Cardiac Mapping
Cardiac Mapping

Third Edition

EDITED BY

Mohammad Shenasa, MD, FACC, FAHA, FESC, FHRS
Attending Physician
Department of Cardiovascular Services
O’Connor Hospital
San Jose, California, USA

Gerhard Hindricks, MD
Head, Department of Electrophysiology
University Leipzig, Heart Center
Leipzig, Germany

Martin Borggrefe, MD
Department of Medicine-Cardiology,
University Hospital of Mannheim,
Mannheim, Germany

Günter Breithardt, MD
Professor of Medicine (Cardiology)
Head, Department of Cardiology and Angiology
Hospital of the University of Münster
Münster, Germany

FOREWORD BY

Douglas P. Zipes, MD
Professor of Medicine, Indiana University, Indianapolis, Indiana, USA
Editor-in-Chief, Heart Rhythm Journal

WILEY-BLACKWELL
A John Wiley & Sons, Ltd., Publication
This book is dedicated to those who paved the “roads of cardiac mapping” and to all who taught us: our mentors, colleagues, students and patients. We also dedicate this book to our wives, children, and parents for their continuous lifetime support and love.
CD-ROM

A companion CD-ROM is included at the front of the book.

The CD includes:

A database of video clips
A search function
All video clips are referenced in the text where you see this icon. 🎥
Acknowledgments x
Contributors xi
Preface to the Third Edition xvii
Preface to the Second Edition xviii
Preface to the First Edition xix
Foreword xx
 Douglas P. Zipes

Part I Historical Perspectives 1
1 Cardiac Activation Mapping: The Amsterdam Years 3
 Hein J. Wellens

Part II Methodological and Technical Considerations 11
2 Construction and Interpretation of Endocardial Maps: From Basic Electrophysiology to 3D Mapping 13
 Lars Eckardt, Günter Breithardt
3 Cardiac Anatomy for Interventional Electrophysiology and Mapping 27
 Siew Yen Ho, José Angel Cabrera, Damian Sánchez-Quintana
4 Principles of Noncontact Endocardial Cardiac Mapping 37
 Kim Rajappan, Richard J. Schilling
5 Principles of Nonfluoroscopic Electroanatomical and Electromechanical Cardiac Mapping 49
 Yitzhak Schwartz, Shlomo A. Ben-Haim
6 Principles of NavX Mapping 71
 Christopher Piorkowski, Gerhard Hindricks
7 Magnetic Navigation: Catheter Ablation 80
 Sabine Ernst
8 CT Angiography: Cardiac Anatomy for Mapping and Ablation of Arrhythmias 86
 Jerold S. Shinbane, Daniel Goodwin, Leslie A. Saxon, Matthew J. Budoff
9 MRI Anatomy for Cardiac Mapping and Ablation 101
 Aravindan Kolandaivelu, Henry R. Halperin, Albert C. Lardo
10 Challenges and Limitations of Electroanatomical Mapping Technologies 117
 Jeff M. Hsing, Paul Zei, Henry H. Hsia, Paul J. Wang, Amin Al-Ahmad

Part III Mapping in Experimental Models of Cardiac Arrhythmias 127
11 Mapping of Atrial Neural Stimulation and Implications in Atrial Fibrillation 129
 Pierre Pagé, René Cardinal
12 Mapping of Neurally Based Atrial Arrhythmias 141
 Guo-Dong Niu, Benjamin J. Scherlag, Zhibing Lu, Jeffery Edwards, Eugene Patterson,
 Muhammad Ghias, Annerie Moers, Shu Zhang, Ralph Lazzara, Warren M. Jackman,
 Sunny S. Po
13 Electrophysiological Mapping of the Right and Left Ventricle in Animals 152
 Jacques MT de Bakker, Jérôme GM Jungschleger, Marc A. Vos
Part IV Mapping of Supraventricular Tachyarrhythmias 163

14 Endocardial Catheter Mapping in Patients with Wolff–Parkinson–White Syndrome and Variants of Preexcitation 165
 Nikolaos Dagres, Hans Kottkamp

15 Cryomapping of the Perinodal Region: A Safe and Effective Technique for Ablation of the AV Nodal Reentrant Tachycardia 183
 Mohammad R. Jazayeri

16 Mapping and Ablation of AVNRT and Its Subtypes 199
 Stephan Willems, Daniel Steven, Boris Lutomsky, Imke Drewitz, Helge Servatius, Thomas Meinertz, Thomas Rostock

17 New Observations on Mapping and Ablation of Atrial Flutter 212
 Navinder S. Sawhney, Gregory K. Feld

18 Mapping of Macroreentrant Atrial Tachycardias 233
 Mohammad Shenasa, Hossein Shenasa, Christopher Piorkowski, Gerhard Hindricks

19 Mapping of Focal Atrial Tachycardias 256
 Nitish Badhwar, Byron K. Lee, Jeffery E. Olgin

20 Interpretation of Atrial Electrograms During Atrial Fibrillation 267

21 Different Mapping Approaches for Atrial Fibrillation Ablation 277
 KR Julian Chan, Feifan Ouyang, Karl-Heinz Kuck

22 Integration of Nonelectrophysiological Imaging Technologies into the Mapping of Atrial Fibrillation 288
 Tamer S. Fahmy, J. David Burkhardt, Andrea Natale

