Atlas of Endoscopic Ultrasonography

Companion DVD-ROM

This book is accompanied by a companion DVD with:
- A database of videos showing procedures described in the book.
- A search feature.
- All videos are referenced in the text at the end of each chapter.

All figures from the book are available for downloading at:

Note on access:
Wiley publishes its books in a variety of electronic formats and by print-on-demand.
Not all content that is available in standard print versions of this book may appear or be packaged in all book formats.
If you have purchased a version of this book that did not include media that is referenced by or accompanies a standard print version, you may request this media by visiting:
For more information about Wiley products, visit us at:
We dedicate this to our families whose support and love allowed us to create this atlas.
Contents

List of Contributors, vii
Preface, x

Part 1 Normal EUS Anatomy, 1

1 Normal Human Anatomy, 3
 John C. Deutsch

2 Esophagus: Radial and Linear, 10
 James L. Wise & John C. Deutsch

3 Normal Mediastinal Anatomy by EUS and EBUS, 14
 Silvio Wanderley de Melo Jr. & Michael B. Wallace

4 Stomach: Radial and Linear, 18
 Joo Ha Hwang

5 Bile Duct: Radial and Linear, 21
 Kapil Gupta

6 EUS of the Normal Pancreas, 24
 Richard A. Erickson & James T. Sing Jr.

7 Liver, Spleen, and Kidneys: Radial and Linear, 29
 Nalini M. Guda & Marc F. Catalano

8 Anatomy of the Anorectum: Radial and Linear, 32
 Christoph F. Dietrich

Part 2 Upper and Lower GI EUS, 35

9 Esophageal Cancer, 37
 Syed M. Abbas Fehmi

10 Esophageal Motility Disorders, 44
 Thuy Anh Le & Ravinder K. Mittal

11 Malignant Mediastinal Lesions, 54
 M. Babitha Reddy, David H. Robbins, & Mohamad A. Eloubeidi

12 Benign Mediastinal Lesions, 57
 M. Babitha Reddy, David H. Robbins, & Mohamad A. Eloubeidi

13 Gastric Cancer, 59
 Douglas O. Faigel & Sarah A. Rodriguez

14 Gastric and Esophageal Subepithelial Masses, 64
 David J. Owens & Andrew J. Bain

15 Anorectal Neoplasia, 70
 Manoop S. Bhutani & Eversen L. A. Artifon

16 Anal Sphincter Disease: Fecal Incontinence and Fistulas, 75
 Raymond S. Tang & Thomas J. Savides

17 Other Pelvic Pathology, 81

18 Vascular Anomalies and Abnormalities, 88
 John C. Deutsch

Part 3 Pancreatoco-biliary, 93

19 Duodenal and Ampullary Neoplasia, 95
 Brenna Casey Bounds

20 Biliary Tract Pathology, 97
 Brenna Casey Bounds

21 Gallbladder Pathology, 100
 Sam Yoselevitz & Ann Marie Joyce

22 Pancreatic Adenocarcinoma, 103
 Douglas G. Adler

23 Pancreatic Malignancy (Non-adenocarcinoma), 107
 Michael J. Levy & Suresh T. Chari

24 Autoimmune Pancreatitis, 112
 Michael J. Levy & Suresh T. Chari

25 Pancreatic Cystic Lesions: The Role of EUS, 116
 William R. Brugge

26 Intraductal Papillary Mucinous Neoplasms: The Role of EUS, 120
 William R. Brugge

27 Chronic Pancreatitis, 124
 David G. Forcione
Contents

28 Liver Pathology, 129
 Indraneel Chakrabarty & Ann Marie Joyce

Part 4 How to Section, 133

29 How to Interpret EUS-FNA Cytology, 135
 Cynthia Behling

30 How to do Mediastinal FNA, 144
 Sammy Ho

31 How to do Pancreatic Mass FNA, 148
 Michael D. Harris & Jonathan M. Buscaglia

32 How to do Pancreatic Mass Tru-cut Biopsy, 153
 Michael J. Levy & Maurits J. Wiersema

33 How to do Pancreatic Cyst FNA, 159
 Aman Ali & William R. Brugge

34 How to do Pancreatic Pseudocyst Drainage, 162
 Shyam Varadarajulu & Vinay Dhir

35 How to do Pancreatic Cyst Ablation, 167
 John DeWitt

36 How to do Celiac Plexus Block, 172
 Adam J. Goodman & Frank G. Gress

37 How to Place Fiducials for Radiation Therapy, 175
