Cleaning-in-Place
Other books in the Society of Dairy Technology series:

- Brined Cheeses (ISBN 978-1-4051-2460-7)
Cleaning-in-Place
Dairy, Food and Beverage Operations

Third Edition

Edited by

Dr Adnan Tamime
Dairy Science and Technology Consultant
Ayr, UK
Contents

Preface to Technical Series xvi
Preface to Third Edition xvii
Preface to Second Edition xviii
Preface to First Edition xix
Contributors xx

1 Principles of Cleaning-in-Place (CIP) 1
 M. WALTON
 1.1 Introduction 1
 1.2 Cleaning-in-place (CIP): definition 1
 1.3 CIP systems: hardware 2
 1.4 The processes of cleaning 2
 1.4.1 Removal of gross debris (product recovery) 2
 1.4.2 Pre-rinse 3
 1.4.3 Detergent circulation 3
 1.4.4 Intermediate rinse 4
 1.4.5 Second detergent circulation (optional) 4
 1.4.6 Second intermediate rinse 4
 1.4.7 Disinfection 4
 1.4.8 Final rinse 5
 1.5 Planning a cleaning project 5
 1.5.1 What is the physical nature of the plant or equipment to be cleaned? 5
 1.5.2 What standards of cleaning are required? 6
 1.5.3 What is the nature of the soil to be removed? 6
 1.5.4 When is the cleaning to be undertaken? 7
 1.5.5 The selection of detergents 7
 The attributes of detergents 7
 The mechanisms of soil removal 8
 1.6 Conclusions 8
 References 9

2 Fluid Flow Dynamics 10
 M.J. LEWIS
 2.1 Introduction 10
2.2 Some background principles 10
2.3 Some background information
 2.3.1 Temperature 13
 2.3.2 Volumetric flowrate 13
 2.3.3 Density 13
 2.3.4 Specific gravity 14
 2.3.5 Viscosity (η) and rheology 14
 2.3.6 Continuity equations and energy balances 15
2.4 Streamline and turbulent flow 17
2.5 Calculation of frictional loss in a straight pipe 19
2.6 Pump characteristics 23
2.7 Tank cleaning heads and falling films 25
2.8 Some concluding remarks 26
2.9 Appendix: definitions and equations
 2.9.1 Pressure 27
 2.9.2 Volume and volumetric flowrate 27
 2.9.3 Temperature conversions 28
 2.9.4 Temperature difference 29
 2.9.5 Fixed points 29
 2.9.6 Energy units 29
 2.9.7 Some conversion factors 29
 2.9.8 Specific heat 30
 2.9.9 Density of milk 30
 2.9.10 Viscosity 30
References 30
Further reading 31

3 Water Supplies in the Food Industry 32
S.I. WALKER
3.1 Introduction 32
3.2 Sources of water
 3.2.1 Natural water and rainwater 33
 3.2.2 Authority-provided water 35
 3.2.3 Water from products 36
 3.2.4 Water from recycling 36
3.3 Improving water quality 37
3.4 Equipment for improving water quality (coarse removal)
 3.4.1 Screens and strainers 39
 3.4.2 Bag and cartridge filters 40
 3.4.3 Sand-type filters 40
 3.4.4 Separators 40
3.5 Equipment for improving water quality (fine removal)
 3.5.1 Softeners 41

References 30
Further reading 31
3.5.2 Reverse osmosis
3.5.3 Electro deionisation (EDI)

3.6 Applications of water in the dairy
3.6.1 Water as an ingredient
3.6.2 Water as a cooling agent
3.6.3 Water in heating applications
 Water for boilers
 Water as condensate return
3.6.4 Water for general use
3.6.5 Water for cleaning purposes

3.7 Water leaving the dairy
3.7.1 Minimum treatment
3.7.2 Buffering of wastewater
3.7.3 Effluent treatment
 Initial screen
 Balancing tanks
 Phase separator
3.7.4 Wastewater treatment
 Discharge from site
 Recycle to the factory
 Recycle as ‘grey water’ to effluent plant
 Further treatment
3.7.5 Problems associated with biological treatment plants
 Micro-organisms
 Microbial nutrient deficiency
 Low organic loading
 Low oxygen level

References

4 Chemistry of Detergents and Disinfectants
4.1 Introduction
4.2 Why do we clean?
 4.2.1 Appearance
 4.2.2 Micro-organism contamination
 4.2.3 Plant efficiency
 4.2.4 Safety
4.3 Soil to be removed
4.4 Chemistry of water
4.5 Water attributes important to dairy and beverage cleaning and disinfection
4.6 Basic detergency: how does a detergent work?
 4.6.1 Chemical reaction
 4.6.2 Solvent cleaning
4.6.3 Abrasive cleaning
4.6.4 Dispersion–suspension cleaning

4.7 What materials make up a detergent?
4.7.1 Surfactants: synthetic surface-active agents
4.7.2 Inorganic components of detergents, or builders
 Caustic soda (sodium hydroxide)
 Soda ash (sodium carbonate)
 Silicates
 Phosphates
4.7.3 Sequestrants
4.7.4 Acids

4.8 Factors affecting detergent performance

4.9 Methods of application
4.9.1 Manual cleaning
4.9.2 Circulation cleaning (CIP, spray cleaning)
4.9.3 Soak-cleaning
4.9.4 Spray-washing
4.9.5 Long-contact vertical surface cleaning using foams or gels

