"This textbook is modern, thorough, witty, and deeply instructive. At last, students of the psychology of language (in the classroom and out) have a book they'll value and enjoy."

Victor Ferreira, University of California, San Diego

"This is the psycholinguistics textbook we've all been waiting for. Traxler has brought us into the 21st century. He surveys the field with depth, breadth, and most definitely wit. Students will find the text quite accessible, and instructors will appreciate the rigorous content."

Morton Ann Gernsbacher, University of Wisconsin-Madison

"It's all here, from Nim to Noam, and 'the horse raced past the barn' to the elephant in Groucho's pants. Traxler covers the subject matter of modern psycholinguistics with thoroughness and panache."

Mark S. Seidenberg, University of Wisconsin-Madison

"Engaging and witty, this is a refreshing and informative textbook on the psychology of language that will appeal to students and teachers alike."

Gerry Altmann, University of York

This textbook offers a cutting-edge introduction to psycholinguistics, exploring the cognitive processes underlying language acquisition and use. It provides students and faculty with:

• a step-by-step tour through language acquisition, production, and comprehension, from the word level to sentences and dialogue
• rich coverage of both theory and data, including in-depth descriptions of the experimental evidence behind theories
• a comprehensive review of research in bilingual language processing, sign language, reading, and the neurological basis of language production and comprehension
• perspectives on the subject from psychology, linguistics, philosophy, computer science, neurology, and neuropsychology
• a full program of resources for instructors and students, including review exercises, a test bank, and lecture slides, available at www.wiley.com/go/traxler

Covering the full spectrum of language representations and processes, and drawing on the most current research available from a range of scientific perspectives, this is the best introduction to the psychology of language available today.

Matt Traxler is Professor of Psychology at the University of California, Davis. He edited The Handbook of Psycholinguistics (with Morton Ann Gernsbacher, 2006). He currently serves as associate editor on the Quarterly Journal of Experimental Psychology and Language and Linguistics Compass. He is also a consulting editor at the Journal of Experimental Psychology: Learning, Memory, and Cognition. When Dr. Traxler is not at work at the university, he will often be found stalking the wily rainbow trout.

Cover image © simon askham / Stockphoto
Cover design by www.syndesign.co.uk
INTRODUCTION TO PSYCHOLINGUISTICS
CONTENTS

List of Illustrations xi
Acknowledgments xv
Preface xxi

1 AN INTRODUCTION TO LANGUAGE SCIENCE
1
Language Characteristics 2
Grammar, Language Origins, and Non-Human Communication Systems 6
Research on communication abilities in apes 7
“Monkeys don’t talk” 12
Language origins 14
Language and Thought 18
Whorf, linguistic determinism, and linguistic relativity 21
Whorf makes a comeback 23
A Description of the Language-Processing System 27
Summary and Conclusions 28
Test Yourself 29

2 SPEECH PRODUCTION AND COMPREHENSION 37
Speech Production 38
Speech errors 43
Access interruptus: Tip-of-the-tongue experiences 45
Picture naming and picture–word interference studies 46
The spreading activation model of speech production 48
Potential limitations of lemma theory 50
Self-monitoring and self-repair 51
Articulation 51
Foreign Accent Syndrome Revisited 53
Speech Perception 54
Coarticulation effects on speech perception 56
The motor theory of speech perception 58
The McGurk effect: Visual gestures affect speech perception 61
Mirror neurons: The motor theory enjoys a renaissance 63
The mirror neuron theory of speech perception jumps the shark 65
Other problems for mirror neuron/motor theory 66
The general auditory approach to speech perception 68
Summary and Conclusions 70
Test Yourself 71
3 **WORD PROCESSING** 79

The Anatomy of a Word: How We Mentally Represent Word Form 80
Lexical Semantics 81

- Associationist accounts of word meaning: HAL and LSA 87
- The symbol grounding problem 89
- Embodied semantics 90

Lexical Access 97

- First-generation models 99
- Second-generation models 105
- Third-generation models: Distributed features and distributed cohort 113

Lexical Ambiguity Resolution 116

- Does context influence meaning selection for ambiguous words? 117

The Neural Basis of Lexical Representation and Lexical Access 119

- How are word meanings represented in the brain? 123

Summary and Conclusions 128
Test Yourself 128

4 **SENTENCE PROCESSING** 141

Models of Parsing: Two-Stage Models 147
Models of Parsing: Constraint-Based Models 151

- Story context effects 152
- Subcategory frequency effects 153
- Cross-linguistic frequency data 157
- Semantic effects 159
- Prosody 161
- Visual context effects 164

Interim Summary 166
Argument Structure Hypothesis 166
Limitations, Criticisms, and Some Alternative Parsing Theories 171

- Construal 172
- Race-based parsing 173
- Good-enough parsing 175

Parsing Long-Distance Dependencies 177
Summary and Conclusions 180
Test Yourself 181

5 **DISCOURSE PROCESSING** 187

Construction–Integration Theory 188

- Construction and integration 192

The Structure Building Framework 199
The Event Indexing Model 204

- Modeling space, time, protagonists, and motivation 206

Causation, Cohesion, and Coherence in Discourse Encoding and Memory 210
The Role of General World Knowledge in Discourse Processing 214
Building Situation Models 217
Inferencing: Memory-Based Account of Discourse Processing: Minimalist vs. Constructionist Inferencing 220
Contents

6 REFERENCE 241
Characteristics of Referents That Make Co-Reference Easier 243
Characteristics of Anaphors That Make Co-Reference Easier 249
The Relationship between an Anaphor and Possible Referents Affects Anaphor Resolution 251
Binding Theory 253
Psycholinguistic Theories of Anaphoric Reference 256
 The memory focus model 256
 Centering theory 256
 Informational load hypothesis 258
Summary and Conclusions 260
Test Yourself 260