 Satish Nagula & Christopher J. DiMaio

38 How to Inject Chemotherapeutic Agents, 178
 V. Raman Muthusamy & Kenneth J. Chang

39 How to do EUS-guided Biliary Drainage, 181
 Jennifer Maranki & Michel Kahaleh

40 How to do EUS-guided Pelvic Abscess Drainage, 186
 Shyam Varadarajulu & Sandeep Lakhtakia

41 How to do Doppler Probe EUS for Bleeding, 190
 Richard C. K. Wong

Index, 199

Companion DVD-ROM

This book is accompanied by a companion DVD with:
 • A database of videos showing procedures described in the book.
 • A search feature.
 • All videos are referenced in the text at the end of each chapter.

All figures from the book are available for downloading at:

Note on access:

Wiley publishes its books in a variety of electronic formats and by print-on-demand.
Not all content that is available in standard print versions of this book may appear or be packaged in all book formats.
If you have purchased a version of this book that did not include media that is referenced by or accompanies a standard print version,
you may request this media by visiting:
For more information about Wiley products, visit us at:
List of Contributors

Douglas G. Adler MD, FACP, AGAF, FASGE
Associate Professor of Medicine
Director of Therapeutic Endoscopy
Gastroenterology and Hepatology
University of Utah School of Medicine
Salt Lake City, UT, USA

Aman Ali MD
Gastroenterology Fellow
Massachusetts General Hospital
Boston, MA, USA

Everson L. A. Artifon MD, PhD, FASGE
Associate Professor of Surgery
University of São Paulo, São Paulo, Brazil
Director, Pancreatic-biliary Endoscopy
Ana Costa Hospital, Santos, Brazil

Andrew J. Bain MD
Clinical Instructor
Division of Gastroenterology
University of California, San Diego
La Jolla, CA, USA

Cynthia Behling MD, PhD
Pacific Rim Pathology Group
Sharp Memorial Hospital
Voluntary Associate Professor of Pathology
University of California, San Diego
San Diego, CA, USA

Manoop S. Bhutani MD, FASGE, FACP, FACC, AGAF
Professor of Medicine, Experimental Diagnostic Imaging and Biomedical Engineering
Director, Endoscopic Research and Development
University of Texas MD Anderson Cancer Center
Houston, TX, USA

Brenna Casey Bounds MD, FASGE
Director of Endoscopic Training
Massachusetts General Hospital
Harvard Medical School
Boston, MA, USA

William R. Brugge MD
Director, Gastrointestinal Endoscopy
Massachusetts General Hospital
Professor of Medicine
Harvard Medical School
Boston, MA, USA

Jonathan M. Buscaglia MD
Director of Advanced Endoscopy
Assistant Professor of Medicine
Stony Brook University Medical Center
State University of New York
Stony Brook, NY, USA

Marc F. Catalano MD
Clinical Associate Professor of Medicine
Medical College of Wisconsin
Pancreaticobiliary Services
St. Luke’s Medical Center
Milwaukee, WI, USA

Indraneel Chakrabarty MD, MA
Clinical Associate of Medicine
Tufts University School of Medicine
Division of Gastroenterology
Lahey Clinic Medical Center
Burlington, MA, USA

Kenneth J. Chang MD
Professor of Clinical Medicine
Division Chief, Gastroenterology
University of California, Irvine
Irvine, CA, USA

Suresh T. Chari MD
Professor of Medicine
Division of Gastroenterology
Mayo Clinic
Rochester, MN, USA

Silvio Wanderley de Melo Jr. MD
Assistant Professor
Division of Gastroenterology and Hepatology
University of South Alabama
Mobile, AL, USA

John C. Deutsch MD
Essentia Health Care Systems
Duluth, MN, USA

John DeWitt MD, FACP, FACC, FASGE
Associate Professor of Medicine
Co-director, Endoscopic Ultrasound Clinical Program
Division of Gastroenterology and Hepatology
Indiana University Medical Center
Indianapolis, IN, USA