4.10 The science of disinfection
4.10.1 Background
4.10.2 Objectives of effective disinfection
4.10.3 Factors affecting the performance of disinfectants
 Time
 Temperature
 Concentration
 Surface tension
 pH
 Number and location of organisms
 Organic matter
 Metal ions
 Type of organisms
4.10.4 Choosing the most appropriate disinfectant
 Heat
 Oxidising disinfectants
 Non-oxidising surfactant-based disinfectants

4.11 Construction materials and their corrosion: influence on choice of
detergents and disinfectants
4.11.1 Aluminium and its alloys
4.11.2 Mild steel
4.11.3 Stainless steel
4.11.4 Copper
4.11.5 Galvanising

4.12 Conclusions

Bibliography
5 Designing for Cleanability
A.P.M. HASTING

5.1 Background 81
5.2 Equipment design and installation 82
 5.2.1 European Union (EU) regulatory requirements 82
 5.2.2 The European Hygienic Engineering and Design Group (EHEDG) 82
5.3 Hygienic design principles 83
5.4 Hygienic design requirements 85
 5.4.1 Materials of construction 85
 Stainless steel 85
 Plastics 86
 Elastomers 86
 5.4.2 Surface finish 87
 5.4.3 Joints 88
 5.4.4 Other constructional features 90
 Fasteners 90
 Drainage 91
 Internal angles, corners and dead spaces 92
 Bearings and shaft seals 93
 Instrumentation 93
5.5 Cleaning process equipment 94
 5.5.1 Effect of fluid flow on cleaning 94
 5.5.2 Pipelines 96
 5.5.3 Pumps 97
 5.5.4 Valves 98
 5.5.5 Heat exchangers 100
 Plate heat exchangers (PHE) 100
 Tubular heat exchangers (THE) 101
 Scraped surface heat exchangers (SSHE) 103
 5.5.6 Tanks 103
5.6 Conclusions 105

References 106

6 Perspectives in Tank Cleaning: Hygiene Requirements, Device Selection,
Risk Evaluation and Management Responsibility
R. PACKMAN, B. KNUDSEN AND I. HANSEN

6.1 Introduction 108
6.2 Background 108
 6.2.1 More than just equipment 108
 6.2.2 Many aspects of tank cleaning 109
 6.2.3 Ways to tackle tank hygiene 109
 Cleaning-out-of-place (COP) 109
 Cleaning-in-place (CIP) 109
6.3 Two basic approaches to tank cleaning 110
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.8 Perspectives associated with CIP tank cleaning</td>
<td>139</td>
</tr>
<tr>
<td>6.5.9 Tank-cleaning devices</td>
<td>140</td>
</tr>
<tr>
<td>6.5.10 Cleaning validation</td>
<td>142</td>
</tr>
<tr>
<td>6.5.11 Case study</td>
<td>143</td>
</tr>
<tr>
<td>6.6 Conclusions</td>
<td>144</td>
</tr>
<tr>
<td>References</td>
<td>145</td>
</tr>
<tr>
<td>7 Design and Control of CIP Systems</td>
<td>146</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>146</td>
</tr>
<tr>
<td>7.1.1 Full recovery system: three tanks CIP</td>
<td>146</td>
</tr>
<tr>
<td>7.1.2 How much CIP?</td>
<td>147</td>
</tr>
<tr>
<td>7.1.3 Size of the CIP equipment</td>
<td>147</td>
</tr>
<tr>
<td>7.1.4 Hot or cold pre-rinse?</td>
<td>147</td>
</tr>
<tr>
<td>7.1.5 Choice of scavenge pump</td>
<td>147</td>
</tr>
<tr>
<td>7.1.6 Choice of spray head</td>
<td>149</td>
</tr>
<tr>
<td>7.1.7 Control units</td>
<td>149</td>
</tr>
<tr>
<td>7.1.8 Supermarkets</td>
<td>150</td>
</tr>
<tr>
<td>7.2 Principles of chemical cleaning</td>
<td>150</td>
</tr>
<tr>
<td>7.2.1 Soil removal</td>
<td>150</td>
</tr>
<tr>
<td>7.2.2 Soil removal parameters</td>
<td>150</td>
</tr>
<tr>
<td>7.2.3 Chemical soil removal and disinfectants</td>
<td>150</td>
</tr>
<tr>
<td>7.3 Application of CIP</td>
<td>152</td>
</tr>
<tr>
<td>7.3.1 Pipeline cleaning</td>
<td>152</td>
</tr>
<tr>
<td>7.3.2 Vessel cleaning</td>
<td>153</td>
</tr>
<tr>
<td>CIP application</td>
<td>153</td>
</tr>
<tr>
<td>CIP return or scavenge</td>
<td>153</td>
</tr>
<tr>
<td>7.4 Types of CIP system</td>
<td>154</td>
</tr>
<tr>
<td>7.4.1 Single-use system</td>
<td>154</td>
</tr>
<tr>
<td>7.4.2 Partial recovery system</td>
<td>154</td>
</tr>
<tr>
<td>7.4.3 Full recovery system with heated rinse tank (optional)</td>
<td>154</td>
</tr>
<tr>
<td>7.5 Verification</td>
<td>155</td>
</tr>
<tr>
<td>7.6 Control systems</td>
<td>155</td>
</tr>
<tr>
<td>7.6.1 Schematic illustration</td>
<td>155</td>
</tr>
<tr>
<td>7.6.2 Instrumentation</td>
<td>156</td>
</tr>
<tr>
<td>7.6.3 Mechanical components</td>
<td>156</td>
</tr>
<tr>
<td>7.7 Design information</td>
<td>157</td>
</tr>
<tr>
<td>7.7.1 Pipeline capacities</td>
<td>157</td>
</tr>
<tr>
<td>7.7.2 Detergent tank capacities</td>
<td>157</td>
</tr>
<tr>
<td>7.7.3 Cleaning velocity</td>
<td>158</td>
</tr>
<tr>
<td>7.7.4 Pressure drop</td>
<td>159</td>
</tr>
<tr>
<td>Bibliography</td>
<td>163</td>
</tr>
</tbody>
</table>
8 Assessment of Cleaning Efficiency 164
K. ASTERIADOU AND P. FRYER

