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Preface

This is a long book with a simple message: there must be an addressable read/write
memory mechanism in brains that encodes information received by the brain into
symbols (writes), locates the information when needed (addresses), and transports
it to computational machinery that makes productive use of the information
(reads).

Such a memory mechanism is indispensable in powerful computing devices, and
the behavioral data imply that brains are powerful organs of computation. Computa-
tional cognitive scientists presume the existence of an addressable read/write mem-
ory mechanism, yet neuroscientists do not know of, and are not looking for, such a
mechanism. The truths the cognitive scientists know about information processing,
when integrated into neuroscience, will transform our understanding of how the
brain works.

An example of such a transformation is the effect that the molecular identi-
fication of the gene had on biochemistry. It brought to biochemistry a new concep-
tual framework. The foundation for this new framework was the concept of a code
written into the structure of the DNA molecule. The code concept, which had no
place in the old framework, was foundational in the new one. On this foundation,
there arose an entire framework in which the duplication, transcription, translation,
and correction of the code were basic concepts.

As in biochemistry prior to 1953, one can search through the literature on the
neurobiology of memory in vain for a discussion of the coding question: How do
the changes wrought by experience in the physical structure of the memory mech-
anism encode information about the experience? When experience writes to mem-
ory the distance and direction of a food source from a nest or hive, how are that
distance and that direction represented in the experientially altered structure of
the memory mechanism? And how can that encoded information be retrieved and
transcribed from that enduring structure into the transient signals that carry that
same information to the computational machinery that acts on this information?
The answers to these questions must be at the core of our understanding of the
physical basis of memory in nervous tissue. In the voluminous contemporary liter-
ature on the neurobiology of memory, there is no discussion of these questions.
We have written this book in the hope of getting the scientific community that is
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interested in how brains compute to focus on finding the answers to these critical
questions.

In elaborating our argument, we walk the reader through the concepts at the
heart of the scientific understanding of information technology. Although most stu-
dents know the terminology, the level of their understanding of the conceptual frame-
work from which it comes is often superficial. Computer scientists are, in our view,
to some extent to be faulted for this state of affairs. Computer science has been
central to cognitive science from the beginning, because it was through computer
science that the scientific community came to understand how it was possible to
physically realize computations. In our view, the basic insights taught in computer
science courses on, for example, automata theory, are a more secure basis for
considering what the functional architecture of a computational brain must be than
are the speculations in neuroscience about how brains compute. We believe that
computer science has identified the essential components of a powerful comput-
ing machine, whereas neuroscience has yet to establish an empirically secured under-
standing of how the brain computes. The neuroscience literature contains many
conjectures about how the brain computes, but none is well established. Unfor-
tunately, computer scientists sometimes forget what they know about the founda-
tions of physically realizable computation when they begin to think about brains.
This is particularly true within the neural network or connectionist modeling
framework. The work done in that tradition pays too much attention to neuroscient-
ific speculations about the neural mechanisms that supposedly mediate computation
and not enough to well-established results in theoretical and practical computer
science concerning the architecture required in a powerful computing machine, whether
instantiated with silicone chips or with neurons. Connectionists draw their com-
putational conclusions from architectural commitments, whereas computationalists
draw their architectural conclusions from their computational commitments.

In the first chapter, we explicate Shannon’s concept of communication and the
definition of information that arises out of it. If the function of memory is to carry
information forward in time, then we have to be clear about what information is.
Here, as in all of our chapters on the foundational concepts in computation, we
call attention to lessons of fundamental importance to understanding how brains
work. One such lesson is that Shannon’s conception of the communication process
requires that the receiver, that is, the brain, have a representation of the set of
possible messages and a probability distribution over that set. Absent such a rep-
resentation, it is impossible for the world to communicate information to the brain,
at least information as defined by Shannon, which is the only rigorous definition
that we have and the foundation on which the immensely powerful theory of infor-
mation has been built. In this same chapter, we also review Shannon’s ideas about
efficient codes, ideas that we believe will inform the neuroscience of the future, for
reasons that we touch on repeatedly in this book.

Informative signals change the receiver’s probability distribution, the probability
of the different states of the world (different messages in a set of possible messages).
The receiver’s representation after an information-bearing signal has been received
is the receiver’s posterior probability distribution over the possible values of an
empirical variable, such as, for example, the distance from the nest to a food source
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or the rate at which food has been found in a given location. This conception puts
Bayes’ theorem at the heart of the communication process, because it is a theorem
about the normative (correct) way in which to update the receiver’s representation
of the probable state of the world. In Chapter 2, we take the reader through the
Bayesian updating process, both because of its close connection to Shannon’s
conception of the communication process, and because of the ever growing role of
Bayesian models in contemporary cognitive science (Chater, Tenenbaum, & Yuille,
2006). For those less mathematically inclined, Chapter 2 can be skipped or
skimmed without loss of continuity.

Because communication between the brain and the world is only possible, in a
rigorous sense, if the brain is assumed to have a representation of possible states
of the world and their probabilities, the concept of a representation is another
critical concept. Before we can explicate this concept, we have to explicate a con-
cept on which it (and many other concepts) depends, the concept of a function.
Chapter 3 explains the concept of a function, while Chapter 4 explains the con-
cept of a representation.

Computations are the compositions of functions. A truth about functions of
far-reaching significance for our understanding of the functional architecture of the
brain is that functions of arbitrarily many arguments may be realized by the com-
position of functions that have only two arguments, but they cannot be realized
by the composition of one-argument functions. The symbols that carry the two
values that serve as the arguments of a two-argument function cannot occupy phys-
ically adjacent locations, generally speaking. Thus, the functional architecture of
any powerful computing device, including the brain, must make provision for bring-
ing symbols from their different locations to the machinery that effects the primit-
ive two-argument functions, out of which the functions with many arguments are
constructed by composition.

A representation with wide-ranging power requires computations, because the
information the brain needs to know in order to act effectively is not explicit
in the sensory signals on which it depends for its knowledge of the world. A read/write
memory frees the composition of functions from the constraints of real time by
making the empirically specified values for the arguments of functions available at
any time, regardless of the time at which past experience specified them.