Vinay Dhir MD, DNB
Director Clinical Research and Chief of Endosonography
Institute of Advanced Endoscopy
Mumbai, India

Christoph F. Dietrich MD
Professor, Second Department of Internal Medicine
Caritas-Krankenhaus
Bad Mergentheim, Germany

Christopher J. DiMaio MD
Associate Director, Advanced Endoscopy Fellowship
Gastroenterology and Nutrition Service
Memorial Sloan-Kettering Cancer Center
New York, NY, USA

Mohamad A. Eloubeidi MD, MHS, FASGE, FACP, FACC, AGAF
Professor of Medicine
American University of Beirut School of Medicine
Beirut, Lebanon

Richard A. Erickson MD, FACP, FACC, AGAF
Director, Division of Gastroenterology
Scott and White Clinic and Hospital
Professor of Medicine
Texas A&M Health Science Center
Temple, TX, USA
Contributors

Douglas O. Faigel MD, FACP, FASGE, AGAF
Professor of Medicine
Division of Gastroenterology and Hepatology
Mayo Clinic College of Medicine
Scottsdale, AZ, USA

Syed M. Abbas Fehmi MD, MSC
Clinical Assistant Professor of Medicine
Division of Gastroenterology
Department of Medicine
University of California, San Diego
La Jolla, CA, USA

David G. Forcione MD
Associate Director of Interventional Endoscopy
Massachusetts General Hospital
Harvard Medical School
Boston, MA, USA

Carlos K. Furuya Jr. MD, MSC
Assistant Professor of Medicine
University of São Paulo School of Medicine
São Paulo, Brazil

Adam J. Goodman MD
Assistant Professor of Medicine
Division of Gastroenterology and Hepatology
State University of New York Downstate Medical Center
Brooklyn, NY, USA

Frank G. Gress MD, FACP, FASGE
Professor of Medicine
Chief, Division of Gastroenterology and Hepatology
State University of New York Downstate Medical Center
Brooklyn, NY, USA

Nalini M. Guda MD, FASGE
Clinical Associate Professor of Medicine
University of Wisconsin, School of Medicine and Public Health
Pancreatobiliary Services
St. Luke's Medical Center
Milwaukee, WI, USA

Kapil Gupta MD, MPH
Associate Director, Pancreatic and Biliary Diseases Intervventional Endoscopy
Division of Gastroenterology
Cedars-Sinai Medical Center
Los Angeles, CA, USA

Michael D. Harris MD
Division of Gastroenterology and Hepatology
Department of Medicine
State University of New York at Stony Brook
Stony Brook University Medical Center
Stony Brook, NY, USA

Sammy Ho MD
Assistant Professor of Medicine
Director of Pancreaticobiliary Services and Endoscopic Ultrasound
Division of Gastroenterology
Montefiore Medical Center/AECOM
Bronx, NY, USA

Joo Ha Hwang MD, PhD
Associate Professor of Medicine
Division of Gastroenterology
Department of Medicine
University of Washington
Seattle, WA, USA

Ann Marie Joyce MD
Assistant Professor of Medicine
Tufts University School of Medicine
Director of Endoscopy
Lahey Clinic Medical Center
Burlington, MA, USA

Michel Kahaleh MD, FASGE
Associate Professor of Medicine
Director Pancreatico-biliary Services
Division of Gastroenterology and Hepatology
University of Virginia Health System
Charlottesville, VA, USA

Sandeep Lakhtakia MD, MNAMS, DM
Consultant
Asian Institute of Gastroenterology
Hyderabad, India

Thuy Anh Le MD
Gastroenterology Fellow
Division of Gastroenterology
University of California, San Diego
La Jolla, CA, USA

Michael J. Levy MD
Consultant
Division of Gastroenterology and Hepatology
Mayo Clinic
Rochester, MN, USA

Jennifer Maranki MD
Clinical Instructor
Division of Gastroenterology and Hepatology
University of Virginia Health System
Charlottesville, VA, USA

Ravinder K. Mittal MD
Professor of Medicine
Division of Gastroenterology
University of California, San Diego
La Jolla, CA, USA