8.1 Introduction 164
8.2 Validation 164
 8.2.1 Preliminary examination 166
 8.2.2 Visual examination 166
 8.2.3 Action following an unsatisfactory preliminary examination 168
8.3 Verification 168
 8.3.1 Surfaces 168
 8.3.2 Flush/rinse material 169
 8.3.3 Water quality 169
 8.3.4 In-process material 169
8.4 Frequency of assessment/sampling 170
 8.4.1 Equipment/surfaces 170
 8.4.2 Product 171
 Method of sampling 171
 Heat-treated product 171
 Packed product 171
 Swabbing and rinsing methods 172
8.5 Monitoring 172
 8.5.1 Results from system monitoring 173
 8.5.2 Interpreting results and taking action 174
8.6 The commercial benefits of assessment 176
8.7 Conclusions 176
References 176

9 Management of CIP Operations 178
K.J. BURGESS

9.1 Background to cleaning-in-place (CIP) 178
9.2 Some CIP operation basics 179
 9.2.1 CIP parameters 179
 9.2.2 People involved 179
 9.2.3 Key steps in CIP implementation 179
 9.2.4 A typical CIP sequence 180
 9.2.5 Cleaning the CIP system 181
9.3 Chemicals and chemical suppliers 181
9.4 Troubleshooting CIP 182
 9.4.1 Positive factors 182
 9.4.2 Negative factors 182
9.5 CIP and operational goals 183
9.6 CIP management and quality 183
 9.6.1 Quality management system issues 183
 9.6.2 CIP and due diligence 183
 9.6.3 CIP and hazard analysis and critical control point (HACCP) system 184
9.6.4 Some aspects of good practice 185
9.7 CIP management and safety 185
 9.7.1 Health and safety issues with CIP 185
 Exposure to cleaning chemicals 186
 Slips and trips 187
 Falls 188
 Machinery 188
 Handling 188
 Transport 188
 9.7.2 Safe CIP 189
9.8 CIP management and productivity 189
 9.8.1 CIP cost inputs 189
 9.8.2 Product recovery 190
 Product reclaim 190
 Product purging 191
 Product scheduling 191
9.9 CIP management review and improvement 191
 9.9.1 CIP review 191
 CIP change review 192
 CIP verification 192
 9.9.2 CIP improvement 193
9.10 Conclusions 193
References 194

10 Membrane Filtration 195
 C.E. ASKEW, S. te POELE AND F. SKOU

10.1 Introduction 195
10.2 Membrane filtration processes 195
10.3 Membrane process design 196
 10.3.1 Membrane material 198
 10.3.2 Membrane module design 198
 10.3.3 Methods of operation 200
10.4 Membrane filtration in dairies 202
 10.4.1 Microfiltration (MF) 202
 10.4.2 Ultrafiltration (UF) 203
 10.4.3 Diafiltration (DF) 203
 10.4.4 Nanofiltration (NF) 203
 10.4.5 Reverse osmosis (RO) 204
10.5 Damage that can occur to membranes 204
10.6 How do membranes become fouled or soiled? 206
 10.6.1 Concentration polarisation and membrane fouling 206
 10.6.2 Membrane fouling in dairy processing 207
 10.6.3 Fouling control 208
10.7 Cleaning membrane filtration installations 209
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7.1</td>
<td>Background</td>
<td>209</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Cleaning fouled membranes</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Product processed and soil type</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Membrane installation and type</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Level of membrane fouling</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>pH and temperature sensitivity</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Chlorine sensitivity</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Equipment and membrane manufacturer’s endorsements</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Customer preferences</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Local legislation</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Environmental issues</td>
<td>215</td>
</tr>
<tr>
<td>10.7.3</td>
<td>Cleaning agents</td>
<td>216</td>
</tr>
<tr>
<td>10.7.4</td>
<td>Cleaning regime</td>
<td>217</td>
</tr>
<tr>
<td>10.8</td>
<td>Monitoring and recording</td>
<td>218</td>
</tr>
<tr>
<td>10.9</td>
<td>Recent developments</td>
<td>219</td>
</tr>
<tr>
<td>10.9.1</td>
<td>Ultrasonic cleaning</td>
<td>219</td>
</tr>
<tr>
<td>10.9.2</td>
<td>Microsieves</td>
<td>220</td>
</tr>
<tr>
<td>10.9.3</td>
<td>High tolerant membranes</td>
<td>220</td>
</tr>
<tr>
<td>10.10</td>
<td>Conclusions</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>221</td>
</tr>
</tbody>
</table>