7 NON-LITERAL LANGUAGE PROCESSING 267
Types of Non-Literal Language 268
The Standard Pragmatic View 268
Metaphor 275
 Class inclusion and dual reference 279
 Conceptual mapping and meaning 281
 The structural similarity view 283
 The career of metaphor hypothesis 284
Why Metaphor? 285
Metonymy and Underspecification 287
Idioms and Frozen Metaphors 289
Embodiment and the Interpretation of Non-Literal Language 292
The Neural Basis of Non-Literal Language Interpretation 293
Summary and Conclusions 297
Test Yourself 298

8 DIALOGUE 305
Gricean Maxims 306
Dialogue is Interactive 308
Common Ground 309
Audience Design 312
 Egocentric production 315
Effects of Listeners’ Perspective-Taking on Comprehension 317
Summary and Conclusions 320
Test Yourself 321

9 LANGUAGE DEVELOPMENT IN INFANCY AND EARLY CHILDHOOD 325
Prenatal Learning 325
 Babies suck 327
Infant Perception and Categorization of Phonemes 329
Solving the Segmentation Problem 333
 Infant-directed speech 338
Statistical Learning and Speech Segmentation 339
Interim Summary 343
Learning Word Meanings 344
 Syntactic bootstrapping 349
Acquisition of Morphological and Syntactic Knowledge 351
 Acquisition of word category knowledge 352
 Acquisition of morphological knowledge 354
 Acquisition of phrase structure knowledge 356
Summary and Conclusions 358
Test Yourself 360

10 READING 369

Speed Reading? 369
Eye Movement Control and Reading 370
 The perceptual span 372
Oculomotor and Cognitive Control Theories of Reading 376
 E-Z reader 378
 Parallel attention models and parafoveal-on-foveal effects 381
Cognitive Processing in Reading I 384
 Different writing systems and scripts 384
 Learning to read 388
Cognitive Processing in Reading II: Visual Word Processing 390
 Dual-route and DRC models 391
 Single-route models 393
 Neighborhood effects 395
 Non-word pronunciation 397
Dyslexia: Single-Deficit Models 398
Dyslexia: Dual-Route and Single-Route Explanations 400
Summary and Conclusions 404
Test Yourself 404

11 BILINGUAL LANGUAGE PROCESSING 415

Mary Potter and the Secrets of Bilingualism 416
Languages Are Simultaneously Active During Comprehension and Production 419
 Competition in production 423
 Effects of fluency, balance, and language similarity on competition 425
 Shared syntactic structure representations 426
Models of Language Control in Bilingual Speakers 429
 BLA+ 431
 Inhibitory control 431
 Context effects and the zooming in hypothesis 432
Bilingualism and Executive Control 434
Teaching Techniques and Individual Differences in Second Language Learning 436
The Neural Bases of Bilingualism 438
Summary and Conclusions 439
Test Yourself 440

12 SIGN LANGUAGE 447
Characteristics of Signed Languages 448
 Sign language morphology 453
Lexical Access in Sign Language 455
Sign Language Acquisition and Language Evolution 456
Reading in Deaf Signers 460
The Neural Basis of Sign Language: Left-Hemisphere Contributions
to Production and Comprehension 460
Does the Right Hemisphere Play a Special Role in Sign Language? 462
 Why is language left lateralized? 464
The Effects of Deafness and Learning Sign Language on Cognitive Processing 466
 Perspective taking and sign language 468
Cochlear Implants 469
 Outcomes for CI users 470
Summary and Conclusions 472
Test Yourself 473

13 APHASIA 479
Aphasiology: What Happens to Language When the Brain Is Damaged? 480
 The classic WLG model 482
 Problems with the classic WLG model 487
Broca’s Aphasia, Wernicke’s Aphasia, and Syntactic Parsing 492
 The trace deletion hypothesis 496
 Evidence against the trace deletion hypothesis 499
 The mapping hypothesis 501
 The resource restriction hypothesis 502
 The slowed syntax hypothesis 502
Treatment and Recovery from Aphasia 503
Summary and Conclusions 507
Test Yourself 508

14 RIGHT-HEMISPHERE LANGUAGE FUNCTION 515
Speech Perception and Production 516
Word Processing 523
 The coarse coding hypothesis 526
Right-Hemisphere Contributions to Discourse Comprehension and Production 531
Right-Hemisphere Contributions to Non-Literal Language Understanding 533
What You Can Do with One Hemisphere 534
Why Lateralization? 537
Summary and Conclusions 538
Test Yourself 538