V. Raman Muthusamy MD, FASGE, AGAF
Director, Gastroenterology Fellowship Program
Health Sciences Associate Clinical Professor of Medicine
Division of Gastroenterology
Department of Medicine
University of California, Irvine
Irvine, CA, USA

Satish Nagula MD
Director of Endoscopy
Assistant Professor of Medicine
Division of Gastroenterology and Hepatology
State University of New York Stony Brook School of Medicine
Stony Brook, NY, USA

David J. Owens MD
Clinical Instructor
Division of Gastroenterology
University of California, San Diego
La Jolla, CA, USA

M. Babitha Reddy DO, MPH
Gastroenterology Fellow
Lenox Hill Hospital
New York, NY, USA

David H. Robbins MD, MSC
Associate Director
Center for Advanced Therapeutic Endoscopy
Lenox Hill Hospital
New York, NY, USA

Sarah A. Rodriguez MD
Assistant Professor of Medicine
Oregon Health and Science University
Portland, OR, USA

Lucio G. B. Rossini MD
Assistant Professor
Santa Casa of São Paulo School of Medicine
Coordinator, Brazilian–French Center of EUS Research
São Paulo, Brazil

Thomas J. Savides MD
Professor of Clinical Medicine
Division of Gastroenterology
University of California, San Diego
La Jolla, CA, USA

James T. Sing Jr. DO, FACP, AGAF
Assistant Professor of Medicine
Texas A&M University Health Science Center
Director, Endoscopy
Department of Medicine
Scott and White Clinic and Hospital
Texas A&M University Health Science Center
Temple, TX, USA
Contributors

Raymond S. Tang MD
Clinical Instructor
Division of Gastroenterology
University of California, San Diego
La Jolla, CA, USA

Shyam Varadarajulu MD
Director of Endoscopy
University of Alabama at Birmingham Medical Center
Birmingham, AL, USA

Michael B. Wallace MD, MPH
Professor of Medicine
Division of Gastroenterology and Hepatology
Mayo Clinic College of Medicine
Jacksonville, FL, USA

Maurits J. Wiersema MD
Lutheran Medical Group
Fort Wayne, IN, USA

James L. Wise MD
Essentia Health Care Systems
Duluth, MN, USA

Richard C. K. Wong MD, FASGE, FACC, AGAF, FACP
Professor of Medicine
Case Western Reserve University; Medical Director, Digestive Health Institute Endoscopy Unit
University Hospitals Case Medical Center
Cleveland, OH, USA

Sam Yoselevitz MD
Clinical Associate of Medicine
Tufts University School of Medicine Division of Gastroenterology
Lahey Clinic Medical Center
Burlington, MA, USA
Learning to perform and interpret endoscopic ultrasound (EUS) requires both didactic learning and repetitive exposure to images. We presented detailed aspects of the didactic part of learning in the Gress and Savides textbook *Endoscopic Ultrasonography*. The purpose of this atlas is to allow aspiring endosonographers to visualize numerous examples of images and videos as they improve their pattern recognition of pathologic conditions. Additionally, expert authors have been asked to write a brief, less than 1000 words narrative without references, about the important concepts related to their topics.

This atlas will be of interest not only to those learning EUS, but also to those who already perform EUS and want to quickly update their daily use of EUS in terms of diagnosis and therapy. Additionally, the images and videos are in a form which can be easily downloaded from the accompanying DVD in order to give presentations to others.

We are lucky to have added two expert teachers of endosonography, Brenna Bounds and John Deutsch. They bring expertise in EUS video training to the project, as well as contributing significantly from their collections. Without them, this project would not have been possible.

Our contributors are either the “first-generation” pioneers of endosonography or “second-generation” protégés of those pioneers. Their collective experience in applying endoscopic ultrasonography in the management of gastrointestinal diseases is unsurpassed. A tremendous amount of effort on the part of each individual author has led to this new atlas. We are deeply grateful to them for their outstanding collaboration.