Representations are functioning homomorphisms. They require structure-preserving
mappings (homomorphisms) from states of the world (the represented system) to
symbols in the brain (the representing system). These mappings preserve aspects of
the formal structure of the world. In a functioning homomorphism, the similarity
of formal structure between symbolic processes in the representing system and aspects
of the represented system is exploited by the representing system to inform the actions
that it takes within the represented system. This is a fancy way of saying that the
brain uses its representations to direct its actions.

Symbols are the physical stuff of computation and representation. They are the
physical entities in memory that carry information forward in time. They become,
either directly or by transcription into signals, the arguments of the procedures that
implement functions. And they embody the results of those computations; they carry
forward in explicit, computationally accessible form the information that has
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been extracted from transient signals by means of those computations. To achieve
a physical understanding of a representational system like the brain, it is essential
to understand its symbols as physical entities. Good symbols must be distinguish-
able, constructible, compact, and efficacious. Chapter 5 is devoted to explicating
and illustrating these attributes of good symbols.

Procedures, or in more contemporary parlance algorithms, are realized through
the composition of functions. We make a critical distinction between procedures
implemented by means of look-up tables and what we call compact procedures.
The essence of the distinction is that the specification of the physical structure of
a look-up table requires more information than will ever be extracted by the use
of that table. By contrast, the information required to specify the structure of a
mechanism that implements a compact procedure may be hundreds of orders of
magnitude less than the information that can be extracted using that mechanism.
In the table-look-up realization of a function, all of the singletons, pairs, triplets,
etc. of values that might ever serve as arguments are explicitly represented in
the physical structure of the machinery that implements the function, as are all the
values that the function could ever return. This places the table-look-up approach
at the mercy of what we call the infinitude of the possible. This infinitude is mer-
ciless, a point we return to repeatedly.

By contrast, a compact procedure is a composition of functions that is guaran-
teed to generate (rather than retrieve, as in table look-up) the symbol for the value
of an n-argument function, for any arguments in the domain of the function. The
distinction between a look-up table and a compact generative procedure is critical
for students of the functional architecture of the brain. One widely entertained func-
tional architecture, the neural network architecture, implements arithmetic and other
basic functions by table look-up of nominal symbols rather than by mechanisms that
implement compact procedures on compactly encoded symbols. In Chapter 6, we
review the intimate connection between compact procedures and compactly encoded
symbols. A symbol is compact if its physical magnitude grows only as the logarithm
of the number of distinct values that it can represent. A symbol is an encoding
symbol if its structure is dictated by a coding algorithm applied to its referent.

With these many preliminaries attended to, we come in Chapter 7 to the exposi-
tion of the computer scientist’s understanding of computation, Turing computabil-
ity. Here, we introduce the standard distinction between the finite-state component
of a computing machine (the transition table) and the memory (the tape). The distinc-
tion is critical, because contemporary thinking about the neurobiological mechan-
ism of memory tries to dispense with the tape and place all of the memory in the
transition table (state memory). We review well-known results in computer science
about why this cannot be a generally satisfactory solution, emphasizing the infinitude
of possible experience, as opposed to the finitude of the actual experience. We revisit
the question of how the symbols are brought to the machinery that returns the values
of the functions of which those symbols are arguments. In doing so, we explain
the considerations that lead to the so-called von Neumann architecture (the central
processor).

In Chapter 8, we consider different suggestions about the functional architec-
ture of a computing machine. This discussion addresses three questions seldom
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addressed by cognitive neuroscientists, let alone by neuroscientists in general: What
are the functional building blocks of a computing machine? How must they be
configured? How can they be physically realized? We approach these questions by
considering the capabilities of machines with increasingly complex functional
structure, showing at each stage mechanical implementations for the functional com-
ponents. We use mechanical implementations because of their physical trans-
parency, the ease with which one can understand how and why they do what they
do. In considering these implementations, we are trying to strengthen the reader’s
understanding of how abstract descriptions of computation become physically real-
ized. Our point in this exercise is to develop, through a series of machines and
formalisms, a step-by-step argument leading up to a computational mechanism with
the power of a Turing machine. Our purpose is primarily to show that to get machines
that can do computations of reasonable complexity, a specific, minimal functional
architecture is demanded. One of its indispensable components is a read/write mem-
ory. Secondarily, we show that the physical realization of what is required is not
all that complex. And thirdly, we show the relation between descriptions of the
structure of a computational mechanism at various levels of abstraction from its
physical realization.

In Chapter 9, we take up the critical role of the addressability of the symbols in
memory. Every symbol has both a content component, the component of the sym-
bol that carries the information, and an address component, which is the compon-
ent by which the system gains access to that information. This bipartite structure
of the elements of memory provides the physical basis for distinguishing between
a variable and its value and for binding the value to the variable. The address of
a value becomes the symbol for the variable of which it is the value. Because the
addresses are composed in the same symbolic currency as the symbols themselves,
they can themselves be symbols. Addresses can — and very frequently do — appear
in the symbol fields of other memory locations. This makes the variables themselves
accessible to computation, on the same terms as their values. We show how this
makes it possible to create data structures in memory. These data structures encode
the relations between variables by the arrangement of their symbols in memory.
The ability to distinguish between a variable and its value, the ability to bind the
latter to the former, and the ability to create data structures that encode relations
between variables are critical features of a powerful representational system. All of
these capabilities come simply from making memories addressable. All of these cap-
abilities are absent — or only very awkwardly made present — in a neural network
architecture, because this architecture lacks addressable symbolic memories.

To bolster our argument that addressable symbolic memories are required by the
logic of a system whose function is to carry information forward in an accessible
form, we call attention to the fact that the memory elements in the genetic code
have this same bipartite structure: A gene has two components, one of which, the
coding component, carries information about the sequence of amino acids in a pro-
tein; the other of which, the promoter, gives the system access to that information.