Name Index 547
Subject Index 559
ILLUSTRATIONS

Figures

1.1 Nim Chimpsky signs “me,” “hug,” and “cat” to his trainer as an increasingly worried tabby (*Felis catus*) looks on (from Terrace et al., 1979, p. 892) 10
2.1 A schematic of Levelt and colleagues’ speech production model (Levelt et al., 1999, p. 3) 39
2.2 An example stimulus from a picture–word interference experiment (from Arieh & Algom, 2002, p. 222) 47
2.3 Representation of an interactive, spreading activation model for speech production (from Dell et al., 1997, p. 805) 49
2.4 Sound spectrograms of the phrase *to catch pink salmon* created from real (top) and simplified, artificial speech (bottom) (from Liberman et al., 1952, p. 498) 55
2.5 The pattern playback machine (from Liberman, Delattre, & Cooper, 1952, p. 501) 56
2.6 Artificial spectrogram for the syllables /di/ and /du/ (from Liberman et al., 1967, p. 79) 57
2.7 Simplified acoustic stimuli that are perceived as /da/ or /ga/ (from Whalen & Liberman, 1987) 60
2.8 Japanese Quail (left) and Chinchilla (right) 67
3.1 A two-object universe 81
3.2 Another two-object universe 82
3.3 A piece of a semantic network 83
3.4 ERP results for a priming experiment involving associatively related and semantically related pairs of words (from Rhodes & Donaldson, 2008, p. 55) 87
3.5 Connectivity for *dinner* and *dog* (from Nelson et al., 1993, p. 748) 88
3.6 A hypothetical “semantic” network 90
3.7 Another hypothetical “semantic” network 91
3.8 The input device used by Tucker & Ellis (2001, p. 776) 93
3.9 TMS and lexical decisions (from Pulvermüller et al., 2005, p. 795) 95
3.10 A hypothetical bottom-up model of lexical access 99
3.11 A schematic of the information flow in John Morton’s (1969) *logogen* model 100
3.12 The TRACE model of lexical access (McClelland & Rumelhart, 1981, pp. 378, 380) 106
3.13 An example of degraded input that TRACE is good at processing 107
3.14 A schematic of Elman’s (2004, p. 203) simple recurrent network model of auditory word processing 113
3.15 Results from PET neuroimaging experiments (Posner, Peterson, Fox, & Raichle, 1988, p. 1630) 120
<table>
<thead>
<tr>
<th>Illustration Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.16</td>
<td>PET data showing the neural response to a semantic judgment task (top) and a phonological judgment task (bottom) (Price et al., 1997, p. 729)</td>
<td>121</td>
</tr>
<tr>
<td>3.17</td>
<td>The visual word form area (from Cohen et al., 2002, p. 1060)</td>
<td>122</td>
</tr>
<tr>
<td>4.1</td>
<td>The garden path model of syntactic parsing</td>
<td>148</td>
</tr>
<tr>
<td>4.2</td>
<td>Sample visual displays and eye-movement patterns (from Tanenhaus et al., 1995)</td>
<td>165</td>
</tr>
<tr>
<td>4.3</td>
<td>A constraint-based outlook on syntactic parsing</td>
<td>166</td>
</tr>
<tr>
<td>5.1</td>
<td>Contextual prerequisites for understanding: Some investigations of comprehension and recall (from Bransford & Johnson, 1972)</td>
<td>193</td>
</tr>
<tr>
<td>5.2</td>
<td>Three turtles, a fish, and a log</td>
<td>196</td>
</tr>
<tr>
<td>5.3</td>
<td>Recognition memory results from Kintsch et al. (1990)</td>
<td>198</td>
</tr>
<tr>
<td>5.4</td>
<td>Estimated activation of inappropriate meanings based on a semantic judgment task (from Gernsbacher & Faust, 1991)</td>
<td>203</td>
</tr>
<tr>
<td>5.5</td>
<td>ERP data from Münte et al., 1998 (p. 71)</td>
<td>208</td>
</tr>
<tr>
<td>5.6</td>
<td>Goal failure and goal success (from Suh & Trabasso, 1993, p. 289)</td>
<td>210</td>
</tr>
<tr>
<td>5.7</td>
<td>The effect of discourse cohesion on the brain's response to discourse (from Robertson et al., 2000, p. 259)</td>
<td>225</td>
</tr>
<tr>
<td>5.8</td>
<td>Brain regions that were analyzed by Mason & Just (2004, p. 4)</td>
<td>225</td>
</tr>
<tr>
<td>5.9</td>
<td>The average number of activated voxels in left-hemisphere brain regions (leftmost bars), right-hemisphere brain regions (middle bars) and the dorsolateral prefrontal cortex on both sides of the brain (from Mason & Just, 2004, p. 5)</td>
<td>226</td>
</tr>
<tr>
<td>6.1</td>
<td>Quick, what does space cowboy mean? And who does it refer to?</td>
<td>242</td>
</tr>
<tr>
<td>6.2</td>
<td>Visual-world eye-tracking results from Järvikivi, van Gompel, Hyöna, & Bertram (2005, p. 262)</td>
<td>245</td>
</tr>
<tr>
<td>8.1</td>
<td>Picture depicting “weird” ice pick instrument (left) or no instrument (right; the control condition) (from Brown & Dell, 1987, p. 453)</td>
<td>315</td>
</tr>
<tr>
<td>8.2</td>
<td>Experimental set-up from Wardlow-Lane et al. (2006, p. 274)</td>
<td>316</td>
</tr>
<tr>
<td>8.3</td>
<td>Examples of grids from Keysar, Barr, Balin, & Brauner (2000, p. 33)</td>
<td>318</td>
</tr>
<tr>
<td>9.1</td>
<td>Sonogram of the question Where are the silences between words? (from Saffran, 2003, p. 111)</td>
<td>334</td>
</tr>
<tr>
<td>9.2</td>
<td>Patterns of dogs used to train and test 7-month-old infants (from Saffran, Pollak, Seibel, & Shkolnik, 2007, pp. 671–672)</td>
<td>341</td>
</tr>
<tr>
<td>9.3</td>
<td>Stills from a video depicting a two-participant event (left) and a one-participant event (right) used to test young children's interpretation of the novel verb blicking (from Yuan & Fisher, 2009, p. 620)</td>
<td>350</td>
</tr>
<tr>
<td>10.1</td>
<td>A representative pattern of fixations and saccades</td>
<td>372</td>
</tr>
<tr>
<td>10.2</td>
<td>How some speed reading courses suggest you should move your eyes in order to increase your reading speed</td>
<td>372</td>
</tr>
<tr>
<td>10.3</td>
<td>Schematic of the E-Z reader model of eye-movement control in reading (from Reichle et al., 2006, p. 6)</td>
<td>378</td>
</tr>
<tr>
<td>10.4</td>
<td>Schematic diagram of the SWIFT eye-movement system (from Engbert et al., 2005, p. 788)</td>
<td>382</td>
</tr>
<tr>
<td>10.5</td>
<td>An aardvark</td>
<td>385</td>
</tr>
<tr>
<td>10.6</td>
<td>fMRI data from English (left) and Chinese (right) bilinguals reading English (top) and Chinese (bottom) script (from Perfetti et al., 2007, p. 141)</td>
<td>388</td>
</tr>
<tr>
<td>10.7</td>
<td>The dual-route cascaded (DRC) model of word reading (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001, p. 213)</td>
<td>391</td>
</tr>
</tbody>
</table>
10.8 A general framework for lexical access (top) and a more specific mechanism for generating pronunciations from visual input (bottom) (from Seidenberg & McClelland, 1989, pp. 526–527) 394
10.9 Comparison of non-word reading by 11–12-year-old children and the FAN single-route neural network model (adapted from Powell et al., 2006, p. 243) 397
10.10 Accuracy at reading exception words (e.g., have, pint) and non-words (e.g., bint, tade) for surface and phonological dyslexics compared to reading level (left) and age-matched controls (right) (from Bailey et al., 2004, p. 141) 401
11.1 The word association (WAM) and concept mediation (CM) models of L1–L2 links 417
11.2 The revised hierarchical model (RHM) (from Kroll & Stewart, 1994, p. 158) 418
11.3 A black bear (*Ursus Americanus*) 420
11.4 A schematic of Green’s (1998, p. 69) inhibitory control model 432
11.5 Difference between congruent and incongruent trials in the Simon task by age group (from Bialystok et al., 2004, p. 298) 435
12.1 The ASL manual (finger-spelling) alphabet 450
12.2 Continuous change in hand shape from the ASL sign for “say” (upper left) to the ASL sign for “to” (lower right) (from Emmorey et al., 2003, p. 27) 451
12.3 Different forms of the verb “give” showing how different motion trajectories represent different inflectional morphemes (from Corina et al., 1996, p. 332) 452
12.4 Top: four ASL verbs with different hand configurations but the same motion parameter. Bottom: the verb “preach” with different movement trajectories signifying different inflections. (From Poizner et al., 1981, pp. 123 and 124) 453
12.5 Simon’s accuracy in producing the components of ASL verbs of motion (from Singleton & Newport, 2004, p. 388) 459
12.6 Examples of errors in the production of aphasic signers (from Hickok et al., 1998a, p. 132) 465
13.1 The left hemisphere of Leborgne and Lelong’s brains (from Dronkers et al., 2007) 481
13.2 *Pars triangularis* and *pars opercularis* (adapted from Dronkers et al., 2007) 488
13.3 The basal ganglia 489
13.4 The insula 489
13.5 Number of patients vs. performance level in actives (full line) and passives (dashed); scores are for 42 patients (6–48 trials each) (from Grodzinsky et al., 1999) 499
14.1 Prosodic contours (left) and neural response (right) in 3-month-old sleeping infants (from Homae et al., 2006, p. 277) 519
14.2 Priming results for dominant (solid line) and subordinate (dashed line) meanings for the left hemisphere (top) and right hemisphere (bottom), and short SOAs (left) and long SOAs (right) (from Burgess & Simpson, 1988, p. 96) 529
Plates