11 Laboratory Test Methods 223

W.J. WATKINSON

11.1 Introduction 223
11.2 Test methods for in-use solutions 223
11.2.1 Alkalinity 223
11.2.2 Acidity 224
11.2.3 Ethylenediaminetetra-acetic acid (EDTA) 225
11.2.4 Total EDTA 225
11.2.5 Total water hardness 226
11.2.6 Disinfectants 226
<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available chlorine</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>Available iodine</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>Available oxygen</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>Peracetic acid content</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>Quaternary ammonium compounds (QACs)</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous tests</td>
<td>227</td>
<td></td>
</tr>
</tbody>
</table>
11.3 Qualitative test methods for neat detergents 229
11.3.1 Alkalinity 229
<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicates</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>Phosphates</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>Carbonates</td>
<td>229</td>
<td></td>
</tr>
</tbody>
</table>
11.3.2 Acids 229
<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric acid</td>
<td>230</td>
<td></td>
</tr>
</tbody>
</table>
Phosphoric acid 230
Hydrochloric acid 230
Sulphuric acid 230

11.3.3 Water-conditioning agents 230
Reducing agents 230
Oxidising agents 231
Surfactants 231
Miscellaneous 232

11.4 Quantitative tests for neat detergents 233
11.4.1 Alkalinity 233
Free and total alkalinity 233
11.4.2 Inorganic silicate 233
11.4.3 Inorganic phosphate 234
11.4.4 Carbonates 235
11.4.5 Acidity 235
11.4.6 Water-conditioning agents 236
Ethylenediaminetetra-acetic acid (EDTA) 236
Sodium gluconate/heptonate by dimedone complex 236
11.4.7 Oxidising agents 237
Available chlorine 237
Available iodine 237
Available oxygen 237
Hydrogen peroxide and peracetic acid (PAA) in peracetic acid products 237
11.4.8 Surfactants 238
Determination of anionic surfactants 238
Determination of cationic surfactants 239
11.4.9 Miscellaneous 239
Determination of chloride 239
Determination of sulphate 240
Preparation of reagents 240
Preparation of indicators 242

References 242

Index 243
Preface to Technical Series

For more than 60 years, the Society of Dairy Technology (SDT) has sought to provide education and training in the dairy field, disseminating knowledge and fostering personal development through symposia, conferences, residential courses, publications, and its journal, the International Journal of Dairy Technology (previously known as the Journal of the Society of Dairy Technology).

In recent years there have been significant advances in our understanding of milk systems, probably the most complex natural food available to man. Improvements in process technology have been accompanied by massive changes in the scale of many milk-processing operations, and the manufacture of a wide range of dairy and other related products.

The Society has now embarked on a project with Wiley-Blackwell to produce a Technical Series of dairy-related books to provide an invaluable source of information for practising dairy scientists and technologists, covering the range from small enterprises to modern large-scale operation. This fifth volume in the series, the third edition of Cleaning-in-Place: Dairy, Food and Beverage Operations, now under the editorship of Dr Adnan Tamime, provides a timely and comprehensive update on the principles and practice of the cleaning-in-place of process equipment. Thanks to the perishability of milk and many milk products, the dairy industry has been in the vanguard of the development of cleaning techniques and associated hygiene requirements. These are equally valid for other sectors of the food and bioprocessing industries, and this book will provide a valuable resource for food and dairy technologists.

Andrew Wilbey
Chairman of the Publications Committee, SDT
Preface to Third Edition

The first edition of this book was published in 1959 by the Society of Dairy Technology (SDT), and was entitled Cleaning-In-Place (CIP) of Dairy Equipment. An updated second edition, edited by A.J.D. Romney, was published in 1990.

Although the original title of the publication was orientated towards the dairy industry, the technical aspects of cleaning-in-place allow a broadening of the target audience towards readers concerned with food and beverage operations. The processed food industry has seen a major shift towards CIP over the past 10–15 years, and the beverage industry, which has been broadly in line with dairy industry technology, has seen increased demands from customers with regard to CIP verification and validation, and the attendant improvements in plant hygiene and related efficiency.

The book has been extensively revised and updated in this new edition. The two chapters on Chemistry of Detergents and Chemistry of Disinfectants have been combined into one chapter, and sections on Fluid Flow Dynamics and Laboratory Test Methods now appear as separate chapters. One new chapter on the subject of Membrane Cleaning has been added. This is a relatively new area and requires specialised cleaning products and procedures.

Authors have been selected from within the industry, allied suppliers and academia to provide a balanced and leading-edge assessment of the subject matter. Whilst the second edition has been a very popular publication, it is now rather outdated, and this revision is timely. The book will be a valuable addition to the SDT’s Technical Series, offering the latest information on CIP to readers within the dairy, food and beverage processing industries internationally.