In Chapter 10, we consider current conjectures about how the elements of a
computing machine can be physically realized using neurons. Because the sugges-
tion that the computational models considered by cognitive scientists ought to be



Preface xiii

neurobiologically transparent' has been so influential in cognitive neuroscience, we
emphasize just how conjectural our current understanding of the neural mechanisms
of computation is. There is, for example, no consensus about such a basic ques-
tion as how information is encoded in spike trains. If we liken the flow of infor-
mation between locations in the nervous system to the flow of information over a
telegraph network, then electrophysiologists have been tapping into this flow for
almost a century. One might expect that after all this listening in, they would have
reached a consensus about what it is about the pulses that conveys the informa-
tion. But in fact, no such consensus has been reached. This implies that neurosci-
entists understand as much about information processing in the nervous system as
computer scientists would understand about information processing in a computer
if they were unable to say how the current pulses on the data bus encoded the
information that enters into the CPU’s computations.

In Chapter 10, we review conventional material on how it is that synapses can
implement elementary logic functions (AND, OR, NOT, NAND). We take note of
the painful slowness of both synaptic processes and the long-distance information
transmission mechanism (the action potential), relative to their counterparts in an
electronic computing machine. We ponder, without coming to any conclusions, how
it is possible for the brain to compute as fast as it manifestly does.

Mostly, however, in Chapter 10 we return to the coding question. We point out
that the physical change that embodies the creation of a memory must have three
aspects, only one of which is considered in contemporary discussions of the mech-
anism of memory formation in neural tissue, which is always assumed to be
an enduring change in synaptic conductance. The change that mediates memory
formation must, indeed, be an enduring change. No one doubts that. But it must
also be capable of encoding information, just as the molecular structure of a gene
endows it with the capacity to encode information. And, it must encode informa-
tion in a readable way. There must be a mechanism that can transcribe the encoded
information, making it accessible to computational machinery. DNA would have
no function if the information it encodes could not be transcribed.

We consider at length why enduring changes in synaptic conductance, at least
as they are currently conceived, are ill suited both to encode information and, assum-
ing that they did somehow encode it, make it available to computation. The essence
of our argument is that changes in synaptic conductance are the physiologists’
conception of how the brain realizes the changes in the strengths of associative bonds.
Hypothesized changes in the strengths of associative bonds have been at the foun-
dation of psychological and philosophical theorizing about learning for centuries.
It is important to realize this, because it is widely recognized that associative bonds
make poor symbols: changes in associative strength do not readily encode facts about
the state of the experienced world (such as, for example, the distance from a hive
to food source or the duration of an interval). It is, thus, no accident that asso-
ciative theories of learning have generally been anti-representational (P. M. Church-
land, 1989; Edelman & Gally, 2001; Hoeffner, McClelland, & Seidenberg, 1996;

' That is, they ought to rest on what we understand about how the brain computes.
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Hull, 1930; Rumelhart & McClelland, 1986; Skinner, 1938, 1957; Smolensky,
1991). If one’s conception of the basic element of memory makes that element ill-
suited to play the role of a symbol, then one’s story about learning and memory
is not going to be a story in which representations figure prominently.

In Chapter 11, we take up this theme: the influence of theories of learning on
our conception of the neurobiological mechanism of memory, and vice versa.
Psychologists, cognitive scientists, and neuroscientists currently entertain two very
different stories about the nature of learning. On one story, learning is the process
or processes by which experience rewires a plastic brain. This is one or another
version of the associative theory of learning. On the second story, learning is
the extraction from experience of information about the state of the world, which
information is carried forward in memory to inform subsequent behavior. Put another
way, learning is the process of extracting by computation the values of variables,
the variables that play a critical role in the direction of behavior.

We review the mutually reinforcing fit between the first view of the nature of
learning and the neurobiologists’ conception of the physiological basis of memory.
We take up again the explanation of why it is that associations cannot readily be
made to function as symbols. In doing so, we consider the issue of distributed codes,
because arguments about representations or the lack thereof in neural networks often
turn on issues of distributed coding.

In the second half of Chapter 11, we expand on the view of learning as the extrac-
tion from experience of facts about the world and the animal’s relation to it, by
means of computations. Our focus here is on the phenomenon of dead reckoning,
a computational process that is universally agreed to play a fundamental role
in animal navigation. In the vast literature on symbolic versus connectionist ap-
proaches to computation and representation, most of the focus is on phenomena
for which we have no good computational models. We believe that the focus ought
to be on the many well-documented behavioral phenomena for which computa-
tional models with clear first-order adequacy are readily to hand. Dead reckoning
is a prime example. It has been computationally well understood and explicitly taught
for centuries. And, there is an extensive experimental literature on its use by ani-
mals in navigation, a literature in which ants and bees figure prominently. Here, we
have a computation that we believe we understand, with excellent experimental
evidence that it occurs in nervous systems that are far removed from our own on
the evolutionary bush and many orders of magnitude smaller.

In Chapter 12, we review some of the behavioral evidence that animals routinely
represent their location in time and space, that they remember the spatial locations
of many significant features of their experienced environment, and they remember
the temporal locations of many significant events in their past. One of us reviewed
this diverse and large literature at greater length in an earlier book (Gallistel, 1990).
In Chapter 12, we revisit some of the material covered there, but our focus is on
more recent experimental findings. We review at some length the evidence for episodic
memory that has been obtained from the ingenious experimental study of food caching
and retrieval in a species of bird that, in the wild, makes and retrieves food from
tens of thousands of caches. The importance of this work for our argument is that
it demonstrates clearly the existence of complex experience-derived, computationally
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accessible data structures in brains much smaller than our own and far removed
from ours in their location on the evolutionary bush. It is data like these that motiv-
ate our focus in an earlier chapter (Chapter 9) on the architecture that a memory
system must have in order to encode data structures, because these data are hard
to understand within the associative framework in which animal learning has
traditionally been treated (Clayton, Emery, & Dickinson, 2006).