Plates fall between pages 266 and 267.

2 Patterns of neural activity in response to actual body movements (left side) and words referring to face (smile), arm (throw), and leg (walk) actions (right side). (Hauk, Johnsrude, & Püllermüller, 2004, p. 304)

3 Voxel-based lesion–symptom mapping (VLSM) results for non-linguistic tasks (top) and reading comprehension (bottom) (from Saygin, Wilson, Dronkers, & Bates, 2004, p. 1797)

4 PET imaging data (from Vandenberghhe, Price, Wise, Joesphs, & Frackowiak, 1996, p. 255)

5 PET neuroimaging results from Martin, Wiggs, Ungerleider, & Haxby (1996, p. 651)

6 fMRI data showing greater left-lateralized frontal activity for questions tapping abstract versus perceptual properties of animals (Goldberg, Perfetti, Fiez, & Schneider, 2007, p. 3796)

7 Lesion–performance correlations from Damasio, Grabowski, Tranel, Hichwa, & Damasio (1996, p. 501)

8 fMRI results comparing response to chronological (green) and emotional (yellow and red) information in stories (Ferstl, Rinck, & Von Cramon, 2005, p. 728)

9 Brain activity during an insight-inducing problem-solving task (from Jung-Beeman et al., 2004)

10 fMRI results from Virtue, Haberman, Clancy, Parrish, & Beeman (2006, p. 107)

11 fMRI activation results from St. George, Kutas, Martinez, & Sereno (1999, p. 1320)

12 Whole-brain image of titled (top) vs. untitled (bottom) stories from St. George, Kutas, Martinez, & Sereno (1999, p. 1322)

13 Right-hemisphere brain activity is greater for unrelated pairs of sentences than for closely related pairs of sentences (from Kuperberg, Lakshmanan, Caplan, & Holcomb, 2006, p. 357)

14 The brain responds differently to highly coherent versus incoherent stories (from Kuperberg, Lakshmanan, Caplan, & Holcomb, 2006, p. 354)

15 PET results from Bottini et al. (1994, p. 1246)

16 fMRI results from Rapp, Leube, Erb, Grodd & Kircher (2004, p. 399)