Part V Mapping of Ventricular Tachyarrhythmias 299

23 Substrate Mapping for Ablation of Ventricular Tachycardia in Coronary Artery Disease 301
 John V. Wylie, Jr., Timothy W. Smith, Mark E. Josephson

24 Mapping of Unstable Ventricular Tachycardia 310
 Usha B. Tedrow, William Stevenson

25 Endocardial and Epicardial Mapping of Nonischemic Right and Left Ventricular Cardiomyopathy 323
 Mathew D. Hutchinson, Francis E. Marchlinski

26 Role of Mapping in Arrhythmogenic Right Ventricular Cardiomyopathy 337
 Molly Sachdev, Hugh Calkins

27 Mapping of Idiopathic Ventricular Tachycardias: RV and LV Outflow and Septal Tachycardias 346
 Mohammad Ali Sadr-Ameli, Majid Haghjoo, Zahra Emkanjoo

28 Role of Different Stimulation Techniques (Pace Mapping, Entrainment Mapping) in Different Subset of Ventricular Tachycardias 357
 Frank Bogun, Fred Morady

29 Endocardial Catheter Pace Mapping of Ventricular Tachycardias 366
 Mithilesh K. Das, John C. Lopshire, Deepak Bhakta, Anil V. Yadav, John M. Miller

30 Electrical and Anatomical Mapping of Different Pathologies: Ischemic, Dilated, and Hypertrophic Cardiomyopathies 376
 Arash Arya, Hans Kottkamp, Christopher Piorkowski, Gerhard Hindricks

31 Mapping and Ablation of Tachyarrhythmias in Patients with Congenital Heart Disease 385
 Edward P. Walsh

32 Transthoracic Epicardial Mapping and Ablation of Ventricular Tachycardia 401
 André d’Avila, Mauricio Scanavacca, Eduardo Sosa
Part VI New Frontiers 411

33 Mapping of Ventricular Tachycardia and Fibrillation: Role of the Purkinje System 413
Paul B. Tabereaux, Derek J. Dosdall, Raymond E. Ideker

34 Mapping Rotors in Animals and Humans During Atrial Fibrillation 423
Omer Berenfeld, Jérôme Khalifa

35 Role of Mapping in Channelopathies: Brugada Syndrome, Long-QT Syndrome, and Idiopathic VF 434
Sergio Richter, Pedro Brugada

36 Molecular Cardiovascular Imaging with SPECT and PET 454
Michael Schäfers, Günter Breithardt, Otmar Schober

37 Optical Mapping: Its Impact on Understanding Arrhythmia Mechanisms 463
Guy Salama, Bum-Rak Choi

38 The Kinetics of Intracellular Calcium and Arrhythmogenesis in Ischemia/Reperfusion: A Calcium-Centric Mechanism of Arrhythmia 474
Nabil El-Sharif, Gil Bub, Vikram Lakireddy

39 Role of Body Surface Mapping 485
Christian Vahlhaus, Günter Breithardt, Lars Eckardt

40 Electrocardiographic Imaging of Heart Failure Patients with Left Bundle Branch Block: Effects of Right Ventricular Pacing and Cardiac Resynchronization Therapy 492
Niraj Varma, Ping Jia, Yorum Rudy

41 How to Better Map and Future Directions in Cardiac Mapping 501
Mohammad Shenasa, Jafar Shenasa, Javad Rahimian

Index 520

A CR-ROM with the video clips referred to in the text is included with this book.
Acknowledgments

We wish to thank all the contributors for the substantial effort to deliver their state-of-the-art work in a very timely fashion. We thank Mona Soleimanieh for her assistance from the beginning to the end of this project.

We appreciate the superb job of Gina Almond, Beckie Brand, Laura Beaumont, Oliver Walter, and Blackwell Publishing who took on this project, and their continuous support toward the publication of this third edition of *Cardiac Mapping*, the only comprehensive text on the subject.

Finally, I would like to personally thank my brother, Dr. Hossein Shenasa, who freed me from my daily clinical routine so I could finish this project.

The Editors
Contributors

Amin Al-Ahmad, MD
Standford University, Palo Alto, CA, USA

Leonardo Arantes, MD
Hôpital Cardiologique Du Haut-Lévêque
Université Victor Segalen Bordeaux II
Bordeaux, France

Arash Arya, MD
Department of Electrophysiology
University of Leipzig Heart Center
Leipzig, Germany

André d’Avila, MD
Cardiac Arrhythmia Service
Massachusetts General Hospital
Harvard Medical School
Boston, MA, USA

Nitish Badhwar, MBBS
Cardiac Electrophysiology
Division of Cardiology
Department of Medicine
University of California – San Francisco
San Francisco, CA, USA

Shlomo A. Ben-Haim, MD, DSc
Caesarea, Israel

Omer Berenfeld, PhD
Center for Arrhythmia Research
University of Michigan
Ann Arbor, MI, USA

Deepak Bhakta, MD
Krannert Institute of Cardiology
Indiana University School of Medicine
Indianapolis, IN, USA

Frank Bogun, MD
Division of Cardiology
Department of Internal Medicine

University of Michigan Health System
Ann Arbor, MI, USA

Pierre Bordachar, MD
Hôpital Cardiologique Du Haut-Lévêque
Université Victor Segalen Bordeaux II
Bordeaux, France

Martin Borggrefe, MD
Department of Medicine-Cardiology
University Hospital of Mannheim
Mannheim, Germany