In Chapter 13, we review the computational considerations that make learning
processes modular. The view that there are only one or a very few quite generally
applicable learning processes (the general process view, see, for example, Domjan,
1998, pp. 17ff.) has long dominated discussions of learning. It has particularly
dominated the treatment of animal learning, most particularly when the focus is
on the underlying neurobiological mechanism. Such a view is consonant with a
non-representational framework. In this framework, the behavioral modifications
wrought by experience sometimes make animals look as if they know what it is
about the world that makes their actions rational, but this appearance of symbolic
knowledge is an illusion; in fact, they have simply learned to behave more effect-
ively (Clayton, Emery, & Dickinson, 2006). However, if we believe with Marr (1982)
that brains really do compute the values of distal variables and that learning is
this extraction from experience of the values of variables (Gallistel, 1990), then
learning processes are inescapably modular. They are modular because it takes dif-
ferent computations to extract different representations from different data, as
was first pointed out by Chomsky (1975). We illustrate this point by a renewed
discussion of dead reckoning (aka path integration), by a discussion of the mech-
anism by which bees learn the solar ephemeris, and by a discussion of the special
computations that are required to explain the many fundamental aspects of clas-
sical (Pavlovian) conditioning that are unexplained by the traditional associative
approach to the understanding of conditioning.?

In Chapter 14, we take up again the question of how the nervous system might
carry information forward in time in a computationally accessible form in the absence
of a read/write memory mechanism. Having explained in earlier chapters why
plastic synapses cannot perform this function, we now consider in detail one of the
leading neural network models of dead reckoning (Samsonovich & McNaughton,
1997). This model relies on the only widely conjectured mechanism for perform-
ing the essential memory function, reverberatory loops. We review this model in
detail because it illustrates so dramatically the points we have made earlier about
the price that is paid when one dispenses with a read/write memory. To our mind,
what this model proves is that the price is too high.

In Chapter 15, we return to the interval timing phenomena that we reviewed in
Chapter 12 (and, at greater length, in Gallistel, 1990; Gallistel & Gibbon, 2000;
Gallistel & Gibbon, 2002), but now we do so in order to consider neural models

This is the within-field jargon for the learning that occurs in “associative” learning paradigms.
It is revelatory of the anti-representational foundations of traditional thinking about learning. It is called
conditioning because experience is not assumed to give rise to symbolic knowledge of the world. Rather,
it “conditions” (rewires) the nervous system so that it generates more effective behavior.
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of interval timing. Here, again, we show the price that is paid by dispensing with
a read/write memory. Given a read/write memory, it is easy to model, at least to
a first approximation, the data on interval timing (Gallistel & Gibbon, 2002; Gibbon,
Church, & Meck, 1984; Gibbon, 1977). Without such a mechanism, modeling these
phenomena is very hard. Because the representational burden is thrown onto the
conjectured dynamic properties of neurons, the models become prey to the prob-
lem of the infinitude of the possible. Basically, you need too many neurons, because
you have to allocate resources to all possible intervals rather than just to those that
have actually been observed. Moreover, these models all fail to provide computa-
tional access to the information about previously experienced durations, because
the information resides not in the activity of the neurons, nor in the associations
between them, but rather in the intrinsic properties of the neurons in the arrays
used to represent durations. The rest of the system has no access to those intrinsic
properties.

Finally, in Chapter 16, we take up the question that will have been pressing
on the minds of many readers ever since it became clear that we are profoundly
skeptical about the hypothesis that the physical basis of memory is some form of
synaptic plasticity, the only hypothesis that has ever been seriously considered by
the neuroscience community. The obvious question is: Well, if it’s not synaptic
plasticity, what is it? Here, we refuse to be drawn. We do not think we know what
the mechanism of an addressable read/write memory is, and we have no faith in
our ability to conjecture a correct answer. We do, however, raise a number of
considerations that we believe should guide thinking about possible mechanisms.
Almost all of these considerations lead us to think that the answer is most likely
to be found deep within neurons, at the molecular or sub-molecular level of struc-
ture. It is easier and less demanding of physical resources to implement a read/write
memory at the level of molecular or sub-molecular structure. Indeed, most of what
is needed is already implemented at the sub-molecular level in the structure of DNA
and RNA.
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Information

Most cognitive scientists think about the brain and behavior within an informa-
tion-processing framework: Stimuli acting on sensory receptors provide informa-
tion about the state of the world. The sensory receptors transduce the stimuli into
neural signals, streams of action potentials (aka spikes). The spike trains transmit
the information contained in the stimuli from the receptors to the brain, which pro-
cesses the sensory signals in order to extract from them the information that they
convey. The extracted information may be used immediately to inform ongoing beha-
vior, or it may be kept in memory to be used in shaping behavior at some later time.
Cognitive scientists seek to understand the stages of processing by which informa-
tion is extracted, the representations that result, the motor planning processes through
which the information enters into the direction of behavior, the memory processes
that organize and preserve the information, and the retrieval processes that find the
information in memory when it is needed. Cognitive neuroscientists want to under-
stand where these different aspects of information processing occur in the brain
and the neurobiological mechanisms by which they are physically implemented.

Historically, the information-processing framework in cognitive science is closely
linked to the development of information technology, which is used in electronic
computers and computer software to convert, store, protect, process, transmit, and
retrieve information. But what exactly is this “information” that is so central to
both cognitive science and computer science? Does it have a rigorous meaning?
In fact, it does. Moreover, the conceptual system that has grown up around this
rigorous meaning — information theory — is central to many aspects of modern
science and engineering, including some aspects of cognitive neuroscience. For
example, it is central to our emerging understanding of how neural signals trans-
mit information about the ever-changing state of the world from sensory receptors
to the brain (Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1997). For us,
it is an essential foundation for our central claim, which is that the function of
the neurobiological memory mechanism is to carry information forward in time in
a computationally accessible form.
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Figure 1.1 Shannon’s schematization of communication (Shannon, 1948).

Shannon’s Theory of Communication

The modern quantitative understanding of information rests on the work of
Claude Shannon. A telecommunications engineer at Bell Laboratories, he laid the
mathematical foundations of information theory in a famous paper published in
1948, at the dawn of the computer age (Shannon, 1948). Shannon’s concern was
understanding communication (the transmission of information), which he schem-
atized as illustrated in Figure 1.1.

The schematic begins with an information source. The source might be a person
who hands in a written message at a telegraph office. Or, it might be an orchestra
playing a Beethoven symphony. In order for the message to be communicated to
you, you must receive a signal that allows you to reconstitute the message. In this
example, you are the destination of the message. Shannon’s analysis ends when the
destination has received the signal and reconstituted the message that was present
at the source.