17 fMRI results from Mashal, Faust, Hendler, & Jung-Beeman (2007, p. 123)

18 Neuroimaging data from Dietz, Jones, Gareau, Zeffiro, & Eden (2005, pp. 86, 88)

19 Brain response to viewing ASL sentences (from Neville et al., 1998, p. 924)

20 The arcuate fasciculus (from Catani, Jones, and ffytche, 2005)

21 VLSM plot of positive t-values obtained by comparing patients with and without lesions at each voxel on the CYCLE-R sentence comprehension measure
ACKNOWLEDGMENTS

The author and publisher gratefully acknowledge the permission granted to reproduce the copyright material in this book:

Figure 1.1 From Terrace, H. S., Pettitto, L. A., Sanders, R. J., & Bever, T. G. (1979). Can an ape create a sentence? Science, 206, 891–902, used by permission of the American Association for the Advancement of Science.

Figure 2.3 From Dell, G. S., Schwartz, M. F., Martin, N., Safran, E. M., & Gagnon, D. A. (1997). Lexical access in normal and aphasic speakers Psychological Review, 104, 801–838, used by permission of the American Psychological Association.

Figure 2.4 From the American Journal of Psychology, copyright 1952 by the Board of Trustees of the University of Illinois. Used with permission of the author and the University of Illinois Press.

Figure 2.5 From the American Journal of Psychology, copyright 1952 by the Board of Trustees of the University of Illinois. Used with permission of the author and the University of Illinois Press.

Figure 2.8a © Eric Isselée/iStockphoto.com.

Figure 2.8b © Sergiy Goruppa/iStockphoto.com.

Figure 3.1 Created by Matthew Traxler.

Figure 3.2 Created by Matthew Traxler.

Figure 3.3 Created by Matthew Traxler.

Figure 3.4 From Rhodes, S. M., & Donaldson, D. I. (2008). Association and not semantic relationships elicit the N400 effect: Electrophysiological evidence from an explicit language comprehension task. Psychophysiology, 45, 50–59, used with permission of Wiley-Blackwell publishing.

Figure 3.6 Created by Matthew Traxler.
Figure 3.7 Created by Matthew Traxler.
Figure 3.8 From Tucker, M., & Ellis, R. (2001). The potentiation of grasp types during visual object categorization. *Visual Cognition, 8*, 769–800, used with permission of Taylor & Francis.
Figure 3.9 From Pulvermüller, F., Hauk, O., Nikulin, V. V., & Ilmoniemi, R. (2005). Functional links between motor and language systems. *European Journal of Neuroscience*, 21, 793–797, used with permission of John Wiley & Sons.
Figure 3.10 Created by Matthew Traxler.

Figure 4.1 Created by Matthew Traxler.

Figure 4.3 Created by Matthew Traxler.

Figure 5.1 From Bransford, J. D., & Johnson, M. K. (1972). Contextual prerequisites for understanding: Some investigations of comprehension and recall. *Journal of Verbal Learning and Verbal Behavior*, 11, 717–726. Used with permission of Elsevier.

Figure 5.2 Created by Matthew Traxler.

Figure 5.6 From Suh, S., & Trabasso, T. (1993). Inferences during reading: Converging evidence from discourse analysis, talk-aloud protocols, and recognition priming. *Journal of Memory and Language*, 32, 279–300. Used with permission of John Wiley and Sons.

Figure 6.1 Created by Matthew Traxler.

Figure 10.1 Created by Matthew Traxler.

Figure 10.2 Created by Matthew Traxler.

Figure 10.5 © Universal Images Group Limited/Alamy.

Figure 10.9 Created by Matthew Traxler.

Figure 11.1 Created by Matthew Traxler.

Figure 11.2 Created by Matthew Traxler.

Figure 11.3 © Bev McConnell/iStockphoto.

Figure 12.1 Fingerspelling chart, layout and design copyright © 2007, William Vicars, sign language resources at Lifeprint.com.

Figure 13.4 Image © Sovereign, ISM/Science Photo Library.

Every effort has been made to trace copyright holders and to obtain their permission for the use of copyright material. The publisher apologizes for any errors or omissions in the above list and would be grateful if notified of any corrections that should be incorporated in future reprints or editions of this book.
The last time I wrote a preface, I killed a guy. Well, I didn’t actually kill him. I just said he was dead even though he isn’t. (Sorry Eno!) One of my major goals in writing this preface is not to kill anyone who isn’t already dead. My other major goal is to use the word “shenanigans.”

I learned two things from my previous preface-writing experience. Lesson 1: Sometimes, people read the preface. In this case, it was Gerard Kempen, who was kind enough to interrogate me about my error while I was in the middle of hosting a major scientific conference. Gerard, if you’re reading this: I promise not to kill anyone this time. Lesson 2: It stinks to screw up in a very public way. It’s much better to screw up in private.

In the light of lesson 2, my editors and I have taken special care to ensure that the contents of this book are as accurate as possible at the time of printing. We have been assisted in this endeavor by a number of highly talented and thoughtful reviewers, to whom I am profoundly grateful. These reviewers include Chuck Clifton and several anonymous experts, all of whom are wise in the ways of language. Mark Seidenberg answered e-mails at all hours of the day and provided timely advice and guidance at critical junctures in the drafting process. Judy Kroll was also very generous with advice and pointers to useful information. It goes without saying that I am responsible for any errors or omissions that remain.

Before I started working on this book, I spent a long time teaching language and reflecting on disappointing teaching evaluations. Like many professors, and amateur mechanics everywhere, I blamed my tools. In particular, I blamed the textbooks that I was using. I decided that the only solution was to write my own book, and this is the result. I hope that the book presents language in a coherent way that is accessible to the average student. If it doesn’t, I’m going to have to write another book.