A.Y. Tamime
Preface to Second Edition

Following the highly successful rewriting of the Society’s Pasteurizing Plant Manual in 1983, a need was identified to update the manual on In-Place-Cleaning of Dairy Equipment, published in 1959 and out of print for some years.

To this end, a decision was taken by the Council to reconstitute the Dairy Equipment and Standardisation Committee disbanded in 1974; this committee was re-formed in 1985 under the new title of the Dairy Equipment Advisory Committee (DEAC), part of its brief to progress this task.

A listing of the proposed chapter headings and possible authors was drawn up, and I was invited to take on the role of both coordinating and editing the new work.

To all those who have contributed to the text and provided the illustrations for this project I extend most hearty thanks, both on my own behalf and on that of the Society. My gratitude goes also to my good friend and mentor, Tom Ashton, both for the Foreword to this edition and for his guidance and support in the past.

It is the hope of the Council, of all the members of the DEAC and of myself that this work will prove of value, to dairy managers and quality assurance staff as well as to students entering our industry.

A.J.D. Romney
1990
Preface to First Edition

In 1953, the Society of Dairy Technology published the Pasteurizing Plant Manual. The success of that venture encouraged the Dairy Equipment and Standardisation Committee to consider what could be done further in this new field of the Society’s activities. Once again the inspiration, and much of the preliminary work, came from the late J.R. Cuttell. In producing this book, the Drafting Committee has been guided by the inspiration and has endeavoured to achieve a result worthy of the original conception.

The text has been written by Dr T.R. Ashton, Mr G.H. Botham, Dr L.F.L. Clegg, Mr H.C. Cooper, the late Mr J.R. Cuttell, Mr H.S. Hall, Mr H.C. Hillman, Mr P.A. Lincoln, Dr R.J. MacWalter and Mr W.W. Ritchie assisted by their colleagues on the Drafting Committee, Mr T.A. Hole, Mr E.L. Jarvis, Mr J.R. Rowling, Mr W. Rushton and Mr G.E. Taylor. The task of editing has again been taken by Dr J.G. Davis.

The Drafting Committee wishes to acknowledge gratefully the substantial contributions to its work by Mr P. O’Niell, who has acted as Secretary, and Miss E.G. Dunworth, who has undertaken the typing and duplicating work. The Committee greatly appreciates the facilities provided by the National Dairymen’s Association, in whose offices all the meetings have been held.

Illustration material has kindly been provided by the APV Co. Ltd, Clarke-Built Ltd, CP Equipment Ltd, Dairy Pipe Lines Ltd and Talbot Stead Tube Co. Ltd. Mr H.C. Cooper has designed the cleaning circuit illustrations.

It is the hope of the Drafting Committee that this book will serve as an introduction to what is a comparatively new subject and so pave the way to the wider use of modern techniques.

H.S. Hall
1959
Contributors

Editor

Dr A.Y. Tamime
Dairy Science & Technology Consultant
24 Queens Terrace
Ayr KA7 1DX
Scotland
UK
Tel: +44 (0)1292 265498
Fax: +44 (0)1292 265498
Mobile: +44 (0)7980 278950
E-mail: adnan@tamime.fsnet.co.uk

Contributors

Mr C.E. Askew
JohnsonDiversey Ltd
Weston Favell Centre
Northampton NN3 8PD
UK
Tel: +44 (0) 1604 405311
Mobile: +44 (0) 7971 105043
E-mail: chrisaskew100@googlemail.com

Dr K. Asteriadou
Chemical Engineer
Research Fellow
University of Birmingham
Birmingham B15 2TT
UK
Tel: +44 (0)121 4145081
Fax: +44 (0)121 4145324
E-mail: K.Asteriadou@bham.ac.uk

Dr K.J. Burgess
Group Technical Director
Dairy Crest Ltd
Technical Centre
Crudgington
Telford
Shropshire TF6 6HY
UK
Tel: +44 (0) 1952 653098
Fax: +44 (0) 1952 653105
E-mail: ken.burgess@dairycrest.co.uk

Professor P. Fryer
Centre for Formulation Engineering
Chemical Engineering
University of Birmingham
Birmingham B15 2TT
UK
Tel: +44 (0)121 414 5451
Fax: +44 (0)121 414 5377
E-mail: P.Fryer@bham.ac.uk
Mr I. Hansen
Alfa Laval Tank Equipment A/S
Baldershoej 19
DK-2635 Ishoej
Denmark
Tel: +45 43 55 86 25
Mobile: +45 22 23 86 25
Fax: +45 43 55 86 01
E-mail: ingvar.hansen@alfalaval.com

Dr A.P.M. Hasting
Consultant
37 Church Lane
Sharnbrook
Bedford MK44 1HT
UK
E-mail: tony.hasting@virgin.net

Mr B. Knudsen
Alfa Laval Tank Equipment A/S
Baldershoej 19
DK-2635 Ishoej
Denmark
Tel: +45 43 55 86 14
Mobile: +45 22 23 86 14
Fax: +45 43 55 86 01
E-mail: bo.knudsen@alfalaval.com

Dr M.J. Lewis
University of Reading
School of Food Biosciences
PO Box 226
Whiteknights
Reading RG6 6AP
UK
Tel: +44 (0) 118 931 8721
Fax: +44 (0) 118 931 0080
E-mail: m.j.lewis@reading.ac.uk