Günter Breithardt, MD, FESC, FACC, FHRS
Department of Cardiology and Angiology
Hospital of the Westfälische Wilhelms
University of Münster
Münster, Germany

Pedro Brugada, MD, PhD
Heart Rhythm Management Centre
Cardiovascular Centre
Free University of Brussels (UZ Brussel) VUB
Brussels, Belgium

Gil Bub, PhD
State University of New York
Downstate Medical Center
New York Harbor VA Healthcare System
Brooklyn, NY, USA

Matthew J. Budoff, MD FACC
Harbor-UCLA Medical Center
1000 West Carson Street
Torrance, CA, USA

J. David Burkhardt, MD, FACC
Staff Cardiovascular Medicine
Associate Program Director
Cardiac Electrophysiology and Pacing
Cleveland Clinic
Cleveland, OH, USA
José Angel Cabrera, MD, PhD
Hospital Quirón
Madrid, Spain

Hugh Calkins, MD
Division of Cardiology
The Johns Hopkins University School of Medicine
Baltimore, MD, USA

René Cardinal, PhD
Centre de Recherche
Hôpital du Sacré-Cœur de Montréal
Montréal, Canada

KR Julian Chun, MD
Department of Cardiology
Asklepios Klinik St. Georg
Hamburg, Germany

Jacques Clémenty, MD
Hôpital Cardiologique Du Haut-Lévêque
Université Victor Segalen Bordeaux II
Bordeaux, France

Nikolaos Dagres, MD
University of Athens
Second Cardiology Department
Attikon University Hospital
Athens, Greece

Mithilesh K. Das, MD
Krannert Institute of Cardiology
Indiana University School of Medicine
Indianapolis, IN, USA

Jacques MT de Bakker
Department of Experimental Cardiology
Academic Medical Center
Amsterdam, The Netherlands

Antoine Deplagne, MD
Hôpital Cardiologique Du Haut-Lévêque
Université Victor Segalen Bordeaux II
Bordeaux, France

Nicolas Derval, MD
Hôpital Cardiologique Du Haut-Lévêque
Université Victor Segalen Bordeaux II
Bordeaux, France

Derek J. Dosdall, PhD
Department of Medicine, Division of Cardiovascular Disease, Department of Physiology, and Department of Biomedical Engineering
University of Alabama at Birmingham
Birmingham, AL, USA

Imke Drewitz, MD
University Heart Center Hamburg
Department of Cardiology
Hamburg, Germany

Lars Eckardt, MD
Department of Cardiology and Angiology
Hospital of the Westfälische Wilhelms University of Münster
Münster, Germany

Jeffery Edwards, RN
University of Oklahoma Medical Center
Oklahoma City, OK, USA

Nabil El-Sherif, MD
State University of New York
Downstate Medical Center
New York Harbor VA Healthcare System
Brooklyn, NY, USA

Zahra Emkanjoo, MD
Department of Pacemaker and Electrophysiology
Rajaie Cardiovascular Medical and Research Center
Iran University of Medical Sciences
Tehran, Iran

Sabine Ernst, MD
Royal Brompton and Harefield Hospital
National Heart and Lung Institute
London, UK

Tamer S. Fahmy, MD, PhD
Associate Professor, Critical Care Medicine Department
Cardiac Electrophysiology Division
Co-director of Experimental Research Lab
Cairo University Hospitals, Cairo, Egypt

Gregory K. Feld, MD
Division of Cardiology
Clinical Cardiac Electrophysiology Program
University of California, San Diego
San Diego, CA, USA

Muhammad Ghias, MD
University of Oklahoma Medical Center
Oklahoma City, OK, USA

Daniel Goodwin, MD, FACC
Keck School of Medicine
Division of Cardiovascular Medicine
University of Southern California Keck School of Medicine
Los Angeles, CA, USA

Majid Haghjoo, MD
Department of Pacemaker and Electrophysiology
Rajaie Cardiovascular Medical and Research Center
Iran University of Medical Sciences
Tehran, Iran
Michel Haïssaguerre, MD
Hôpital Cardiologique Du Haut-Lévêque
Université Victor Segalen Bordeaux II
Bordeaux, France

Henry R. Halperin, MD, MA, FAHA
Johns Hopkins University
Division of Cardiology
Baltimore, MD, USA

Gerhard Hindricks, MD, PhD
Department of Electrophysiology
University of Leipzig Heart Center
Leipzig, Germany

Siew Yen Ho, PhD
Professor of Cardiac Morphology
Imperial College London
Royal Brompton and Harefield NHS Trust
London, UK

Mélèze Hocini, MD
Hôpital Cardiologique Du Haut-Lévêque
Université Victor Segalen Bordeaux II
Bordeaux, France

Henry H. Hsia, MD
Stanford University
Stanford, CA, USA

Jeff M. Hsing, MD
Stanford University
Stanford, CA, USA

Mathew D. Hutchinson, MD
University of Pennsylvania Health System
Philadelphia, PA, USA

Raymond E. Ideker, MD, PhD
Department of Medicine
Division of Cardiovascular Disease
Department of Physiology, and
Department of Biomedical Engineering
University of Alabama at Birmingham
Birmingham, AL, USA

Warren M. Jackman, MD
University of Oklahoma Medical Center
Oklahoma City, OK, USA

