According to the WHO, 170 million people, or 3% of the world’s population, are infected with Hepatitis C and at risk of developing liver cirrhosis and/or liver cancer. Three to four million people each year are newly diagnosed carriers of the virus.

Advanced Therapy for Hepatitis C provides you with expert guidance from the world’s leading hepatologists on the very latest treatment options for patients with the HCV virus. Focusing mainly on the efficacy and clinical use of antiviral therapies, key topics include:

- Treatment of recurrent hepatitis C following liver transplantation
- Antivirals in cirrhosis and portal hypertension
- HIV and hepatitis C co-infection
- Cytopenias: how they limit therapy and potential correction
- The problem of insulin resistance and its effect on therapy
- Antivirals in acute hepatitis C

In addition, it fully covers the foundations for understanding antiviral therapies in HCV, such as the complex pharmacology and mechanisms of antiviral drugs. Finally, a chapter on New Horizons: Interleukin 28 and direct-acting antiviral therapy for HCV, offers you a glimpse into the future possibilities for HCV therapy.

Edited by a team of outstanding international reputation, Advanced Therapy for Hepatitis C is an essential tool for all hepatologists and gastroenterologists involved in the management of patients with hepatitis C.
Advanced Therapy for Hepatitis C
Advanced Therapy for Hepatitis C

EDITED BY

Geoffrey W. McCaughan MBBS, PhD, FRACP
Head of Liver Immunobiology Program
Centenary Research Institute
A.W. Morrow Professor of Medicine
Director A.W. Morrow GE/Liver Center
Director Australian Liver Transplant Unit
Royal Prince Alfred Hospital
University of Sydney
Sydney, NSW, Australia

John G. McHutchison, MD
Senior Vice President, Liver Disease Therapeutics
Gilead Sciences, Inc.
Foster City, CA, USA

Jean-Michel Pawlotsky, MD, PhD
Director, French National Reference Center for Viral Hepatitis B, C and delta
Head, Department of Virology, Bacteriology, and Hygiene
INSERM U955
Hôpital Henri Mondor
Université Paris Est
Créteil, France
Contents

Contributors, vii
Preface, xi

Section I Foundations for Understanding Antiviral Therapies in HCV

1 HCV Replication, 3
 Michael R. Beard

2 Hepatitis C Virus Genotypes, 12
 Scott A. Read and Mark W. Douglas

3 Immune Responses to HCV: Implications for Therapy, 17
 David G. Bowen

4 Mechanisms of Action of Antiviral Drugs: The Interferons, 25
 Edmund Tse and Michael R. Beard

5 Pharmacology and Mechanisms of Action of Antiviral Drugs: Ribavirin Analogs, 36
 Fred Poordad and Grace M. Chee

6 Pharmacology and Mechanisms of Action of Antiviral Drugs: Polymerase Inhibitors, 43
 Lotte Coelmont, Leen Delang, Mathy Froeyen, Piet Herdewijn and Johan Neyts

7 Pharmacology and Mechanisms of Action of Antiviral Drugs: Protease Inhibitors, 53
 Laurent Chatel-Chaix, Martin Baril and Daniel Lamarre

8 Measuring Antiviral Responses, 60
 Jean-Michel Pawlotsky and Stéphane Chevaliez

Section II Efficacy and Clinical Use of Antiviral Therapies

9 Genotype 1: Standard Treatment, 67
 Rebekah G. Gross and Ira M. Jacobson

10 Individually Tailored Treatment Strategies in Treatment-naïve Chronic Hepatitis C Genotype 1 Patients, 74
 Johannes Wiegand and Thomas Berg
Contents

11 Genotype 1 Relapsers and Non-responders, 84
Salvatore Petta and Antonio Craxi

12 Standard Therapy for Genotypes 2/3, 90
Kenneth Yan and Amany Zekry

13 Altered Dosage or Durations of Current Antiviral Therapy for HCV
Genotypes 2 and 3, 97
Alessandra Mangia, Leonardo Mottola and Angelo Andriulli

14 Genotypes 2 and 3 Relapse and Non-response, 104
Stella Martinez, Jose Maria Sanchez-Tapias and Xavier Forns

15 Hepatitis C Genotype 4 Therapy: Progress and Challenges, 113
Sanaa M. Kamal

16 Antivirals in Acute Hepatitis C, 127
Heiner Wedemeyer

17 Antivirals in Cirrhosis and Portal Hypertension, 132
Diarmuid S. Manning and Nezam H. Afadh

18 Treatment of Recurrent Hepatitis C Following Liver Transplantation, 140
Ed Gane

19 Antiviral Treatment in Chronic Hepatitis C Virus Infection with Extrahepatic
Manifestations, 150
Benjamin Terrier and Patrice Cacoub