Language scientists have discovered a lot of great things about the way the mind works. (We are the Kevin McHales of cognitive science. We score a quiet 20 points off the bench every game, but the flashy guys with the robots and the mirror neurons get all the headlines.) The field has developed strong momentum since I started observing it mumble mumble years ago, so this is an exciting time to be learning about language. I hope that the book conveys some of that excitement.

No book is the work of any one person. I am very grateful to my current and former editors at Wiley-Blackwell, especially Christine Cardone, who is a deep fountain of advice and encouragement. Anna Oxbury also deserves special mention for diligent copyediting and numerous suggestions of ways to improve the copy. Matt Bennett and Nicole Benevenia have also been wonderful.

I am also thankful to all the magnificent teachers and mentors that I have been fortunate to learn from over the years. Randy Fletcher gave me a great start doing research at the University of Minnesota. Morton Ann Gernsbacher showed me what it means to work (no one can match her—don’t even try). Martin Pickering taught me how sentences work. Don Foss rescued me from being a fly-fishing guide in Colorado. Most days, that’s a good thing. Thanks, Don.

I am also grateful to my students and colleagues at the University of California, Davis. Megan Zirnstein and Kristen Tooley deserve special mention for keeping me on my toes.

Finally, I am most deeply grateful for the continuing support of my whole family, but especially Rose and Tina. They put up with a lot of shenanigans.

Davis, California
The rules aren’t the ones we were taught in school.

IVAN SAG

One of my favorite language scientists is Daniel L. Everett, a former evangelical Christian missionary who has spent more than 30 years living among and studying the Pirahã (pronounced “pee-da-HAN”), a group of about 300 hunter-gatherers, who live alongside a river in a largely unspoiled and remote part of the Amazon rain forest. Everett went there originally to learn the Pirahã language so that he could translate the Bible and spread the gospel to the Pirahã. To do so, he had to overcome the heat, tropical diseases, jaguars, hostile traders, gigantic anacondas,1 biting insects, snakes that drop from the ceiling, electric eels, piranhas, caimans,2 a tiny fish that tries to swim up any unguarded body cavity,3 and much more. You can read about his adventures in the autobiographical book Don’t Sleep, There Are Snakes. More importantly, for our purposes, you can read about what he discovered about the language that the Pirahã speak, and the ways that it differs from languages that citizens of industrialized nations are more familiar with. It turns out that Everett’s research touches on some of the biggest, most general, and most difficult questions that language scientists have attempted to tackle. What does it mean to know a language? How do languages work? Where do they come from? What made languages take their current form(s)? How is language related to thought? Are thought and language identical? This chapter examines these questions, too, not because they have clear answers (most of them do not), but because taking a run at

Language Characteristics
Grammar, Language Origins, and Non-Human Communication Systems
- Research on communication abilities in apes
- “Monkeys don’t talk”
Language origins

Language and Thought
- Whorf, linguistic determinism, and linguistic relativity
- Whorf makes a comeback

A Description of the Language-Processing System

Summary and Conclusions

Test Yourself
these questions can give us a deeper appreciation of what language is, how it got to be that way, and how our language abilities fit in with other cognitive (thinking) skills.

Part of Everett’s research addresses one of the most fundamental questions in language science: What is language? What does it mean to know a language? This is the kind of essentialist question that psycholinguists (psychologists who study the mental and neural processes as well as the behaviors associated with language) tend to avoid whenever possible (Stanovich, 2009). However, the precise definition of language and a description of its component features greatly concerns researchers who want to know what mental abilities you need to use language, which of those abilities are used for language but not other kinds of cognitive tasks, and whether non-human animals share some or all of our ability to produce and understand language (Everett, 2005, 2007; Hauser, Chomsky, & Fitch, 2002; Jackendoff & Pinker, 2005; Pinker, 1994; Pinker & Bloom, 1990; Pinker & Jackendoff, 2005; Talmy, 2009).

Language Characteristics

Descriptions of language often appeal to Charles Hockett’s (1960) design features. Let’s focus on a subset of these features, because some of his proposed design features are not necessary for language (e.g., using the vocal channel for sending and receiving messages—sign language users do just fine without it), while others are not specific to language (e.g., cultural transmission—learning to make perogies or knit sweaters is also culturally transmitted). A set of central, possibly necessary, design features could include the following: semanticity, arbitrariness, discreteness, displacement, duality of patterning, and generativity. Let’s consider each of these in turn.

Semanticity refers to the idea that language can communicate meaning, and that specific signals can be assigned specific meanings. This occurs at multiple levels in languages, as individual words can be assigned particular meanings, and so can longer expressions that contain more than one word.

Arbitrariness refers to the fact that there is no necessary relationship between actual objects or events in the world and the symbols that a language uses to represent those objects or events. For example, the word that goes with an object need not resemble the real object in any way. One result of arbitrariness is that names for objects can be completely different across languages (koshka, gato, chat, neko, and mao are all words for cat). The name could be changed as long as everyone agreed, and the name change would not affect the ability to express the concept in the language. Tomorrow, we English speakers could all start calling cats “lerps,” and as long as everyone agreed, this would work just fine. Sometimes, people point to onomatopoeia (words like “moo” and “oink”) in English as an example of a non-arbitrary relationship between sound and meaning. Sometimes people argue that the words for large objects have deep-sounding vowels made with the vocal cavity opened up to be big (ocean, tower), while words for small objects have high-sounding vowels with the vocal cavity closed down to be small (pin, bitsy). But onomatopoeia is not as systematic as people assume (the Dutch equivalent of “oink” is “knorr-knorr”), and there are plenty of counterexamples to the “big concept—big vowel” hypothesis (e.g., infinity).