Mr D. Lloyd
D B Lloyd Ltd
Valley View
The Ridge
Bussage
Stroud GL6 8HD
UK
Tel: +44 (0) 1453 885709
Fax: +44 (0) 1453 887472
Mob. +44 (0) 7811 944749
E-mail: david@dblloyd.co.uk

Mr R. Packman
Tank Cleaning Technologies Ltd
Sanderum House
Oakley Road
Chinnor
Oxfordshire OX39 4TW
UK
Tel: +44 (0) 1189 842001
Fax: +44 (0) 1189 842002
Mobile: +44 (0) 7768 202003
E-mail: richardp@tctech.co.uk

Mr F. Skou
JohnsonDiversey Ltd
Teglbuen 10
DK-2990 Nivå
Denmark
Tel: +45 70106611
E-mail: flemming.skou@johnsondiversey.com

Dr Sandy te Poele
JohnsonDiversey GmbH & Co. OHG
Mallaustrasse 50–56
D-68219 Mannheim
Germany
Tel: +49 621 8757198
Mobile: +49 173 6421953
E-mail: sandy-te.poele@johnsondiversey.com
Mr S.I. Walker
B&V Effluent Services Ltd
Lamport Drive
Heartlands Business Park
Daventry
Northants NN11 8YH
Tel: +44 (0) 1327 871967
Email stevewalker@bvwater.co.uk

Mr W.J. Watkinson
Technical Fellow
Research and Development
JohnsonDiversey Ltd
Technical Centre
Osier Drive
Sherwood Park
Annesley
Nottinghamshire NG10 0DS
UK
Tel: +44 (0) 1623 728036
Fax: +44 (0) 1623 721539
E-mail: john.watkinson@johnsondiversey.com

Mr M.T. Walton
CIP & Hygiene Consultant
21 Castle View Road
Appleby in Westmorland
Cumbria CA16 6HH
UK
Tel: +44 (0) 1768 354034
Fax: +44 (0) 1768 352546
Mobile: +44 (0) 7904 570820
E-mail: execdirector@sdt.org
1 Principles of Cleaning-in-Place (CIP)

M. Walton

1.1 Introduction

Cleaning-in-place (CIP) is now a commonplace activity in almost all dairy, beverage and processed-food production plants. The processed food industry has seen a major shift towards CIP over the past 10–15 years, and the beverage industry, which has been broadly in line with the dairy industry technology, has seen increased demands from customers in terms of CIP verification and validation to provide improvements in plant hygiene, finished product quality, and related shelf-life and microbiological considerations.

The highest standards of plant hygiene are an essential prerequisite for the production of any high-quality product being produced for human consumption. The cleaning and subsequent disinfection or sterilisation of any item of processing plant or equipment must be carried out with the utmost care and attention if the final product quality is to be fully assured. In earlier days, cleaning tended to be a manual process; indeed, it still is today in many small-scale operations, especially in the processed food sector, where a combination of manual strip-down clean and rebuild is common. Where manual cleaning is still practised, it is vital that there is meticulous attention to detail, because – for reasons of the health and safety of the operative – only mild and comparatively cool chemical solutions, detergents and disinfectants can be used, and strict adherence to cleaning procedures is critical. In larger-scale operations, and where more complex plant and equipment may be involved, the most usual approach today is to employ CIP, and it is to this aspect of cleaning technology that this book is primarily devoted, with a view to providing an understanding of the concepts and application of CIP in the processed food, pharmaceutical, dairy and beverage sectors.

1.2 Cleaning-in-place (CIP): definition

In the 1990 edition of the Society of Dairy Technology manual CIP: Cleaning in Place, CIP was defined as:

The cleaning of complete items of plant or pipeline circuits without dismantling or opening of the equipment and with little or no manual involvement on the part of the operator. The process involves the jetting or spraying of surfaces or circulation of cleaning solutions through the plant under conditions of increased turbulence and flow velocity.
This was taken from the National Dairyman’s Association (NDA) Chemical Safety Code, which was published in 1985; although the NDA has been superseded, their definition of CIP is still felt to be quite appropriate.

1.3 CIP systems: hardware

CIP units comprise vessels for storage and recovery of cleaning solutions, along with valves, pumps, pipelines and field instrumentation to allow cleaning to take place, usually automatically. They vary in complexity and degree of automation, and hence their efficiency and cost-effectiveness are also variable. For example, the single-use CIP units tend to be very expensive to operate (detergent, water and energy requirements are high), but can be much more hygienic as the chance of cross-contamination and potential spore formation is greatly reduced. Full recovery systems with large detergent storage tanks are usually multifunctional and tend to be relatively economic in operation, but need to be closely monitored to prevent the build-up of soil residues in the dilute detergent or recovered rinse tanks due either to the inherent recovery efficiency of the set or perhaps to poor pre-rinsing. It is therefore very important to refresh cleaning solutions on a regular basis.