Frank G. Gress
Thomas J. Savides
1 Normal EUS Anatomy
Normal Human Anatomy

John C. Deutsch
Essentia Health Care Systems, Duluth, MN, USA

Introduction

The Visible Human Project at the University of Colorado has generated large volumes of human anatomy data. The original information is captured by slowly abrading away frozen human cadavers in a transaxial manner and capturing the anatomy by digital imaging. The digital data is compiled and then over the years is manipulated by scientists at the University’s Center for Human Simulation to allow access to identified cross sections in any plane as well as to models which can be lifted from the data set. Details regarding the Visible Human Project and its applications to gastroenterology and endosonography have been previously described.

This atlas is fortunate to be able to use the interactive anatomy resources developed by Vic Spitzer, Karl Reinig, David Rubenstein, and others to create movies that help explain what takes place during endoscopic ultrasound (EUS) evaluations. Since EUS is a “real-time” examination, it seems reasonable to present this section primarily as “real-time” videos. The videos can be viewed over and over, allowing endosonographers to look not only at the highlighted structures, but also at structures they might visualize during EUS that are not specifically identified on the selected video.

This chapter uses the terms “radial array orientation” to describe planar anatomy which would be found perpendicular to a line going through the digestive tract (as would be generated by a radial array echoendoscope, Figure 1.1) and “linear array orientation” for planar anatomy generated parallel to a line going through the digestive tract (as would be generated by a linear array echoendoscope, Figure 1.2).

Normal EUS anatomy from the esophagus

Radial array orientation (Video 1.1)
Video 1.1 starts with Visible Human Models of the left atrium (purple), trachea and bronchi (light blue), aorta and pulmonary arteries (red), vena cava (dark blue), and the esophagus (brown). A plane is shown passing through the esophagus. This plane contains the transaxial cross-sectional anatomy images which then follow, starting in the oropharynx and going caudally. The upper esophageal sphincter (UES) is identified. As the images proceed distally, the trachea and esophagus can be followed to a point where the brachiocephalic left carotid and left subclavian arteries are evident just above the aortic arch. Below the aortic arch is the aortopulmonary window. The azygous arch can be seen exiting the superior vena cava (SVC). This occurs just above the tracheal bifurcation. The esophagus, labeled as “E” is surrounded by the descending aorta, the vertebral, and the trachea. The thoracic duct (not labeled) is visible between the aorta and vertebrae, inferior to the esophagus. Going distally, the pulmonary artery becomes prominent. The region between the right mainstem bronchus (RMB) and left mainstem bronchus (LMB) is the subcarinal space. The video progresses to a level where the left atrium surrounds the superior aspect of the esophagus and then the video ends as the esophagus passes the gastroesophageal junction.

An image plane cross-section of taken from a radial array orientation at the level of the subcarinal space is shown (Figure 1.3).

Linear array orientation (Video 1.2)
Video 1.2 starts with the same models as above (The left atrium [purple], trachea and bronchi [light blue], aorta and
Normal EUS anatomy from the stomach

Radial array orientation (Video 1.3)
Endoscopic ultrasound of the stomach differs from EUS at other sites since the stomach does not constrain the endoscope tightly. It is important to follow anatomical structures (such as in a station approach) to avoid getting lost.
The video shows models of the stomach, esophagus, duodenum, gallbladder, pancreas (brown), the aorta, splenic artery, hepatic artery and left gastric artery (red), adrenal glands (pink), and splenic, superior mesenteric veins (dark blue) as viewed from behind. A plane is passed that is similar to the image plane generated during radial array EUS. The resultant cross-sectional anatomy starts at the level of the gastroesophageal junction, with the aorta and inferior vena cava (IVC) labeled. The aorta (which is collapsed) is followed, which brings the pancreas and left adrenal gland into view. The first artery that comes off the aorta in the abdomen is the celiac artery. There is a trifurcation into the splenic, hepatic, and left gastric arteries (LGA), although the LGA is generally smaller and difficult to see. It is shown in the video at the “x” just before the bifurcation into the celiac and hepatic arteries as identified.

The superior mesenteric artery (SMA) comes off the aorta just distal to the celiac artery. Various endoscope maneuvers can be used to bring the portal confluence into view, and then the splenic vein can be used as a guide to visualize the pancreas body, left adrenal, kidney, and spleen. The diaphragm can be easily imaged between the kidney and the vertebral.

