

<table>
<thead>
<tr>
<th>Region</th>
<th>% Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>30.7</td>
</tr>
<tr>
<td>Latin America</td>
<td>4.8</td>
</tr>
<tr>
<td>North America</td>
<td>29.6</td>
</tr>
<tr>
<td>Africa</td>
<td>1.1</td>
</tr>
<tr>
<td>Asia</td>
<td>32.7</td>
</tr>
<tr>
<td>Australasia</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Source: PPI, 2002.
As a result of the widespread uses of paper and paperboard, the apparent consumption of paper and paperboard per capita can be used as an economic barometer, i.e. indication, of the standard of economic life. The apparent consumption per capita in the various regions of the world in 2000 is shown in Table 1.3.

<table>
<thead>
<tr>
<th>Location</th>
<th>Apparent consumption (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>303.3</td>
</tr>
<tr>
<td>European Union</td>
<td>201.0</td>
</tr>
<tr>
<td>Australasia</td>
<td>147.6</td>
</tr>
<tr>
<td>Latin America</td>
<td>34.8</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>31.4</td>
</tr>
<tr>
<td>Asia</td>
<td>28.2</td>
</tr>
<tr>
<td>Africa</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Source: PPI, 2002.

The per capita usage figures provide an interesting contrast between different regions, with 31% of consumption occurring in North America, 27% in Europe and 30% in Asia.

The manufacture of paper and paperboard is therefore of worldwide significance and that significance is increasing. A large proportion of paper and paperboard is used for packaging purposes.

About 28% of the total output is used for corrugated and solid fibreboard and the overall packaging usage is significant. Amongst the membership of CEPI (Confederation of European Paper Industries), 40% of all paper and paperboard output is used in packaging.

Not only is paper and paperboard packaging a significant part of the total paper and paperboard market, it also provides a significant proportion of world packaging consumption. Up to 40% of all packaging is based on paper and paperboard, making it the largest packaging material used, by weight. Paper and paperboard packaging is found wherever goods are produced, distributed, marketed and used.

Many of the features of paper and paperboard used for packaging, such as raw material sourcing, principles of manufacture, environmental and waste management issues, are identical to those applying to all the main types of paper and paperboard. It is therefore important to view the packaging applications of paper and paperboard within the context of the worldwide paper and paperboard industry.

According to Robert Opie (2002), paper was used for wrapping reams of printing paper by a papermaker around 1550, the earliest printed paper labels were used to identify bales of cloth in the sixteenth century, printed paper labels for medicines were in use by 1700 and paper labels for bottles of wine exist from the mid-1700s. One of the earliest references to the use of paper for packaging is in a patent taken out by Charles Hildeyerd on 16 February 1665 for ‘The way and art of making blew paper used by sugar-bakers and others’ (Hills, 1988). For an extensive summary of packaging from the 1400s using paper bags, labels, wrappers and cartons, see Davis, 1967.
The use of paper and paperboard packaging accelerated during the latter part of the nineteenth century to meet the developing needs of manufacturing industry. The manufacture of paper had progressed from a laborious manual operation, one sheet at a time, to continuous high-speed production with wood pulp replacing rags as the main raw material. There were also developments in the techniques for printing and converting these materials into packaging containers and components and in mechanising the packaging operation.

Today, examples of the use of paper and paperboard packaging are found in many places, such as supermarkets, traditional street markets, shops and departmental stores, as well as for mail order, fast food, dispensing machines, pharmacies, and in hospital, catering, military, educational, sport and leisure situations.

For example, uses can be found for the packaging of:

- dry food products – e.g. cereals, biscuits, bread and baked products, tea, coffee, sugar, flour, dry food mixes
- frozen foods, chilled foods and ice cream
- liquid foods and beverages – milk, wines, spirits
- chocolate and sugar confectionery
- fast foods
- fresh produce – fruits, vegetables, meat and fish
- personal care and hygiene – perfumes, cosmetics, toiletries
- pharmaceuticals and health care
- sport and leisure
- engineering, electrical and DIY
- agriculture, horticulture and gardening
- military stores.