The transmitter is the system that converts the messages into transmitted signals,
that is, into fluctuations of a physical quantity that travels from a source location
to a receiving location and that can be detected at the receiving location. Encoding
is the process by which the messages are converted into transmitted signals. The
rules governing or specifying this conversion are the code. The mechanism in the
transmitter that implements the conversion is the encoder.

Following Shannon, we will continue to use two illustrative examples, a telegraphic
communication and a symphonic broadcast. In the telegraphic example, the source
messages are written English phrases handed to the telegrapher, for example,
“Arriving tomorrow, 10 am.” In the symphonic example, the source messages are
sound waves arriving at a microphone. Any one particular short message written
in English and handed to a telegraph operator can be thought of as coming from
a finite set of possible messages. If we stipulate a maximum length of, say, 1,000
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characters, with each character being one of 45 or so different characters (26 letters,
10 digits, and punctuation marks), then there is a very large but finite number of
possible messages. Moreover, only a very small fraction of these messages are intel-
ligible English, so the size of the set of possible messages — defined as intelligible
English messages of 1,000 characters or less — is further reduced. It is less clear
that the sound waves generated by an orchestra playing Beethoven’s Fifth can be
conceived of as coming from a finite set of messages. That is why Shannon chose
this as his second example. It serves to illustrate the generality of his theory.

In the telegraphy example, the telegraph system is the transmitter of the mes-
sages. The signals are the short current pulses in the telegraph wire, which travel
from the sending key to the sounder at the receiving end. The encoder is the tele-
graph operator. The code generally used is the Morse code. This code uses pulses
of two different durations to encode the characters — a short mark (dot), and a
long mark (dash). It also uses four different inter-pulse intervals for separations
— an intra-character gap (between the dots and dashes within characters), a short
gap (between the letters), a medium gap (between words), and a long gap (between
sentences).

In the orchestral example, the broadcast system transmitting radio signals from
the microphone to your radio is the transmitter. The encoder is the electronic device
that converts the sound waves into electromagnetic signals. The type of code is likely
to be one of three different codes that have been used in the history of radio (see
Figure 1.2), all of which are in current use. All of them vary a parameter of a high-
frequency sinusoidal carrier signal. The earliest code was the AM (amplitude
modulated) code. In this code, the encoder modulates the amplitude of the carrier
signal so that this amplitude of the sinusoidal carrier signal varies in time in a way
that closely follows the variation in time of the sound pressure at the microphone’s
membrane.

When the FM (frequency modulated) code is used, the encoder modulates the
frequency of the carrier signal within a limited range. When the digital code is used,
as it is in satellite radio, parameters of the carrier frequency are modulated so as
to implement a binary code, a code in which there are only two characters, cus-
tomarily called the ‘0’ and the ‘1’ character. In this system, time is divided into
extremely short intervals. During any one interval, the carrier signal is either low
(‘0’) or high (‘1°). The relation between the sound wave arriving at the microphone
with its associated encoding electronics and the transmitted binary signal is not
easily described, because the encoding system is a sophisticated one that makes use
of what we have learned about the statistics of broadcast messages to create efficient
codes. The development of these codes rests on the foundations laid by Shannon.

In the history of radio broadcasting, we see an interesting evolution (Figure 1.2):
We see first (historically) in Figure 1.2a a code in which there is a transparent (eas-
ily comprehended) relation between the message and the signal that transmits it
(AM). The code is transparent because variation in the amplitude of the message
is converted into variation in the amplitude of the carrier signal that transmits
the message. This code is, however, inefficient and highly vulnerable to noise. It
is low tech. In Figure 1.2b, we see a code in which the relation is somewhat less
transparent, because variation in the amplitude of the message is converted into
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Figure 1.2 The various ways of encoding sound “messages” into broadcast radio signals.
All of them use a carrier frequency and vary parameters of that carrier frequency. (a) In
the AM encoding, the amplitude of the message determines the amplitude of the carrier

frequency. This makes for a transparent (easily recognized) relation between the message
and the signal that transmits it. (b) In the FM encoding, the amplitude of the message

modulates the frequency of the carrier. This makes for a less transparent but still

(c) In digital encoding, there is

binary (two-values only) modulation in a parameter of the carrier signal. In this purely

recognizable relation between message and signal.

notional illustration, the amplitude of any given cycle has one of two values, depending
on whether a high or low bit is transmitted. In this scheme, the message is converted

into a sophisticated binary code prior to transmission. The relation between message

and signal is opaque.
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variation in the frequency of the carrier signal that transmits it (FM). This code is
no more efficient than the first code, but it is less vulnerable to noise, because the
effects of extraneous noise tend to fall mostly in frequency bands outside a given
FM band. Finally, in Figure 1.2¢ we see a high-tech code in which the relation between
the message and the signal that transmits it is opaque. The encoding makes extens-
ive use of advanced statistics and mathematics. The code is, however, both efficient
and remarkably invulnerable to noise. That’s why satellite broadcasts sound better
than FM broadcasts, which sound better than AM broadcasts. The greater efficiency
of the digital code accounts for the ability of digital radio to transmit more channels
within a given bandwidth.

The evolution of encoding in the history of broadcasting may contain an
unpalatable lesson for those interested in understanding communication within the
brain by means of the action potentials that carry information from sources to des-
tinations within the brain. One of neurobiology’s uncomfortable secrets — the sort
of thing neurobiologists are not keen to talk about except among themselves — is
that we do not understand the code that is being used in these communications.
Most neurobiologists assume either explicitly or tacitly that it is an unsophisticated
and transparent code. They assume, for example, that when the relevant variation
at the source is in the amplitude or intensity of some stimulus, then the information-
carrying variation in the transmitted signal is in the firing rate (the number of action
potentials per unit of time), a so-called rate code. The transparency of rate codes
augurs well for our eventually understanding the communication of information
within the brain, but rate codes are grossly inefficient. With more sophisticated but
less transparent codes, the same physical resources (the transmission of the same
number of spikes in a given unit of time) can convey orders of magnitude more
information. State-of-the-art analysis of information transmission in neural signal-
ing in simple systems where we have reason to believe that we know both the set
of message being transmitted and the amount of information available in that set
(its entropy — see below) implies that the code is a sophisticated and efficient one,
one that takes account of the relative frequency of different messages (source stat-
istics), just as the code used in digital broadcasting does (Rieke et al., 1997).