Discreteness refers to the idea that components of the language are organized into a set of distinct categories, with clear-cut boundaries between different categories. For example, every speech sound in English is perceived as belonging to one of about 40 phoneme categories (e.g., a sound is either a /p/ or a /b/; it’s either a /t/ or a /d/). For Pirahã speakers, every speech sound made by another Pirahã speaker will be recognized as one of 11 phonemes.4 Think of how many different speakers a language has, how
different all of their voices are, how their speech can vary from occasion to occasion in how fast they talk, whether they speak clearly or not, and so on. Despite all of the vast differences between speakers, and differences within speakers over time, people who speak the same language will fit every sound made by every speaker into one of the available categories.

Displacement refers to a language’s ability to convey information about events happening out of sight of the speaker (spatial displacement), about events that happened before the moment when the person speaks, and events that have not yet taken place as the person is speaking (temporal displacement). Different languages accomplish displacement in different ways. English has a system of auxiliary verbs (e.g., will, was, were, had) and affixes (e.g., pre- in predates; -ed in dated) to signal when an event occurred relative to the moment of speaking or relative to other events. Other languages, such as Mandarin, lack these kinds of tense markers, but use other means, such as adverbial expressions, to achieve the same means (so you would say the equivalent of, “Yesterday, the man goes” rather than “The man went”). Displacement is a ubiquitous feature of human languages, although the degree and scope of displacement may be more limited in some languages than others (Everett, 2008), but it is largely or completely absent in animal communication systems. Primates may call to one another to signal the presence of predators or food, as will bees, but these behaviors have more the flavor of a reflex, rather than being the result of a controlled, intentional desire to convey information (Tomasello, 2007).

Duality of patterning refers to the fact that we simultaneously perceive language stimuli in different ways; for example, as a collection of phonemes and as a set of words. The word wasp consists of four basic speech sounds or phonemes – /w/, /o/, /s/, and /p/. Normally, we “see through” the phonemes and the individual word-sounds to the meaning that a speaker is trying to convey, but each of these kinds of patterns, speech sounds (phonemes) and words, can be detected if we decide to pay attention to the form of the speaker’s message, rather than its meaning.

Finally, generativity refers to the fact that languages have a fixed number of symbols, but a very large and potentially infinite number of messages that can be created by combining those symbols in different patterns. English has about 40 phonemes, but those 40 phonemes can be combined in an infinite number of ways. Similarly, the average high school graduate knows the meanings of about 50,000 different words, but can combine those words in new patterns to produce an unlimited number of meanings.

Language scientists agree that all of the preceding characterize human languages, but they do not all agree on other aspects of language. Many of these disagreements revolve around a component of language called grammar (or syntax by some theorists). At a very basic level, languages provide us the means to associate sounds with meanings (Hauser et al., 2002). Other animals are also able to associate arbitrary sounds with objects in the environment, similar to the way people associate sounds and meanings. Vervet monkeys make one kind of call when they see an airborne predator, and a different kind of call when they see a predator on the ground; and they respond in the appropriate way depending on which call they hear. If it’s an eagle call, they dive into the bushes. If it’s a leopard call, they head up into the trees. Vervets lack the capacity to combine sets of calls into longer messages (but see below for evidence that some apes have this ability). If vervets had a system of rules that enabled them to combine calls into more complex messages (e.g., “look at the size of that leopard!”), we would say that they have a grammar.

Grammar is one of the two chief components of a language. The other is the lexicon, the part of long-term memory that stores information about words (Sag, Wasow, & Bender, 2003). Languages need both of these components so that speakers can formulate messages that express propositions (statements of who did what to whom, roughly). To create such messages, a speaker searches for symbols in the lexicon that match the concepts that she
wishes to convey. The grammar tells her how to combine the symbols to create the appropriate signals (speech sounds) that will transmit her message to a listener.

Before we go any further, we need to get straight a common misunderstanding of the word grammar. When people hear “grammar,” they often think of “grammar school” or the system of rules that your 8th grade English teacher tried to get you to memorize so that you could speak and write standard English. Like me, you probably failed to internalize many of your 8th grade English teacher’s lessons. This is partly because 8th grade English is unbearably boring and partly because the principles that your 8th grade teacher was trying to foist on you are completely arbitrary and artificial. For example, Mrs Heidemann tried to get me to believe that you cannot end a sentence with a preposition. But then, there’s this kid whose dad always reads him the same story at bedtime. One night, when dad turned up with the same old horrible book, the kid said, Hey, Dad! What did you bring that book that I didn’t want to be read to out of up for? Five prepositions at the end, perfectly interpretable. Mrs Heidemann was trying to teach me prescriptive grammar. Prescriptive grammars are collections of artificial rules. If you follow the grammar teacher’s prescription (like you follow a doctor’s prescription), your language will sound like that used by members of the upper class in England’s home counties.

The vast majority of language scientists are not interested in prescriptive grammar. The kind of grammar we are interested in is descriptive grammar, which is the set of rules or principles that governs the way people use language “in the wild.” That is, how people naturally and normally think and behave. Here is an example of a descriptive rule of grammar: “Each clause can only have one main verb.” You already know this rule, even though nobody, not even Mrs Heidemann, ever tried to teach it to you. As a result, you would never say, Mrs Heidemann brewed drank the coffee. Similarly, English descriptive grammar says, “Put verbs in the middle, not at the beginning of sentences.” Again, you already know this rule, because you never say things like Drank the coffee Mrs Heidemann.