1.4 The processes of cleaning

The cleaning processes, whether manual or automated and throughout all industry sectors, tend to follow similar principles, and will usually consist of a series of discrete stages or cycles, generally including:

- removal of gross debris (product recovery)
- pre-rinse
- detergent recirculation
- intermediate rinse
- second detergent recirculation (optional)
- intermediate rinse
- disinfection
- final rinse

1.4.1 Removal of gross debris (product recovery)

In manual cleaning operations, this tends to refer to removal of any residual product by mechanical means prior to introduction of a water rinse. In CIP applications, removal of gross debris generally involves draining product from the system to be cleaned under gravity, or physically displacing the product using various media, such as compressed air, water or a mechanical pigging device. This stage is often incorporated into the pre-rinse cycle of the cleaning programme with the addition of a divert valve system to facilitate product recovery into a suitable vessel or direct routing to drain. Control of this feature is quite often via automated valve and timer, but it is also possible to use more sophisticated methods, such
as turbidity or conductivity sensors in the return line. It is important to include an override timer into these systems as a ‘failsafe’ in order to avoid filling a product recovery tank with pre-rinse water if the system fails to activate the divert valve: this is not an uncommon situation, with probe and controller maintenance being a critical aspect of successful operation. Product recovery systems are becoming more sophisticated with the introduction of membrane plants that are designed to remove high levels of water from the effluent stream – often termed ‘white water’ in the dairy sector – to allow the recovered solids to be sold on for re-processing: these plants are effective at reducing effluent loading, and can form part of site pollution prevention and control (PPC) systems (e.g. The Environmental Protection Act; Anonymous, 1990).

1.4.2 Pre-rinse

Pre-rinse cycles often utilise recovered ‘water’ from the intermediate rinse stage (see Section 1.4.4). This serves two purposes: first, to reduce total water consumption (and effluent generation); and second, to utilise any heat energy and possible residual detergent solution carried into the recovered rinse tank during the rinse recovery stage. It is not uncommon to find heated pre-rinse systems in certain applications, such as cream production, where the hot pre-rinse solution provides a greatly enhanced method of product residue removal. The pre-rinse stage is important because it is not desirable to introduce excessive soiling into the dilute detergent tank. This stage is generally controlled via a timer, sometimes split between product recovery and drain, and these timers are often set at excessive levels to ensure maximum product removal. However, this may not be cost-effective in circumstances where water and effluent costs are high. In general, the pre-rinse cycle for tanks, silos or vessels consists of several ‘burst’ or ‘pulsed’ rinses, as this both improves rinsing efficiency and can reduce water consumption significantly.

1.4.3 Detergent circulation

This is where the main task of cleaning takes place, resulting in the soil being lifted from the plant surface and held suspended or dissolved in the detergent solution; for the selection of suitable detergents see Section 1.5.5, but an important attribute of the detergent should be the ability to prevent any soil from being redeposited during recirculation. Recirculation timings need to be assessed by experimentation and a degree of experience, with timing generally varying from 15 min up to 1 h, where exceptionally large and complex circuits are being cleaned. Contact times can be reduced by offsetting the potentially reduced cleaning effectiveness with higher temperatures, higher concentrations, or the use of more sophisticated (and expensive) detergent formulations. Cycle timers are often set to start counting down once the temperature set point has been reached in the return leg: this can lead to excessive cleaning times if the efficiency of the heating system is inadequate. It is important, for example, to ensure that tanks incorporating a water-cooling jacket have the jacket drained prior to CIP. Depending on detergent formulation, foaming can sometimes be a problem, and it is often associated with product contamination. It can also be caused by many other factors, including air entrainment via leaking pump seals; the use of totally softened water supplies can also be a contributory factor. It is also possible to utilise an acidic detergent for
the main cleaning step: this is quite common in both the dairy and beverage sectors, where milk residues in ‘cold/raw’ milk areas respond well to acidic detergents, and in the brewing sector, where acidic detergents have significant advantages over alkaline detergents in their ability to clean under CO₂ environments without loss of activity. Combined detergent/disinfectant chemical blends may be used in the cleaning cycle itself, though this approach has comparatively limited application, as they can be adversely affected by high soil loading, and the ratio of detergent to disinfectant can become imbalanced.

1.4.4 Intermediate rinse

The intermediate rinse serves to remove all traces of detergent and entrained soil from the plant being cleaned and, in a partial recovery situation, to recover as much detergent (and thermal energy) back to the dilute detergent tank as possible; it also may need to be sufficient to cool the plant down ready for disinfection and/or refilling. The intermediate rinse should use potable water, and is normally cold, although – if a warm secondary detergent step is being incorporated – it may be desirable to use hot water (if available from sources such as recovered and suitably treated condensate). The intermediate rinse is often recovered and reused as the pre-rinse for the next cleaning cycle.

1.4.5 Second detergent circulation (optional)

Some systems utilise a secondary detergent cycle, often an acidic detergent to follow an alkaline product in the first detergent stage. This is common practice where built detergents are not being used (sodium hydroxide liquor followed by nitric acid was once very common), and also where there are high levels of process-generated soils, such as in heat exchangers and cheese vats.

1.4.6 Second intermediate rinse

This second intermediate rinse will almost always use cold potable water. The quality of this water is critical, if there is to be no disinfection stage. Some sites that do not use a discrete disinfection stage in the CIP cycle ensure the quality of their potable water by treating it with chlorine dioxide.