A signal must travel by way of some physical medium, which Shannon refers to
as the signal-carrying channel, or just channel for short. In the case of the tele-
graph, the signal is in the changing flow of electrons and the channel is a wire. In
the case of the symphony, the signal is the variation in the parameters of a carrier
signal. The channel is that carrier signal.! In the case of the nervous system, the
axons along which nerve impulses are conducted are the channels.

In the real world, there are factors other than the message that can also produce
these same fluctuations in the signal-carrying channel. Shannon called these noise

! In digital broadcasting, bit-packets from different broadcasts are intermixed and travel on a com-

mon carrier frequency. The receivers sort out which packets belong to which broadcast. They do so on
the basis of identifying information in the packets. Sorting out the packets and decoding them back
into waveforms requires computation. This is why computation and communication are fused at the
hip in information technology. In our opinion, a similar situation obtains in the brain: Computation
and communication are inseparable, because communication has been optimized in the brain.
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sources. The signal that arrives at the receiver is thus a mixture of the fluctuations
deriving from the encoding of the message and the fluctuations deriving from noise
sources. The fluctuations due to noise make the receiver’s job more difficult, as the
received code can become corrupted. The receiver must reconstitute the message
from the source, that is, change the signal back into that message, and if this sig-
nal has been altered, it may be hard to decode. In addition, the transmitter or the
receiver may be faulty and introduce noise during the encoding/decoding process.

Although Shannon diagrammatically combined the sources of noise and showed
one place where noise can be introduced, in actuality, noise can enter almost any-
where in the communication process. For example, in the case of telegraphy, the
sending operators may not code correctly (use a wrong sequence of dots and dashes)
or even more subtly, they might make silences of questionable (not clearly discern-
ible) length. The telegraph key can also malfunction, and not always produce current
when it should, possibly turning a dash into some dots. Noise can also be introduced
into the signal directly — in this case possibly through interference due to other sig-
nals traveling along wires that are in close proximity to the signal-carrying wire.
Additionally, the receiving operator may have a faulty sounder or may simply decode
incorrectly.

Shannon was, of course, aware that the messages being transmitted often had
meanings. Certainly this is the case for the telegraphy example. Arguably, it is the
case for the orchestra example. However, one of his profound insights was that
from the standpoint of the communications engineer, the meaning was irrelevant.
What was essential about a message was not its meaning but rather that it be selected
from a set of possible messages. Shannon realized that for a communication system
to work efficiently — for it to transmit the maximum amount of information in the
minimum amount of time — both the transmitter and the receiver had to know what
the set of possible messages was and the relative likelihood of the different mes-
sages within the set of possible messages. This insight was an essential part of his
formula for quantifying the information transmitted across a signal-carrying chan-
nel. We will see later (Chapter 9) that Shannon’s set of possible messages can be iden-
tified with the values of an experiential variable. Different variables denote different
sets of possible messages. Whenever we learn from experience the value of an empir-
ical variable (for example, how long it takes to boil an egg, or how far it is from
our home to our office), the range of a priori possible values for that variable is
narrowed by our experience. The greater the range of a priori possible values for
the variable (that is, the larger the set of possible messages) and the narrower the
range after we have had an informative experience (that is, the more precisely we
then know the value), the more informative the experience. That is the essence of
Shannon’s definition of information.

The thinking that led to Shannon’s formula for quantifying information may be
illustrated by reference to the communication situation that figures in Longfellow’s
poem about the midnight ride of Paul Revere. The poem describes a scene from
the American revolution in which Paul Revere rode through New England, warn-
ing the rebel irregulars that the British troops were coming. The critical stanza for
our purposes is the second:
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He said to his friend, “If the British march

By land or sea from the town to-night,

Hang a lantern aloft in the belfry arch

Of the North Church tower as a signal light, —
One if by land, and two if by sea;

And T on the opposite shore will be,

Ready to ride and spread the alarm

Through every Middlesex village and farm,
For the country folk to be up and to arm.”

The two possible messages in this communication system were “by land” and “by
sea.” The signal was the lantern light, which traveled from the church tower to the
receiver, Paul Revere, waiting on the opposite shore. Critically, Paul knew the pos-
sible messages and he knew the code — the relation between the possible messages
and the possible signals. If he had not known either one of these, the communica-
tion would not have worked. Suppose he had no idea of the possible routes by
which the British might come. Then, he could not have created a set of possible
messages. Suppose that, while rowing across the river, he forgot whether it was
one if by land and two if by sea or two if by land and one if by sea. In either case,
the possibility of communication disappears. No set of possible messages, no com-
munication. No agreement about the code between sender and receiver, no com-
munication.

However, it is important to remember that information is always about some-
thing and that signals can, and often do, carry information about multiple things.
When we said above that no information was received, we should have been more
precise. If Paul forgot the routes (possible messages) or the code, then he could
receive no information about how the British might come. This is not to say that
he received no information when he saw the lanterns. Upon seeing the two
lanterns, he would have received information about how many lanterns were hung.
In the simplest analysis, a received signal always (baring overriding noise) carries
information regarding which signal was sent.

Measuring Information

Shannon was particularly concerned with measuring the amount of information com-
municated. So how much information did Paul Revere get when he saw the
lanterns (for two it was)? On Shannon’s analysis, that depends on his prior expecta-
tion about the relative likelihoods of the British coming by land versus their com-
ing by sea. In other words, it depends on how uncertain he was about which route
they would take. Suppose he thought it was a toss-up — equally likely either way.
According to Shannon’s formula, he then received one bit* (the basic unit) of infor-
mation when he saw the signal. Suppose that he thought it less likely that they

> Shannon was the first to use the word bit in print, however he credits John Tukey who used the

word as a shorthand for “binary digit.”
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would come by land - that there was only one chance in ten. By Shannon’s for-
mula, he then received somewhat less than half a bit of information from the lantern
signal.