Linear array orientation (Video 1.4)

The linear array exam also follows the aorta to the stomach, but, as shown Video 1.4, the image plane across the pancreas is generally obtained through a sweeping motion. The first major gastric landmark is the origin of the celiac artery and SMA from the aorta (Figure 1.4). The superior mesenteric vein (SMV), portal vein, and splenic vein can be used as guides to go back and forth across the pancreas and in the process, the left adrenal, kidney, and spleen can be seen. The splenic artery runs roughly parallel to the splenic vein, but is generally tortuous.

Normal EUS anatomy from the duodenum

Radial array orientation (Video 1.5)

The radial array EUS examination through the duodenum follows a constrained path, but the endoscope can be rotated to put various structures into the inferior aspect of the image plane, as shown in the models of the duodenum, pancreas (brown), portal and superior mesenteric veins (blue), aorta (red), and SMA (silver). There are many structures of interest in a rather small area, and most of the images obtained are from the posterior view, with the liver to the right and the pancreas to the left of the image screen. After leaving the pylorus, the pancreas can be oriented with the tail pointed either to the left or inferiorly, and the splenic vein runs in the same direction as the pancreas. Going through the duodenal bulb, the gastroduodenal artery (GDA) often appears. Without Doppler, the GDA can be confused with the common bile duct (CBD) since these structures are nearly parallel in orientation and are very close to each other. As the apex of the duodenal bulb is reached, the image plane captures a longitudinal view of the CBD and the portal vein. As the descending duodenum is reached, the bile duct is seen in cross-section and the inferior vena cava (IVC) comes into view. As the third part of the duodenum is reached, the image plane rotates in such a way as to give a longitudinal cut through the IVC and then passes underneath the junction of the SMA with the aorta. Branches of the SMV can be found and the renal vein is visible in the “armpit” formed at the insertion of the SMA into the aorta. A special area is then highlighted in Video 1.5. Models show how the gastroduodenal artery and the hepatic artery (in red) relate to the CBD (in orange).

Figure 1.5 shows a model with an image plane and Figure 1.6 shows the resultant planar anatomy, which forms the stack sign – a phenomenon in which the portal vein, CBD, and main pancreatic duct are captured in the same field.

Linear array orientation (Video 1.6)

The linear array exam of the duodenum is an excellent way to see the CBD and pancreatic head. The anatomy is difficult to understand since the endoscope image is tipped into the C-sweep of the duodenum, and then the image plane is swept in various angles, resulting in a cross-sectioning of the CBD and pancreatic duct (PD). The image planes employed can be appreciated from observing the models in the video. The cross-sections obtained can be positioned to first give a
PART 1 Normal EUS Anatomy

Normal EUS anatomy from the rectum

Radial array orientation, male (Video 1.7)

Video 1.7 shows models of various male pelvic structures, starting with the rectum and sigmoid colon, the aorta, and the iliac arteries with internal and external branches. The SMA is included to show the anterior direction of the models. The prostate, bladder, coccyx, and sacrum are added sequentially. A second set of models is then shown which contains the rectum, sigmoid colon prostate, bladder, coccyx,
sacrum external iliac arteries (red), veins (blue), as well as three-dimensional models of the internal and external anal sphincters. The sphincters and sigmoid colon are then removed.

Planar anatomy in the radial array orientation from the male rectum is then shown, starting distally and moving proximally. The anal sphincters are labeled, followed by the prostate, urethra, levator ani, and coccyx. The sacrum and seminal vesicles are then shown, followed by the right internal iliac artery.

Radial array orientation, female (Video 1.8)

Video 1.8 starts distally at the end of the anal canal. The internal and external sphincters are shown, and residual stool is present in the rectum. Moving proximally, the vagina and urethra are shown, followed by the cervix and bladder.

Linear array orientation, male (Video 1.9)

Video 1.9 starts with a sagittal plane through the pelvis with the body facing the left. The prostate, rectum anal canal, and bladder are identified. The plane is rotated, and the seminal vesicles and internal anal sphincter are labeled. The coccyx and sacrum are apparent at the start and end of the video but are unlabeled.

Linear array orientation, female (Video 1.10)

Video 1.10 starts with a sagittal plane through the pelvis with the body facing the left and slightly face down. The anal canal, rectum, uterus, and bladder are identified. Stool is present in the rectal vault. The plane is rotated, and towards the end of the video the internal anal sphincter (IS) and external anal sphincter (ES) are identified.