Papers and paperboards are sheet materials comprising an intertwined network of cellulose fibres. They are printable and have physical properties which enable them to be made into various types of flexible, semi-rigid and rigid packaging.

There are many different types of paper and paperboard. Appearance, strength and many other properties can be varied depending on the type(s) and amount of fibre used, and how the fibres are processed in fibre separation (pulping), fibre treatment and in paper and paperboard manufacture.

In addition to the type of paper or paperboard, the material is also characterised by its weight per unit area and thickness.

The papermaking industry has many specific terms and a good example is the terminology used to describe weight per unit area and thickness.

Weight per unit area may be described as ‘grammage’ because it is measured in grammes per square metre (g/m²). Other area/weight related terms are ‘basis weight’ and ‘substance’ which are usually based on the weight in pounds of a stated number of sheets of specified dimensions, also known as a ‘ream’, for example 500 sheets of 24 in. × 36 in., which equates to total ream area of 3000 sq ft. Alternative units of measurement used in some parts of the industry would be pounds per 1000 square feet or pounds per 2000 square feet. It is therefore important when discussing
weight per unit area, as with all properties, to be clear as to the methods and units of measurement.

Thickness, also described as ‘caliper’, is measured either in microns (µm), 0.001 mm or in thou. (0.001 in.), also referred to as points.

Appearance is characterised by the colour and surface characteristics, such as whether it has a high gloss, satin or matte finish.

Paperboard is thicker than paper and has a higher weight per unit area. Paper over 200 g m\(^{-2}\) is defined by ISO (International Organization for Standardization) as paperboard, board or cardboard. Some products are, however, known as paperboard even though they are manufactured in grammages less than 200 g m\(^{-2}\) and, on the other hand, CEPI, the Confederation of European Paper Industries, states, ‘paper is usually called board when it is heavier than 220 g m\(^{-2}\).’

The main types of paper and paperboard-based packaging are:

- bags, wrappings and infusible tissues, for example tea and coffee bags, sachets, pouches, overwraps, sugar and flour bags, carrier bags
- multiwall paper sacks
- folding cartons and rigid boxes
- corrugated and solid fibreboard boxes (transit or shipping cases)
- paper-based tubes, tubs and composite containers
- fibre drums
- liquid packaging
- moulded pulp containers
- labels
- sealing tapes
- cushioning materials
- cap liners (sealing wads) and diaphragms (membranes).

Paper and paperboard-based packaging is widely used because it meets the criteria for successful packing, namely to:

- contain the product
- protect goods from mechanical damage
- preserve products from deterioration
- inform the customer/consumer
- provide visual impact through graphical and structural designs.

These needs are met at all three levels of packaging, namely:

- primary – product in single units at the point of sale or use, for example cartons
- secondary – groups of primary packs packed for storage and distribution, wholesaling and ‘cash and carry’, for example transit trays and cases
- tertiary – unit loads for distribution in bulk, for example heavy-duty fibreboard packaging.

Paper and paperboard, in many packaging forms, meet these needs because they have appearance and performance properties which enable them to be made into a wide range of packaging structures cost-effectively.
They are printable, varnishable and can be laminated to other materials. They have physical properties which enable them to be made into flexible, semi-rigid and rigid packages by cutting, creasing, folding, forming, winding, gluing, etc.

Paper and paperboard packaging is used over a wide temperature range, from frozen-food storage to the temperatures of boiling water and heating in microwave and conventional ovens.

Whilst it is approved for direct contact with many food products, packaging made solely from paper and paperboard is permeable to water, water vapour, aqueous solutions and emulsions, organic solvents, fatty substances (except grease-resistant papers), gases such as oxygen, carbon dioxide and nitrogen, aggressive chemicals and volatile vapours and aromas. Whilst paper and paperboard can be sealed with several types of adhesive, it is not itself heat sealable.