Shannon’s analysis says that the (average!) amount of information communicated
is the (average) amount of uncertainty that the receiver had before the commun-
ication minus the amount of uncertainty that the receiver has after the commun-
ication. This implies that information itself is the reduction of uncertainty in the
receiver. A reduction in uncertainty is, of course, an increase in certainty, but what
is measured is the uncertainty.

The discrete case

So how did Shannon measure uncertainty? He suggested that we consider the prior
probability of each message. The smaller the prior probability of a message, the
greater its information content but the less often it contributes that content,
because the lower its probability, the lower its relative frequency. The contribution
of any one possible message to the average uncertainty regarding messages in the set
of possible messages is the information content of that message times its relative
frequency. Its information content is the log of the reciprocal of its probability

1

(logz l) Its relative frequency is p; itself. Summing over all the possible messages

gives Shannon’s famous formula:

Hzipi logzpl

i=1 i

where H is the amount of uncertainty about the possible messages (usually called
the entropy), n is the number of possible messages, and p; is the probability of the
i message.’ As the probability of a message in the set becomes very small (as it
approaches 0), its contribution to the amount of uncertainty also becomes very small,
because a probability goes to 0 faster than the log of its reciprocal goes to infinity.

In other words, the fall off in the relative frequency of a message (the decrease in p,)

outstrips the increase in its information content (the increase in log, — |.

In the present, simplest possible case, there are two possible messages. If we take
their prior probabilities to be 0.5 and 0.5 (50-50, equally likely), then following
Shannon’s formula, Paul’s uncertainty before he saw the signal was:

1 1 1 1
P log, E + p, log, E = 0.5 log, 03 + 0.5 log, o3 (1)

> The logarithm is to base 2 in order to make the units of information bits, that is, to choose a base

for the logarithm is to choose the size of the units in which information is measured.



Information 9

Now, 1/0.5 = 2, and the log to the base 2 of 2 is 1. Thus, equation (1) equals:
(0.5)(1) + (0.5)(1) = 1 bit.

Consider now the case where p; = 0.1 (Paul’s prior probability on their coming
by land) and p, = 0.9 (Paul’s prior probability on their coming by sea). The log, (1/0.1)
is 3.32 and the log, (1/0.9) is 0.15, so we have (0.1)(3.32) + (0.9)(0.15) = 0.47. If
Paul was pretty sure they were coming by sea, then he had less uncertainty than if
he thought it was a toss-up. That’s intuitive. Finding a principled formula that specifies
exactly how much less uncertainty he had is another matter. Shannon’s formula
was highly principled. In fact, he proved that his formula was the only formula
that satisfied a number of conditions that we would want a measure of uncertainty
to have.

One of those conditions is the following: Suppose we have H, amount of uncer-
tainty about the outcome of the roll of one die and H, amount of uncertainty about
the outcome of the roll of a second die. We want the amount of uncertainty we
have about the combined outcomes to be simply H, + H,, that is, we want the
amounts of uncertainties about independent sets of possibilities to be additive.
Shannon’s formula satisfies this condition. That’s why it uses logarithms of the prob-
abilities. Independent probabilities combine multiplicatively. Taking logarithms
converts multiplicative combination to additive combination.

Assuming Paul trusted his friend completely and assuming that there was no pos-
sibility of his mistaking one light for two (assuming in other words, no transmis-
sion noise), then when he saw the two lights, he had no more uncertainty about
which way the British were coming: p,, the probability of their coming by land,
was 0 and p,, the probability of their coming by sea, was 1. Another condition on
a formula for measuring uncertainty is that the measure should be zero when there
is no uncertainty For Paul, after he had seen the lights, we have: 0 log, (1/0) +
1 log, (1/1) = 0 (because the l1mp log (1/p) = 0, which makes the first term in the

sum 0, and the log of 1 to any base is 0, which makes the second term 0). So Shannon’s
formula satisfies that condition.

Shannon defined the amount of information communicated to be the difference
between the receiver’s uncertainty before the communication and the receiver’s uncer-
tainty after it. Thus, the amount of information that Paul got when he saw the
lights depends not only on his knowing beforehand the two possibilities (knowing
the set of possible messages) but also on his prior assessment of the probability of
each possibility. This is an absolutely critical point about communicated informa-
tion — and the subjectivity that it implies is deeply unsettling. By subjectivity, we
mean that the information communicated by a signal depends on the receiver’s (the
subject’s) prior knowledge of the possibilities and their probabilities. Thus, the amount
of information actually communicated is not an objective property of the signal
from which the subject obtained it!

Unsettling as the subjectivity inherent in Shannon’s definition of communicated
information is, it nonetheless accords with our intuitive understanding of commun-
ication. When someone says something that is painfully obvious to everyone, it
is not uncommon for teenagers to reply with a mocking, “Duh.” Implicit in this
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mockery is that we talk in order to communicate and to communicate you have
to change the hearer’s representation of the world. If your signal leaves your lis-
teners with the same representation they had before they got it, then your talk is
empty blather. It communicates no information.

Shannon called his measure of uncertainty entropy because his formula is the
same as the formula that Boltzmann developed when he laid the foundations for
statistical mechanics in the nineteenth century. Boltzmann’s definition of entropy
relied on statistical considerations concerning the degree of uncertainty that the
observer has about the state of a physical system. Making the observer’s uncer-
tainty a fundamental aspect of the physical analysis has become a foundational prin-
ciple in quantum physics, but it was extremely controversial at the time (1877).
The widespread rejection of his work is said to have driven Boltzmann to suicide.
However, his faith in the value of what he had done was such that he had his entropy-
defining equation written on his tombstone.

In summary, like most basic quantities in the physical sciences, information is a
mathematical abstraction. It is a statistical concept, intimately related to concepts
at the foundation of statistical mechanics. The information available from a source
is the amount of uncertainty about what that source may reveal, what message it
may have for us. The amount of uncertainty at the source is called the source entropy.
The signal is a propagating physical fluctuation that carries the information from
the source to the receiver.