Vascular videos

Arterial (Video 1.11)

Video 1.11 shows models of some of the main arteries that are visualized during endosonography. A close-up view shows the celiac artery with its branches (hepatic, splenic, and left gastric arteries). The gastroduodenal and pancreaticoduodenal arteries are shown coming off the hepatic artery. The internal and external iliac arteries are then identified, followed by identification of the arteries associated with the aortic arch (left subclavian, left carotid, brachiocephalic) and the branches of the brachiocephalic (right subclavian and right carotid). Various organs are then placed in the model starting with the esophagus, then pancreas, stomach, and duodenum.

Venous (Video 1.12)

Some of the major veins visualized during endosonography are shown. At first, the vena cava and right atrium are identified, after which, the renal veins and azygos veins are added. The portal system with the portal vein, SMV, splenic vein, and inferior mesenteric vein (not labeled) are placed in blue. The systemic veins are then colored and removed. The pancreas is placed on the portal vein and its branches, showing how the head runs parallel to the SMV and the tail runs parallel to the splenic vein.

Endobronchial ultrasound anatomy (Video 1.13)

Extrapulmonary anatomy is similar to extraesophageal anatomy and many of the structures seen in the extratracheal spaces are the same as what is seen in the extratracheal spaces. The endoluminal views of the trachea are oriented so that the membranous trachea is inferior and is splayed wider than the cartilaginous trachea at the level of the carina, putting the right mainstem bronchus (RMB) to the right and the left mainstem bronchus (LMB) to the left (Figure 1.9). As one goes right the bronchus immediately branches superiorly towards the right upper lobe (RUL), and continues straight as bronchus intermedius (BI) (Figure 1.10), which then branches towards the right middle lobe (RML) and right lower lobe (RLL) of the lung (Figure 1.11).

Going left from the carina, one goes down the relatively long left mainstem bronchus until it branches towards the left upper lobe (LUL) and left lower lobe (LLL) of the lung (Figure 1.12). An overview of the bronchial tree is shown in Figure 1.13.

Video 1.13 starts with the cervical trachea. All images are in a linear array orientation as endobronchial ultrasound (EBUS) is exclusively linear. The esophagus is inferior and the brachiocephalic artery and vein are superior. The video begins with rotation of the image plane. The superior part of the plane moves left and the inferior part moves right. This moves the esophagus out of view and brings the left
PART 1 Normal EUS Anatomy

Figure 1.9 Endobronchial view of the carina, showing the right (RMB) and left (LMB) mainstem bronchi.

Figure 1.10 Endobronchial view of the first branch of the right mainstem bronchus towards the right upper lobe (RUL) and the bronchus intermedius (BI).

Figure 1.11 Endobronchial view of the bifurcation of the bronchus intermedius towards the right middle lobe (RML) and the right lower lobe (RLL).

Figure 1.12 Endobronchial view of bifurcation of the left mainstem broncus towards the left upper lobe (LUL) and left lower lobe (LLL).
subclavian artery and left carotid artery into the inferior part of the image. Eventually, the esophagus is seen in the superior part of the image and, with continued motion, the esophagus again appears inferior to the trachea. At this point, the image plane moves caudally to the carina. The right pulmonary artery, brachiocephalic artery (BA), and left brachiocephalic vein (LBV) are labeled. The plane is again rotated to splay the right (RMB) and left (LMB) mainstem bronchi apart. The plane is then moved to better visualize the right mainstem bronchus, showing the branch to the right upper lobe (RUL), the azygos arch (AzArch), the bronchus intermedius (BI). This same plane shows the relation of the aortic arch (AoArch) and left pulmonary artery to the left mainstem bronchus (LMB). As the plane goes down the right mainstem bronchus/bronchus intermedius (RMB) towards its next bifurcation, the azygos arch (AzAr), right pulmonary artery (RPA), and right pulmonary vein (RPV) are shown.

The plane is brought back to the carina to visualize the left mainstem bronchus (LMB), and the azygous arch (AzAr), aortic arch (AoAr), left pulmonary artery (LPA), and vein (LPV) are identified. The branching to the left upper lobe (LUL) and left lower lobe (LLL) are shown, and the aorta (Ao) and left pulmonary artery are labeled.