1.4.7 Disinfection

The disinfection cycle is usually undertaken cold, and often uses an oxidising biocide, such as sodium hypochlorite or peracetic acid solution (equilibrium mixture of acetic acid and hydrogen peroxide). Some non-oxidising biocides are also available, but they must be low foaming and fast acting in cold water in order to be effective for CIP. It is also possible to use hot water at the disinfection stage rather than a chemical agent; this is also very effective, but requires a high thermal energy input, which can prove costly.
1.4.8 Final rinse

The final rinse stage should be undertaken using cold potable water. Again, the quality of this water is critical, as it can lead to post-disinfection contamination and product spoilage.

1.5 Planning a cleaning project

Above all else, the paramount consideration in the planning of any cleaning project must be safety – not only of the plant and personnel involved, but of the product which that plant is required to process. The mid-1980s saw a dramatic reappraisal of many of the standards and practices previously regarded as acceptable within the dairy industry, following incidents – both at home and overseas – of contamination of products by micro-organisms rarely ever encountered as presenting problems of any significance, other than in raw milk supplies, to the average United Kingdom dairyman. Problems of Salmonella spp., Listeria spp. and Yersinia spp. contamination in finished product have all played their part in accentuating the need for stringent food hazard assessment in every field of activity; cleaning technology is not least among these. The interconnection of ‘raw’ and ‘processed’ side plant and pipelines into a single cleaning circuit, or the separate cleaning of ‘raw’ and ‘processed’ side equipment from a common CIP set – frequently encountered in the days when the fashion was for large, multi-purpose, centralised cleaning systems – is now generally considered to present unacceptable product risks. The trend is now strongly towards the use of smaller units, specifically dedicated to either raw or finished products, or to the cleaning requirements of individual circuits and plant equipment items. The total separation of the ‘raw’ and ‘processed’ sides of a factory – the only point at which the two ever come together being the flow diversion valve of the processing plant – should be the basic design objective of every process engineer. This approach may, in some installations, carry a capital cost penalty, but the advantages in quality assurance and generally lower revenue operating costs weigh heavily on the benefit side. Such an approach need not, of course, preclude the use of a common centralised control system; the need for programme safety interlocks between the individual systems is vital to such an approach.

Before embarking on any cleaning project, however, a considerable number of questions have to be answered regarding the actual equipment to be cleaned and the standards of cleanliness to be achieved.

1.5.1 What is the physical nature of the plant or equipment to be cleaned?

Any food manufacturing or processing plant will comprise many different items of equipment: for example, dairies and breweries will have plate heat exchangers, storage tanks, vats, pumps, valves, and interconnecting pipework, as well as specialised items, such as bottle and carton fillers or – on the manufacturing side – cheese plant, evaporators, spray dryers and continuous butter-makers. Each of these will have its own cleaning requirements, and pose its own individual cleaning problems. Food processing plants are probably the most diverse sector in terms of equipment design and cleaning requirements, and full consideration needs to be given to the design of this equipment with respect to CIP. Materials of
construction must be considered, not only regarding any metal parts, but also items such as

gaskets and similar rubber components, and plastic mouldings, to ensure their compatibility

with the cleaning chemicals proposed regarding corrosion or degradation. Questions as to
temperature and pressure or vacuum limitations of the equipment must be considered, all
aimed at answering the overriding question: ‘Can the plant be cleaned safely and effectively
by in-place methods, achieving acceptable standards of cleanliness without damage to the
plant itself?’

1.5.2 What standards of cleaning are required?

It is important to understand that various degrees of cleanliness may be appropriate in
different circumstances. It is vital that this is clearly recognised, and the target level of
cleanliness defined when considering any cleaning project. Levels of cleaning that might
be considered are as follows.

- Physically clean: This primarily addresses the aesthetic aspect. The surface appears clean,
 but chemical residues, often deliberately left to achieve a particular desired effect, may
 have been allowed to remain. Disinfection of the surface has not been considered.
- Chemically clean: The surface is rendered totally free from any trace of chemical resi-
dues.
- Microbiologically clean: This addresses the degree of microbiological contamination
 remaining on the surface, and may range from plant that has been ‘disinfected’ – that
 is, the number of bacteria on the surface of the equipment has been reduced to a level
 consistent with acceptable quality control and hygienic standards – to surfaces rendered
totally sterile, as is essential in ultra-high-temperature (UHT) and similar aseptic opera-
tions.

One can thus reach a situation where the surface involved has been physically cleaned and
has, perhaps, been rendered microbiologically clean by chemical disinfection, but traces of
substantive disinfectant chemical have been deliberately left on the surface to reduce the
risk of subsequent microbiological contamination, and the surface is therefore still chemi-
cally ‘contaminated’.

1.5.3 What is the nature of the soil to be removed?

Soil can be considered as the product residues, scale and any other unwanted deposits of
foreign matter that have to be removed from the plant surfaces during the cleaning process.
Within the manufacturing or processing dairy, such soil may include fat, protein (both
denatured and un-denatured: see IDF, 1997), sugar (possibly caramelised), minerals (both
from product and from the water supply), fruit cells and various manufacturing ingredients
including gums, starches, stabilisers and emulsifiers – all of which will present different
and often complex cleaning problems to the detergent chemist. In the dairy context, soil
can be divided into two broad general headings: organic soil, which is mainly of plant or
animal origin, and is generally most susceptible to attack by alkaline detergents; and inor-