The information transmitted to the receiver by the signal is the mutual informa-
tion between the signal actually received and the source. This is an objective prop-
erty of the source and signal; we do not need to know anything about the receiver
(the subject) in order to specify it, and it sets an upper limit on the information
that a receiver could in principle get from a signal. We will explain how to quan-
tify it shortly. However, the information that is communicated to a receiver by a
signal is the receiver’s uncertainty about the state of the world before the signal
was received (the receiver’s prior entropy) minus the receiver’s uncertainty after receiv-
ing the signal (the posterior entropy). Thus, its quantification depends on the changes
that the signal effects in the receiver’s representation of the world. The informa-
tion communicated from a source to a receiver by a signal is an inherently subject-
ive concept; to measure it we must know the receiver’s representation of the source
probabilities. That, of course, implies that the receiver has a representation of the
source probabilities, which is itself a controversial assumption in behavioral neuro-
science and cognitive psychology. One school of thought denies that the brain has
representations of any kind, let alone representations of source possibilities and their
probabilities. If that is so, then it is impossible to communicate information to the
brain in Shannon’s sense of the term, which is the only scientifically rigorous sense.
In that case, an information-processing approach to the analysis of brain function
is inappropriate.

The continuous case

So far, we have only considered the measurement of information in the discrete
case (and a maximally simple one). That is to say that each message Paul could
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receive was distinct, and it should not have been possible to receive a message “in
between” the messages he received. In addition, the number of messages Paul could
receive was finite — in this case only two. The British could have come by land or
by sea — not both, not by air, etc. It may seem puzzling how Shannon’s analysis
can be applied to the continuous case, like the orchestra broadcast. On first con-
sideration, the amount of prior uncertainty that a receiver could have about an orches-
tral broadcast is infinite, because there are infinitely many different sound-wave
patterns. Any false note hit by any player at any time, every cough, and so on,
alters the wave pattern arriving at the microphone. This seems to imply that the
amount of prior uncertainty that a receiver could have about an orchestral broad-
cast is infinite. Hearing the broadcast reduces the receiver’s uncertainty from infinite
to none, so an infinite amount of information has been communicated. Something
must be wrong here.

To see what is wrong, we again take a very simple case. Instead of an orchestra
as our source, consider a container of liquid whose temperature is measured by an
analog (continuous) thermometer that converts the temperature into a current flow.
Information is transmitted about the temperature to a receiver in a code that
theoretically contains an infinite number of possibilities (because for any two
temperatures, no matter how close together they are, there are an infinite number
of temperatures between them). This is an analog source (the variation in temper-
ature) and an analog signal (the variation in current flow). Analog sources and
signals have the theoretical property just described, infinite divisibility. There is no
limit to how finely you can carve them up. Therefore, no matter how thin the slice
you start with you can always slice them into arbitrarily many even thinner slices.
Compare this to the telegraphy example. Here, the source was discrete and so
was the signal. The source was a text written in an alphabetic script with a finite
number of different characters (letters, numbers, and various punctuation marks).
These characters were encoded by Morse’s code into a signal that used six primit-
ive symbols. Such a signal is called a digital signal.

In the temperature case, there would appear to be an infinite number of tem-
peratures that the liquid could have, any temperature from 0—° Kelvin. Further
thought tells us, however, that while this may be true in principle (it’s not clear
that even in principle temperatures can be infinite), it is not true in practice. Above
a certain temperature, both the container and the thermometer would vaporize. In
fact, in any actual situation, the range of possible temperatures will be narrow.
Moreover, we will have taken into account that range when we set up the system
for measuring and communicating the liquid’s temperature. That is, the structure
of the measuring system will reflect the characteristics of the messages to be
transmitted. This is the sense in which the system will know the set of possible
messages; the knowledge will be implicit in its structure.

However, even within an arbitrarily narrow range of temperatures, there are arbit-
rarily many different temperatures. That is what it means to say that temperature
is a continuous variable. This is true, but the multiple and inescapable sources of
noise in the system limit the attainable degree of certainty about what the tem-
perature is. There is source noise — tiny fluctuations from moment to moment and
place to place within the liquid. There is measurement noise; the fluctuations in the



12 Information

After the signal

\

\

\

/
v

Probability density

Before the signal
\

|
v

Wi

Estimated temperature

Figure 1.3 In analog communication, the receipt of a signal alters the receiver’s
probability density distribution, the distribution that specifies the receiver’s knowledge of
the source value. Generally (though not obligatorily), it narrows the distribution, that is,
G, < 0,, and it shifts the mean and mode (most probable value).

electrical current from the thermometer will never exactly mimic the fluctuations
in the temperature at the point being measured. And there is transmission noise;
the fluctuations in the current at the receiver will never be exactly the same as the
fluctuations in the current at the transmitter. There are limits to how small each
of these sources of noise can be made. They limit the accuracy with which the tem-
perature of a liquid can in principle be known. Thus, where we went wrong in
considering the applicability of Shannon’s analysis to the continuous case was in
assuming that an analog signal from an analog source could give a receiver infor-
mation with certainty; it cannot. The accuracy of analog signaling is always noise
limited, and it must be so for deep physical reasons. Therefore, the receiver of an
analog signal always has a residual uncertainty about the true value of the source
variable. This a priori limit on the accuracy with which values within a given range
may be known limits the number of values that may be distinguished one from another
within a finite range. That is, it limits resolution. The limit on the number of dis-
tinguishable values together with the limits on the range of possible values makes the
source entropy finite and the post-communication entropy of the receiver non-zero.

Figure 1.3 shows how Shannon’s analysis applies to the simplest continuous case.
Before the receiver gets an analog signal, it has a continuous (rather than discrete)
representation of the possible values of some variable (e.g., temperature). In the
figure, this prior (before-the-signal) distribution is assumed to be a normal (aka
Gaussian) distribution, because it is rather generally the case that we construct a
measurement system so that the values in the middle of the range of possible (i.e.,
measured) values are the most likely values. Shannon derived the entropy for a
normal distribution, showing that it was proportional to the log of the standard
deviation, G, which is the measure of the width of a distribution. Again, this is
intuitive: the broader the distribution is, the more uncertainty there is. After receiv-
ing the signal, the receiver has less uncertainty about the true value of the tem-
perature. In Shannon’s analysis, this means that the posterior (after-the-signal)