Pierre Jaïs, MD
Hôpital Cardiologique Du Haut-Lévêque
Université Victor Segalen Bordeaux II
Bordeaux, France

Mohammad-Reza Jazayeri, MD, FACC, FAHA
Bellin Health Hospital Center
Green Bay, WI, USA

Ping Jia, PhD
Cardiac Bioelectricity Research and Training Center
Case Western Reserve University
Cleveland, OH, USA

Mark E. Josephson, MD
Harvard-Thorndike Electrophysiology Institute
Cardiovascular Division
Beth Israel Deaconess Medical Center
Harvard Medical School
Boston, MA, USA

Jérôme GM Jungschleger
Department of Cardiothoracic Surgery
Maastricht University
Maastricht, The Netherlands

Jérôme Kalifa, MD, PhD
Center for Arrhythmia Research
University of Michigan
Ann Arbor, MI, USA

Sébastien Knecht, MD
Hôpital Cardiologique Du Haut-Lévêque
Université Victor Segalen Bordeaux II
Bordeaux, France

Aravindan Kolandaivelu, MD
Johns Hopkins University
Division of Cardiology
Baltimore, MD, USA

Hans Kottkamp, MD, PhD
Department of Electrophysiology
Clinic Hirrlingen Heart Center
Zurich, Switzerland

Karl-Heinz Kuck, MD
Department of Cardiology
Asklepios Klinik St. Georg
Hamburg, Germany

Vikram Lakireddy, MD
State University of New York
Downstate Medical Center
New York Harbor VA Healthcare System
Brooklyn, NY, USA

Albert C. Lardo, PhD, FAHA, FACC
Johns Hopkins University
Division of Cardiology
Baltimore, MD, USA
Contributors

Ralph Lazzara, MD
University of Oklahoma Medical Center
Oklahoma City, OK, USA

Byron K. Lee, MD
Cardiac Electrophysiology
Division of Cardiology
Department of Medicine
University of California – San Francisco
San Francisco, CA, USA

Kang-Teng Lim, MD
Hôpital Cardiologique Du Haut-Lévêque
Université Victor Segalen Bordeaux II
Bordeaux, France

John C. Lopshire, MD
Krannert Institute of Cardiology
Indiana University School of Medicine
Indianapolis, IN, USA

Zhibing Lu, MD
University of Oklahoma Medical Center
Oklahoma City, OK, USA

Boris Lutomsky, MD
University Heart Center Hamburg
Department of Cardiology
Hamburg, Germany

Francis E. Marchlinski, MD
University of Pennsylvania Health System
Philadelphia, PA, USA

Seiichiro Matsuo, MD
Hôpital Cardiologique Du Haut-Lévêque
Université Victor Segalen Bordeaux II
Bordeaux, France

Thomas Meinertz
University Heart Center Hamburg
Department of Cardiology
Hamburg, Germany

John M. Miller, MD
Krannert Institute of Cardiology
Indiana University School of Medicine
Indianapolis, IN, USA

Annerie Moers, MD
University of Oklahoma Medical Center
Oklahoma City, OK, USA

Fred Morady, MD
Division of Cardiology
Department of Internal Medicine

University of Michigan Health System
Ann Arbor, MI, USA

Andrea Natale, MD, FACC, FHRS
Executive Medical Director of the Texas Cardiac Arrhythmia Institute
St. David’s Medical Center, Austin, TX;
Consulting Professor, Division of Cardiology
Stanford University, Palo Alto, CA;
Clinical Associate Professor of Medicine
Case Western Reserve University
Cleveland, OH, USA

Guo-Dong Niu, MD
Cardiovascular Institute & Fuwai Hospital
Beijing, China

Jeffrey E. Olgin, MD
Cardiac Electrophysiology
Division of Cardiology
Department of Medicine
University of California – San Francisco
San Francisco, CA, USA

Mark D. O’Neill, MBBCh, DPhil
Hôpital Cardiologique Du Haut-Lévêque
Université Victor Segalen Bordeaux II
Bordeaux, France

Feifan Ouyang, MD
Department of Cardiology
Asklepios Klinik St. Georg
Hamburg, Germany

Pierre Pagé, MD
Centre de Recherche
Hôpital du Sacré-Cœur de Montréal
Montréal, Canada

Eugene Patterson, PhD
University of Oklahoma Medical Center
Oklahoma City, OK, USA

Sunny S. Po, MD, PhD
University of Oklahoma Medical Center
Oklahoma City, OK, USA

Christopher Piorkowski, MD
Department of Electrophysiology
University of Leipzig Heart Center
Leipzig, Germany

Javad Rahimian, PhD
Southern California Permanente Medical Group
Department of Radiation Oncology
Los Angeles, CA;
Lecturer
Kim Rajappan, MD, MRCP
The Department of Cardiology
St Bartholomew’s Hospital and Queen Mary College
University of London
London, UK

Sergio Richter, MD
Heart Rhythm Management Centre
Cardiovascular Centre
Free University of Brussels (UZ Brussel) VUB
Brussels, Belgium

Thomas Rostock
University Heart Center Hamburg
Department of Cardiology
Hamburg, Germany

Yoram Rudy, PhD
Cardiac Bioelectricity and Arrhythmia Center
Washington University in St. Louis
St. Louis, MO, USA