To figure out what rules of grammar people actually carry around in their heads with them, linguists spend a great deal of time and effort observing people speaking spontaneously and recording the details of how they combine words into longer expressions. They then
take these records and try to determine why words appear in specific parts of phrases and sentences, and why they appear in particular forms. This type of analysis allows them to deduce the rules behind the patterns that appear in transcripts of speech. When this type of analysis is done on English, it leads to a number of conclusions about English grammar. For example, English is a subject-verb-object language. In declarative statements, the grammatical subject of the sentence, which is normally the focus of attention or the topic of the discourse, appears at the beginning of the sentence. The verb appears in the middle. The grammatical object, which normally is the thing that is acted upon, comes last. Other languages order these elements in different ways. Japanese, for example, puts its verbs at the end. Languages like Russian have free word order and make much greater use than English of different versions of nouns to express who is initiating the action and who is being acted upon. To figure out which system a language has, you actually have to go out and watch people use the language. Sometimes, doing that produces big surprises.

Based on observations of English and other languages, Chomsky and his colleagues have proposed that recursion is a core property of the grammars of all languages (Fitch, Hauser, & Chomsky, 2005; Hauser et al., 2002). Further, based on a detailed analysis of human language and animal communication systems, they proposed that recursion is the only property that is specific to human language. “The narrow language faculty includes recursion and this is the only uniquely human component of the faculty of language” (Hauser et al., 2002, p. 1569). Chomsky’s team proposes that all other properties of language are either shared with non-language thought processes or with non-human communication systems. What are they talking about and why does it matter? Recursion is defined as “the ability to place one component inside another component of the same type.” So, where language is concerned, recursion could happen if you could place one phrase inside another phrase or one sentence inside another sentence.

English allows us to place one sentence inside another sentence. Here’s a sentence:

Tom likes beans.

We can place that sentence inside another sentence:

Susan thinks (X) (where X is a sentence)

The result would be:

Susan thinks Tom likes beans.

The degree to which this sort of recursion can go on is essentially infinite, and is limited only by the speaker’s ability and willingness to continue:

John knows Dave believes Jenny hopes Carol recognizes Bob realizes … Susan thinks Tom likes beans.

Thus, recursion is one of the characteristics that gives language the property of discrete infinity, the ability to generate infinite messages (even infinitely long messages) from finite means.

Most of the languages that have been studied do have recursion, but there does appear to be at least one exception: Pirahã (Everett, 2005, 2008). In English, recursion is often used to create expressions that modify or change the meaning of one of the elements of the sentence. For example, to take the word nails and give it a more specific meaning, we could use an object relative clause such as that Dan bought, as in

Hand me the nails that Dan bought.
In this sentence, the relative clause that Dan bought (which could be glossed as "Dan bought the nails") is contained within a larger noun phrase: the nails (that Dan bought (the nails)). So the relative clause is nested within a larger phrase, kind of like a stack of bowls. Pirahã expresses the same meaning in a much different form, one that does not involve recursion. To express the meaning that goes with "Hand me the nails that Dan bought," a Pirahã speaker would say the equivalent of:

Give me the nails. Dan bought those very nails. They are the same. (Everett, 2008, p. 227).

In this case, none of the expressions are contained within other expressions of the same type. Pirahã even appears to lack a very simple form of recursion that happens when you use a coordinate structure to put two noun phrases together, as in Dan and Ted went to Brazil (E. Gibson, personal communication). In Dan and Ted, you have an overarching noun phrase (of the form NP and NP) that contains two separate noun phrases (Dan, Ted). To express a meaning like this, a Pirahã speaker would say the equivalent of, "Dan went to Brazil. Ted went to Brazil." Instead of having a stack of bowls, Pirahã has the linguistic equivalent of a string of pearls. All of the statements are connected to each other in an important way, but none of them is contained within any of the others. If recursion does not occur in Pirahã language, which is still definitely a language on a par with other languages in its ability to convey meaning, then recursion is not a necessary characteristic of human languages, despite the fact that most of them have it anyway.

Why does Pirahã lack recursion? Everett’s (2008) answer is that Pirahã lacks recursion because recursion introduces statements into a language that do not make direct assertions about the world. When you say, Give me the nails that Dan bought, that statement presupposes that it is true that Dan bought the nails, but it does not say so outright. In Pirahã, each of the individual sentences is a direct statement or assertion about the world. "Give me the nails" is a command equivalent to "I want the nails" (an assertion about the speaker’s mental state). "Dan bought the nails" is a direct assertion of fact, again expressing the speaker’s mental state ("I know Dan bought those nails"). “They are the same” is a further statement of fact. Everett describes the Pirahã as being a very literal-minded people. They have no creation myths. They do not tell fictional stories. They do not believe assertions made by others about past events unless the speaker has direct knowledge of the events, or knows someone who does. As a result, they are very resistant to conversion to Christianity, or any other faith that requires belief in things unseen. Everett argues that these cultural principles determine the form of Pirahã grammar. Specifically, because the Pirahã place great store in first-hand knowledge, sentences in the language must be assertions. Nested statements, like relative clauses, require presuppositions (rather than assertions) and are therefore ruled out. If Everett is right about this, then Pirahã grammar is shaped by Pirahã culture. The form their language takes is shaped by their cultural values and the way they relate to one another socially. If this is so, then Everett’s study of Pirahã grammar would overturn much of the received wisdom on where grammars come from and why they take the form they do. Which leads us to …

Grammar, Language Origins, and Non-Human Communication Systems

Many language scientists are concerned with the precise definition of language and with detailed descriptions of the grammars of different languages because having those two things nailed down can help us understand how humans think and how we compare with