20 Cytopenias: How they Limit Therapy and Potential Correction, 160
Mitchell L. Shiffman

21 The Problem of Insulin Resistance and its Effect on Therapy, 169
Venessa Pattullo and Jacob George

22 HIV and Hepatitis C Co-infection, 177
Gail V. Matthews and Gregory J. Dore

23 HCV and Racial Differences, 185
Andrew J. Muir

24 HCV and the Pediatric Population, 190
Kathleen B. Schwarz

25 New Horizons: IL28, Direct-acting Antiviral Therapy for HCV, 196
Alexander J. Thompson, John G. McHutchison and Geoffrey W. McCaughan

Index, 215
Contributors

Nezam H. Afshal MD
Beth Israel Deaconess Medical Center
Boston, MA, USA

Angelo Andriulli MD
Gastroenterology Department
IRRCS Casa Sollievo della Sofferenza
San Giovanni Rotondo, Italy

Martin Baril PhD
Research Associate
Institut de Recherche en Immunologie et Cancérologie (IRIC)
Montréal, Québec, Canada

Michael R. Beard PhD
Head, Hepatitis C Virus Research Laboratory
School of Molecular and Biomedical Science
The University of Adelaide & Center for Cancer Biology, SA Pathology
Adelaide, SA, Australia

Thomas Berg MD
Professor
Department of Gastroenterology and Rheumatology
Division of Hepatology
University of Leipzig
Leipzig, Germany

David G. Bowen MBBS, PhD
Sydney Medical School, University of Sydney
Royal Prince Alfred Hospital
Sydney, NSW, Australia

Patrice Cacoub MD, PhD
Professor
Department of Internal Medicine
Groupe Hospitalier Pitié-Salpêtrière
Université Pierre et Marie Curie
Paris, France

Laurent Chatel-Chaix PhD
Post-doctoral Fellow
Institut de Recherche en Immunologie et Cancérologie (IRIC)
Montréal, Québec, Canada

Grace M. Chee PharmD
Hepatology Department
Cedars-Sinai Medical Center
Los Angeles, CA, USA

Stéphane Chevaliez PharmD, PhD
National Reference Center for Viral Hepatitis B, C and delta
Department of Virology & INSERM U955
Hôpital Henri Mondor
Université Paris-Est
Créteil, France

Lotte Coelmont PhD
Laboratory of Virology and Chemotherapy
Rega Institute for Medical Research
University of Leuven
Leuven, Belgium

Antonio Craxì, MD
Full Professor of Gastroenterology
Sezione di Gastroenterologia, Di.Bi.M.I.S. Policlinico Paolo Giaccone
University of Palermo
Palermo, Italy

Leen Delang PhD
Laboratory of Virology and Chemotherapy
Rega Institute for Medical Research
University of Leuven
Leuven, Belgium
Contributors

Gregory J. Dore BSc, MBBS, MPH, PhD, FRACP
Professor and Head, Viral Hepatitis Clinical Research Program
National Centre in HIV Epidemiology and Clinical Research
The University of New South Wales;
Infectious Diseases Physician
St Vincent’s Hospital
Sydney, NSW, Australia

Mark W. Douglas BSc (Med)(Hons), MBBS (Hons), PhD, FRACP
Senior Lecturer, Hepatology and Virology
Storr Liver Unit, Westmead Millennium Institute
Sydney Emerging Infections and Biosecurity Institute
University of Sydney
Sydney, NSW, Australia

Xavier Forns MD, PhD
Liver Senior Specialist
Liver Unit, Hospital Clinic
IDIBAPS and Ciberehd (Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas)
Barcelona, Spain

Mathy Froeyen PhD
Assistant Professor of Pharmacy
Laboratory of Medicinal Chemistry
Rega Institute for Medical Research
University of Leuven
Leuven, Belgium

Ed Gane MB ChB, MD, FRACP
Associate Professor and Hepatologist
New Zealand Liver Transplant Unit
Auckland City Hospital
Auckland, New Zealand

Jacob George MBBS (Hons), FRACP, PhD
Director of Gastroenterology and Hepatic Services
Storr Liver Unit, Westmead Millenium Institute
University of Sydney
Sydney, NSW, Australia