Molly Sachdev, MD, MPH
Division of Cardiology
The Johns Hopkins University School of Medicine
Baltimore, MD, USA

Frederic Sacher, MD
Hôpital Cardiologique Du Haut-Lévêque
Université Victor Segalen Bordeaux II
Bordeaux, France

Mohammad Ali Sadr-Ameli, MD
Department of Pacemaker and Electrophysiology
Rajaie Cardiovascular Medical and Research Center
Iran University of Medical Sciences
Tehran, Iran

Damian Sánchez-Quintana, MD, PhD
Universidad de Extremadura
Badajoz, Spain

Navinder S. Sawhney, MD
Division of Cardiology
Clinical Cardiac Electrophysiology Program
University of California – San Diego
San Diego, CA, USA

Leslie A. Saxon, MD FACC
Keck School of Medicine
Division of Cardiovascular Medicine
University of Southern California Keck School of Medicine
Los Angeles, CA, USA

Mauricio Scanavacca, MD
Arrhythmia Service
Heart Institute (InCh) Science
University of Sao Paulo Medical School
Sao Paulo, Brazil

Michael Schäfers, MD
European Institute of Molecular Imaging–EIMI
University of Münster
Münster, Germany

Benjamin J. Scherlag, PhD
University of Oklahoma Medical Center
Oklahoma City, OK, USA

Richard J. Schilling, MD, FRCP
The Department of Cardiology
St. Bartholomew’s Hospital and Queen Mary College
University of London
London, UK

Otmar Schober, MD, PhD, FESC
Department of Nuclear Medicine
University of Münster
Münster, Germany

Yitzhack Schwartz, MD
Structural Heart Disease
Pediatric Cardiology, and GUCH
Rambam Healthcare Campus
Meyer Children’s Hospital
Haifa, Israel

Helge Servatius
University Heart Center Hamburg
Department of Cardiology
Hamburg, Germany

Hossein Shenasa, MD, MSc, FACC
Department of Cardiovascular Services
O’Connor Hospital
San Jose, CA, USA

Jafar Shenasa, MSc
Heart and Rhythm Medical Group
San Jose, CA, USA

Mohammad Shenasa, MD, FACC, FAHA, FESC, FHRS
Department of Cardiovascular Services
O’Connor Hospital
San Jose, CA, USA
Jerold S. Shinbane, MD, FACC
Keck School of Medicine
Division of Cardiovascular Medicine
University of Southern California Keck School of Medicine
Los Angeles, CA, USA

Timothy W. Smith, DPhil, MD
Cardiovascular Division
Washington University School of Medicine
St. Louis, MO, USA

Eduardo Sosa, MD
Arrhythmia Service
Heart Institute (In Cor)
University of Sao Paulo Medical School
Sao Paulo, Brazil

Daniel Steven, MD
University Heart Center Hamburg
Department of Cardiology
Hamburg, Germany

William G. Stevenson, MD
Clinical Cardiac Electrophysiology Program
Brigham and Women’s Hospital
Boston, MA, USA

Rajesh Subbiah, Bsc (Med) MBBS, PhD
Hôpital Cardiologique Du Haut-Lévéque
Université Victor Segalen Bordeaux II
Bordeaux, France

Paul B. Tabereaux, MD, MPH
Department of Medicine
Division of Cardiovascular Disease
Department of Physiology, and
Department of Biomedical Engineering
University of Alabama at Birmingham
Birmingham, AL, USA

Usha B. Tedrow, MD, MSc
Clinical Cardiac Electrophysiology Program
Brigham and Women’s Hospital
Boston, MA, USA

Christian Vahlhaus, MD
Department of Cardiology and Angiology
University Hospital Münster
Münster, Germany

Niraj Varma, MD, FRCP
Cardiac Electrophysiology
Heart and Vascular Institute
Cleveland Clinic
Cleveland, OH, USA

Marc A. Vos
Department of Medical Physiology and the Heart Lung Center
University Medical Center Utrecht
Center of Heart Failure Research,
Amsterdam, The Netherlands

Edward P Walsh, MD
Chief, Division of Cardiac Electrophysiology
Department of Cardiology
Children’s Hospital Boston
Boston, MA, USA

Paul J. Wang, MD
Stanford University
Stanford, CA, USA

Hein J. Wellens
Cardiovascular Research Institute Maastricht
Maastricht, The Netherlands

Stephan Willems, MD
University Heart Center Hamburg
Department of Cardiology
Hamburg, Germany

John V. Wylie, Jr., MD
Harvard-Thorndike Electrophysiology Institute
Cardiovascular Division
Beth Israel Deaconess Medical Center
Harvard Medical School
Boston, MA, USA

Anil V. Yadav, MD
Krannert Institute of Cardiology
Indiana University School of Medicine
Indianapolis, IN, USA

Paul Zei, MD, PhD
Stanford University
Stanford, CA, USA

Shu Zhang
Cardiovascular Institute & Fuwai Hospital
Beijing, China
Preface to the Third Edition

Since the publication of the second edition of *Cardiac Mapping*, which stood as the only comprehensive textbook in the field, substantial achievements and breakthroughs have been made in the fields of interventional electrophysiology and imaging technologies. Today, mapping technology is no longer an investigational research tool; rather, it is an essential part of the clinical electrophysiology laboratory. The mapping of complex arrhythmias such as atrial and ventricular fibrillation introduces a new era in the management of these arrhythmias.