Paper and paperboard can acquire barrier properties and extended functional performance, such as heat sealability, heat resistance, grease resistance, product release, etc. by coating, lamination and impregnation. Materials used for these purposes in these ways include extrusion coating with polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET or PETE), ethylene vinyl alcohol (EVOH) and polymethyl pentene (PMP); lamination with plastic films or aluminium foil; and by treatment with wax, silicone or fluorocarbon. Papers can be impregnated with a vapour-phase metal-corrosion inhibitor, mould inhibitor or coated with an insect repellent.

Packaging made solely from paperboard can also provide a wide range of barrier properties by being overwrapped with a heat-sealable plastic film, such as polyvinylidene chloride (PVdC) coated oriented polypropylene (OPP or as it is sometimes referred to BOPP).

Several types of paper and paperboard-based packaging may incorporate metal or plastic components, examples being as closures in liquid-packaging cartons and as lids, dispensers and bases in composite cans.

In an age where environmental and waste management issues have a high profile, packaging based on paper and paperboard has important advantages that:

- The main raw material (wood) is based on a naturally renewable resource, the growth of which removes carbon dioxide from the atmosphere, thereby reducing the greenhouse effect.
- When the use of the package is completed, many types of paper and paperboard packaging can be recovered and recycled. They can also be incinerated with energy recovery and if none of these options is possible, they are biodegradable in landfill.

1.2 Choice of raw materials and manufacture of paper and paperboard

1.2.1 Introduction to raw materials and processing

So far we have indicated that paper and paperboard-based packaging provides a well-established choice for meeting the packaging needs of a wide range of
products. We have defined paper and paperboard and summarised the reasons why this type of packaging is used. We now need to discuss the underlying reasons why paper and paperboard packaging is able to meet these needs.

This discussion falls into four distinct sections:

- choice and processing of raw materials
- manufacture of paper and paperboard
- additional processes which enhance the appearance and performance of paper and paperboard by coating and lamination
- use of paper and paperboard in the printing, conversion and construction of particular types of packaging.

Cotton, wool and flax are examples of fibres and we know that they can be spun into a thread and that thread can be woven into a sheet of cloth material. Papers and paperboards are also based on fibre, but the sheet is a three-dimensional structure formed by a random intertwining of fibres. The resulting structure, which is known as a *sheet* or *web*, is sometimes described as being ‘non-woven’. The fibres are prepared by mixing them with water to form a very dilute suspension, which is poured on to a moving wire mesh. The paper structure is formed as an even layer on the wire mesh, which acts as a sieve. Most of the water is then removed successively by drainage, pressure and heat.

So why does this structure have the strength and toughness which makes it suitable for printing and conversion for use in many applications, including packaging? To answer this question we need to examine the choices which are available in the raw materials used and how they are processed.

According to tradition, paper was first made in China around the year AD 105 using fibres such as cotton and flax. Such fibres are of vegetable origin, based on cellulose, which is a natural polymer, formed in green plants from carbon dioxide and water by the action of sunlight. The process initially results in natural sugars based on a multiple-glucose-type structure comprising carbon, hydrogen and oxygen in long chains of hexagonally linked carbon atoms, to which hydrogen atoms and hydroxyl (OH) groups are attached. This process is known as photosynthesis, oxygen is the by-product and the result is that carbon is removed (fixed) from the atmosphere. Large numbers of cellulose molecules form fibres – the length, shape and thickness of which vary depending on the plant species concerned. Pure cellulose is non-toxic, tasteless and odourless.

The fibres can bond at points of interfibre contact as the fibre structure dries during water removal. It is thought that bonds are formed between hydrogen (H) and hydroxyl (OH) units in adjacent cellulose molecules causing a consolidation of the three-dimensional sheet structure. The degree of bonding, which prevents the sheet from fragmenting, depends on a number of factors which can be controlled by the choice and treatment of the fibre prior to forming the sheet.

The resulting non-woven structure which we know as paper ultimately depends on a three-dimensional intertwined fibre network and the degree of interfibre bonding. Its thickness, weight per unit area and strength can be controlled, and