Chapter video clips

- **Video 1.1** Esophageal-related models and cross-sectional anatomy: radial orientation.
- **Video 1.2** Esophageal-related models and cross-sectional anatomy: linear orientation.
- **Video 1.3** Gastric-related models and cross-sectional anatomy: radial orientation.
- **Video 1.4** Gastric-related models and cross-sectional anatomy: linear orientation.
- **Video 1.5** Duodenal-related models and cross-sectional anatomy: radial orientation.
- **Video 1.6** Duodenal-related models and cross-sectional anatomy: linear orientation.
- **Video 1.7** Male rectum-related models and cross-sectional anatomy: radial orientation.
- **Video 1.8** Male rectum-related cross-sectional anatomy: linear orientation.
- **Video 1.9** Female rectum-related cross-sectional anatomy: radial orientation.
- **Video 1.10** Female rectum-related cross-sectional anatomy: linear orientation.
- **Video 1.11** Arterial models.
- **Video 1.12** Venous models.
- **Video 1.13** Bronchial anatomy in a linear orientation.
Layers of the esophageal wall

Staging the depth of involvement of tumors and the layer of origin of subepithelial masses is an important component of competency in endoscopic ultrasonography (EUS). An intimate knowledge of the normal layers of the esophageal wall is critical for this to be done accurately. The wall of the esophagus has four readily appreciable layers by EUS using standard operating frequencies (5–12 MHz). The layers are seen in concentric, alternating rings of hyper and hypoechoic structures emanating out distally from the tip of the endoscope. Starting with the layers closest to the scope tip, they are as follows:

- Interface echo between the superficial mucosa and water (hyperechoic).
- Deep mucosa (hypoechoic).
- Submucosa plus the acoustic interface between the submucosa and muscularis propria (hyperechoic).
- Muscularis propria minus the acoustic interface between the submucosa and muscularis propria (hypoechoic).

If a higher resolution frequency probe is used, greater number of layers could be visualized as detailed in Chapter 4. The esophagus lacks an obvious fifth layer as there is no serosa.

In our opinion, visualization and discernment of the layers of the esophageal wall is usually best accomplished using radial compared to linear instruments.

Figure 2.1 (a and b) shows the esophageal walls using radial and linear instruments. To help separate the layers, these images include a muscularis mucosae leiomyoma that was subsequently resected. Images show subepithelial hypoechoic lesion in echolayer II as well as in the other defined layers of the esophageal wall.

Normal radial extraesophageal anatomy

Standard examination of the esophagus and mediastinum begins with advancing the radial instrument to the gastroesophageal (GE) junction at or near the squamocolumnar junction. At this level the aorta is seen as an anechoic circular structure in the 5 o’clock position. The descending aorta is kept in this position as all radial mediastinal imaging will then correlate quite nicely with cross-sectional imaging. Other structures visible at the level of the GE junction are the inferior vena cava (IVC) seen between 7 and 9 o’clock and the liver between 6 o’clock and 12 o’clock surrounding the IVC (Figure 2.2).

As the scope is withdrawn, the vena cava moves clockwise and superiorly into the right atrium. The spine soon comes into view adjacent to the descending aorta at 6 o’clock.

Further withdrawal upward to usually around 30–35 cm reveals the anechoic chamber of the left atrium in the 12 o’clock position (Figure 2.3). With this field, relatively slight movement of the scope will reveal the mitral valve (Figure 2.4), aortic root, and the aortic valve (Figure 2.5). In the inferior portion of the field the descending aorta, the spine, the thoracic duct, and a relatively prominent azygos vein can be seen.

As the scope is withdrawn the bronchi come together at the carina. At or just proximal to this level the azygos arch (Figure 2.6) can be identified traveling superiorly and laterally into the superior vena cava. This is also the area of the aortopulmonary (AP) window at approximately 2 o’clock.

The endoscope can be pushed down from here or pulled up slightly from the position of the left atrium to reach the subcarinal space. Of interest in the subcarinal space are the right and left main-stem bronchi seen emanating out as ribbed-