We are privileged that leading experts have accepted our invitation and provided a contemporary state-of-the-art reference work in the field. The third edition is somewhat different from its preceding editions in that it is focused on new developments in fields such as mapping of complex arrhythmias, stereotaxis, image integration, and future directions in cardiac mapping and imaging.

We hope that this new edition will remain a useful source for basic scientists and clinical electrophysiologists to understand mechanisms and improve patient outcomes by more accurate and safer mapping. In the introduction to the first edition we stated that cardiac mapping is an integral part of cardiac electrophysiology, which remains true; however, at this point, cardiac mapping and imaging are integrated, and we focus on the impact of new imaging technology and mapping.

The last chapter of this edition discusses new developments and future trends in cardiac mapping. A special chapter is also devoted to the limitations of each mapping technology. Paradoxically, in the recent AHA/ACC/ESC updated guidelines on clinical cardiac electrophysiology and ablation, very little was mentioned about mapping procedures: In view of the impressive progress in mapping techniques, a comprehensive review of the latest results is warranted.

As the field of interventional electrophysiology continues to evolve, cardiac mapping will remain an integral part of the science and practice of complex rhythm management.

Mohammad Shenasa, MD
Gerhard Hindricks, MD
Martin Borggrefe, MD
Günter Breithardt, MD
Preface to the Second Edition

The first edition of *Cardiac Mapping* stood out as the only textbook in the field with outstanding contributions from world-renowned authors. The book was well received and indeed sold out. Since the release of the first edition, there have been areas of significant progress and even major breakthroughs in the field of cardiac mapping and catheter ablation of arrhythmias. In particular, the technical advancements in noncontact and nonfluoroscopic mapping improved our understanding of the mechanism and thus the appropriate treatment of many arrhythmias, particularly atrial and ventricular fibrillation. The second edition offers a unique source for the latest developments in cardiac mapping of arrhythmias.

This new edition of *Cardiac Mapping* provides an important resource of the interventional electrophysiologist, rhythmologist, and those who are interested in understanding the mechanism of cardiac arrhythmias.

As the field of interventional electrophysiology continues to evolve, cardiac mapping will remain an integral part of the science and practice of electrophysiology.

The Editors
San Jose, CA, USA;
Mannheim and Münster, Germany
Cardiac mapping has always been an integral part of both experimental and clinical electrophysiology. Indeed, Sir Thomas Lewis systematically investigated the activation of the dog ventricle as early as 1915. The detailed activation map from that experiment is shown in Figure 1. Since then, cardiac mapping has evolved from single sequential probe mapping to very sophisticated computerized three-dimensional mapping. By the time cardiac mapping began being used in the surgical management of ventricular as well as supraventricular tachycardias, a large body of literature had already been collected.

Despite this significant progress, a collective textbook that attempted to discuss all aspects of cardiac mapping did not exist. When we first considered working on such a project, we were not sure if our friends and colleagues who have paved the road to this point would think it necessary to join us in this effort, especially in the era of implantable devices. We were surprised and encouraged by their unanimous positive support to go ahead with this text. (Many of the contributors have already asked about the second revised edition!) The contributors unanimously agreed to prepare manuscripts that discussed their latest work and that would subsequently be published in this, the only comprehensive book to present the state of the art on all aspects of cardiac mapping from computer simulation to online clinical application. Thus, we would like to thank all the contributors for presenting their best work here. Without them, this book would not have been possible.

A unique feature of this book is that the chapters are followed by critical editorial comments by the pioneer of that specific area, so that the state of the art is discussed. We hope this book will serve as an impetus to stimulate new ideas for cardiac mapping in the future.

The Editors
The Merriam-Webster online dictionary defines a map as “a representation . . . of the whole or a part of an area.” Indeed, reading maps is the fundamental process by which one navigates uncharted or unknown regions. The goal of such navigation may be simply to get from one point to another using the location of major structures such as mountains and rivers. For example, Lewis and Clark in 1803–4 explored the uncharted western United States, which allowed subsequent settlers to travel the same geography more easily, safely, and quickly. Maps can also be used to understand the composition of the underlying terrain, such as geologic maps of the earth’s crust. Finally, maps can be employed to comprehend functional changes superimposed on the various fixed structures, such as weather and geothermal maps. To be used effectively, the functional map must be interpreted in light of the topography and composition.

Fundamental to all maps is the ability to create an image. Lewis and Clark imaged the Missouri River through the Rocky Mountains to the Pacific Ocean. Later maps represented the composition of the soil, while still later maps, the functional terrain. And this is the general development of maps and their corresponding images, from noting fixed structures, to drilling down (literally and figuratively) into the fixed structures, to understanding functional events unfolding on top of, and within, the structures.

Mapping in medicine has followed the same general concepts. Initially, anatomists such as Virchow and Rokitansky noted the gross anatomy, while Purkinje, His, Tawara, and Watson and Crick, explored the cellular and subcellular composition. Starling, Harvey, and Einthoven composed functional maps of muscle contraction, blood flow, and electrical activation.

In fact, mapping and image generation have reached unprecedented importance in modern medicine. Molecular and autonomic imaging, cardiac CT, MRI, echo, electrocardiographic and electrophysiologic imaging, PET, along with image integration to superimpose functional images on stationery ones, have revolutionized our tools and capabilities to diagnose and treat in unparalleled ways. While satellite mapping confers precise images of the earth’s terrain, its composition, and functional events, so, too, the advances in medical imaging explore the body’s every nook and cranny. Joe Louis (world heavyweight boxing champion, 1937–49) said, when facing a title bout against Billy Conn in 1941, “He can run, but he can’t hide.” There is no longer any hiding in medicine.

The present book admirably captures the latest electrophysiologic advances in cardiac mapping and imaging, transporting the reader from the structure (e.g., left ventricular anatomy), to composition (e.g., areas of scar), to functional interplay on and within its surface (e.g., activation sequence of ventricular tachycardia). In today’s world, such knowledge is fundamental to delivering the latest diagnostic and therapeutic advances to our patients and makes reading this book mandatory.

Douglas P. Zipes, MD
Distinguished Professor
Krannert Institute of Cardiology
Indiana University School of Medicine
Editor-in-chief, Heart Rhythm
PART I

Historical Perspectives
CHAPTER 1
Cardiac Activation Mapping: The Amsterdam Years

Hein J. Wellens, MD
University of Maastricht, Maastricht, The Netherlands

Summary
Starting in the late fifties of the last century professor Durrer and his cardiology group in Amsterdam developed a very strong base to expand our knowledge of electrocardiography and electrophysiology. It resulted in major accomplishments such as the unraveling of the complete excitation of the isolated perfused human heart and the introduction of programmed stimulation of the heart to induce and study clinically occurring cardiac arrhythmias.

Deciding factors in these advances were the presence of a brilliant leader, an interested and motivated group of coworkers, and the constant support from the department of medical physics.

Introduction
Essential for our understanding of cardiac function in health and disease is knowledge about the way, and in what sequence, the muscle cells of the different parts of the heart are activated. We require insight into the time course and instantaneous distribution of the excitatory process of the heart, and how this is represented in the electrocardiogram (ECG), which is a global representation of the activation process.

Already in 1918, Boden and Neukirch understood that in order to obtain data about total excitation of the heart the beating isolated heart should be studied [1]. It would take 50 more years, however, before epicardial and transmural activation of the isolated intact human heart would be accomplished by Dirk Durrer and colleagues in Amsterdam.

In the 1950s, Durrer, a cardiologist, started to study the cardiac activation process in the mammalian heart. He recognized from the beginning the necessity, especially in the ventricle, to study not only the activation process on the epicardium but also intramurally, in order to clearly delineate cardiac excitation and to correlate this excitation with the ECG.

Together with the physicist Henk van der Tweel, head of the department of medical physics at the University of Amsterdam, instrumentation was developed to study the activation in the ventricular wall. Needles were constructed allowing accurate measurements of transmural activation (Figure 1.1). Essential in this process was demonstration of the physico-mechanical basis of the intrinsic deflection of the electrogram indicating the timing of myocardial activation at the recording electrode. The outcomes of these 2D and 3D studies were published in four articles in the American Heart Journal in 1953–1955 [2–4].
Total Excitation of the Isolated Human Heart

The observations discussed above were made in the dog heart. But Durrer wanted to know how global electrical activation takes place in the intact human heart to help us understand its relation to the ECG. He assembled a group of investigators experienced in keeping the heart beating after being removed from the body, recording from multiple intramural terminals, and careful offline measurements of the recorded signals. Apart from Durrer, the group consisted of Rudolf van Dam, Gerrit Freud, Michiel Janse, Frits Meijler, and an American engineer, Robert Arzbacher.

After control experiments in canine hearts had shown that isolation and perfusion of the heart outside the body did not affect mode and speed of excitation as measured in situ, human hearts were studied. With informed consent of family members, hearts were obtained from individuals who had died from various cerebral conditions without a previous history of heart disease. This was at a time before cardiac transplantation! ECGs taken several hours before death showed no evidence of cardiac disease. The hearts were removed within 30 min after death, the criterion being cessation of cardiac activity.

The aorta was cannulated and attached to a Langendorff perfusion apparatus. The hearts were perfused with an oxygenated, heparinized, modified Tyrode solution, with washed bovine erythrocytes. Most hearts resumed beating spontaneously within the first 5 min of perfusion; in a few cases electrical defibrillation was needed because of ventricular fibrillation. The hearts continued beating in a spontaneous sinus rhythm for periods ranging from 4 to 6 hr.

The electrical activity of the heart was recorded from epicardial (hand-held) and intramural (needle) electrodes. Unipolar and bipolar leads were recorded on a 14-channel Ampex tape recorder. Data quality was controlled online using a 14-channel Elema inkwriter. For measuring activation times the tapes were played on the Elema inkwriter at a paper speed of 960 mm/sec, giving a time resolution of better than 1 msec.

All activation times were expressed in milliseconds following the onset of left ventricular depolarization. Measurements were made from as many as 870 intramural terminals. Figures 1.2 and 1.3 are from the publication in Circulation [6] showing both a 2D and 3D isochronic representation of ventricular activation of an isolated human heart using epicardial and intramural activation times. The figures beautifully illustrate early activation at the exits of the bundle branches and the spread of activation thereafter.

The Wolff–Parkinson–White syndrome

Starting in the 1930s, Holzman and Scherf [7] and Wolfeth and Wood [8] postulated that in patients with the Wolff–Parkinson–White (WPW) syndrome, two connections between atrium and ventricle were present, and that they could be incorporated in a tachycardia circuit with the impulse going from atrium to ventricle over one connection and from ventricle to atrium over the other.
Figure 1.2 Isochronic representation of ventricular activation of an isolated human heart, using measurements at 870 intramural electrode terminals. Each color represents a 5-msec interval.
Part I

Historical Perspectives

Figure 1.3 Three-dimensional isochronic representation of the activation of the same heart as in Figure 1.2. Color scheme identical to the one in Figure 1.2.

The author remembers discussions in Amsterdam in the early 1960s about this possibility, especially during visits from Howard Burchell of the United States. Around that time, a unique opportunity presented itself to obtain more information. In 1966, at Leiden University Hospital, A. G. Brom was scheduled to operate on a 21-year-old woman with an atrial septal defect of the secundum type. But the patient also had ECG changes that met the criteria for a diagnosis of WPW syndrome, and Brom consented to an epicardial map in the patient during sinus rhythm. So, Durrer and Jan Roos travelled to Leiden to map the epicardium of the heart prior to surgery.

Figure 1.4 shows the 12-lead ECG of the patient before the operation. Figure 1.5 shows the ventricular epicardial map during sinus rhythm. It is clear that in this patient, in contrast to epicardial, ventricular activation in a person with a normal ECG did not start in the area pretrabecularis, close to the descending left coronary artery. The earliest epicardial activation was found in the anterolateral part of the right ventricle very close to the tricuspid annulus [9].

Figure 1.4 The electrocardiogram of the patient whose epicardial activation map is shown in Figure 1.5. At that time it was called WPW type B. Now we would say that the patient has a right free wall accessory AV pathway located anterolaterally.
That observation clearly demonstrated an abnormal ventricular activation pattern that was very suggestive of a connection between the right atrium and the right ventricle. Then the question arose of how to prove that such a connection could play a role in the tachycardias that are so often present in the WPW patient. Again, an important contribution came from the department of medical physics.

Already in the early 1950s, experiments had been performed to study cardiac excitability in dogs. This required a special stimulator. This stimulator, and several more versatile ones thereafter, was developed in close collaboration with van der Tweel and his group. To study WPW patients, however, a stimulator was required not only able to synchronize to the patient’s rhythm and to give timed premature beats, but also able to perform basic pacing and induce premature stimuli at selected intervals.

Such a device was built by a young engineer, Leo Schoo, after long discussions between the medical physicists van der Tweel and Strackee, and the cardiologists Durrer and Reinier Schuilenburg. With this stimulator, stimuli with a regular rhythm could be produced by two basic pulse generators. The cycle length of these pulses could be varied with an accuracy of 1 msec from 9999 to 100 msec. Instantaneous changes in driving rate could be achieved by switching from one stimulator to the other. Two (in a later version, three) independent test pulses could be delivered during the spontaneous rhythm or during regular driving, with a selected interval accurate to 1 msec. The basic pulses and the two (or three) test pulses could be applied to one pair of stimulating electrodes or to separate pairs in any desired combination (Figure 1.6).

In the fall of 1966, this versatile stimulator was used in a patient with WPW syndrome. With catheters in the right atrium and right ventricle it was shown for the first time that by giving accurately timed stimuli, the properties of the two connections between atrium and ventricle differed, resulting in the initiation of a circus movement tachycardia using one connection for atrioventricular and the other one for ventriculo-atrial conduction. It was also demonstrated that these tachycardias could be terminated from atrium and ventricle by giving appropriately timed stimuli [10]. A registration from such a study is shown in Figure 1.7.

These observations, also the one by Coumel et al. [11], rapidly led on both sides of the Atlantic to the use of programmed electrical stimulation of the heart to study patients suffering from supraventricular tachycardias [12]. By placing catheters at
Figure 1.6 Photo of the sophisticated stimulation and registration equipment used in Amsterdam during the early studies in patients with tachycardias.

Figure 1.7 Example of the initiation and termination of a circus movement tachycardia by high right atrial stimuli. The intracardiac catheter is located in the coronary sinus. RK = retrograde Kent; sa = stimulus artefact.
different sites in the atrium, the ventricle, and the coronary sinus it soon became possible to map the site of origin or pathway of the tachycardia. This opened the door to new therapies for supraventricular tachycardias. The reproducible initiation and termination of ventricular tachycardia by programmed stimulation followed rapidly thereafter [13]. It took a while, however, before Mark Josephson and colleagues showed the importance of cardiac mapping in those patients [14].

In retrospect the advances made in Amsterdam were based on the presence of a brilliant, inspiring leader, a hard-working, motivated, interested group of coworkers, and the constant support from the department of medical physics. The Amsterdam years will always be remembered as an exciting journey into a new discovered land!

References

2 Durrer D, van der Tweel LH. Spread of activation in the left ventricular wall of the dog. I. Amer Heart J 1953; 46: 683–91.
3 Durrer D, van der Tweel LH. Spread of activation in the left ventricular wall of the dog. II. Amer Heart J 1954; 47: 192–203.
4 Durrer D, van der Tweel LH, Blickman JR. Spread of activation in the left ventricular wall of the dog. III. Amer Heart J 1954; 48: 13–35.
5 Durrer D, van der Tweel LH, Berreklouw S, van der Wey LP. Spread of activation in the left ventricular wall of the dog. IV. Amer Heart J 1955; 50: 860–82.