Rebekah G. Gross MD
Assistant Professor of Medicine
Division of Gastroenterology and Hepatology
Weill Cornell Medical College
New York, NY, USA

Piet Herdewijn PhD
Professor of Pharmacy
Laboratory of Medicinal Chemistry
Rega Institute for Medical Research
University of Leuven
Leuven, Belgium

Ira M. Jacobson MD
Vincent Astor Professor of Medicine
Chief, Division of Gastroenterology and Hepatology
Division of Gastroenterology and Hepatology
Weill Cornell Medical College
New York, NY, USA

Sanaa M. Kamal MD, PhD
Department of Gastroenterology and Liver Disease
Ain Shams Faculty of Medicine
Cairo, Egypt;
Department of Gastroenterology
Tufts School of Medicine
Boston, MA, USA

Daniel Lamarre PhD
Full Professor, Department of Medicine
Faculty of Medicine
Institute for Research in Immunology and Cancer (IRIC)
Université de Montréal
Montréal, Québec, Canada

Alessandra Mangia MD
Liver Unit
IRRCS Casa Sollievo della Sofferenza
San Giovanni Rotondo, Italy

Diarmuid S. Manning MB, BCh
Beth Israel Deaconess Medical Center
Harvard Medical School
Boston, MA, USA

Stella Martinez MD
Liver Unit, Hospital Clinic
IDIBAPS and Ciberehd (Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas)
Barcelona, Spain

Gail V. Matthews MBChB, MRCP (UK), FRACP, PhD
Clinical Academic
National Centre in HIV Epidemiology and Clinical Research
University of New South Wales
Sydney, NSW, Australia
Contributors

Geoffrey W. McCaughan MBBS, PhD, FRACP
Head of Liver Immunobiology Program
Centenary Research Institute
A.W. Morrow Professor of Medicine
Director A.W. Morrow GE/Liver Center
Director Australian Liver Transplant Unit
Royal Prince Alfred Hospital
University of Sydney
Sydney, NSW, Australia

John G. McHutchison, MD
Senior Vice President, Liver Disease Therapeutics
Gilead Sciences, Inc.
Foster City, CA, USA

Leonardo Mottola PhD
Liver Unit
IRRCS Casa Sollievo della Sofferenza
San Giovanni Rotondo, Italy

Andrew J. Muir MD MHS
Director, Gastroenterology/Hepatology Research
Duke Clinical Research Institute
Duke University Medical Center
Durham, NC, USA

Johan Neyts PhD
Professor of Virology
Laboratory of Virology and Chemotherapy
Rega Institute for Medical Research
University of Leuven
Leuven, Belgium

Venessa Pattullo MBBS, FRACP
Storr Liver Unit, Westmead Millennium Institute
University of Sydney, Sydney, NSW, Australia;
Division of Gastroenterology
Toronto Western Hospital
University Health Network, University of Toronto
Toronto, Ontario, Canada

Jean-Michel Pawlotsky MD, PhD
Director, French National Reference Center for Viral Hepatitis B, C and delta
Head, Department of Virology, Bacteriology, and Hygiene
INSERM U955
Hôpital Henri Mondor
Université Paris Est
Créteil, France

Salvatore Petta MD, PhD
Sezione di Gastroenterologia, Di.Bi.M.I.S. Policlinico
Paolo Giaccone
University of Palermo
Palermo, Italy

Fred Poordad MD
Associate Professor of Medicine
David Geffen School of Medicine at UCLA;
Chief, Hepatology and Liver Transplantation
Cedars-Sinai Medical Center
Los Angeles, CA, USA

Scott A. Read MSc
Storr Liver Unit, Westmead Millennium Institute
University of Sydney
Sydney, NSW, Australia

Jose Maria Sánchez-Tapias MD, PhD
Senior Consultant
Liver Unit, Hospital Clinic
IDIBAPS and Ciberheh (Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas)
Barcelona, Spain

Kathleen B. Schwarz MD
Director, Pediatric Liver Center
Division of Pediatric Gastroenterology and Nutrition
Professor of Pediatrics
Johns Hopkins University School of Medicine
Baltimore, MD, USA

Mitchell L. Shiffman MD
Director
Liver Institute of Virginia
Bon Secours Virginia Health System
Richmond and Newport News, VA, USA

Benjamin Terrier MD
Department of Internal Medicine
Groupe Hospitalier Pitié-Salpêtrière
Université Paris 6 Pierre et Marie Curie
Paris, France

Alexander J. Thompson MD, PhD
St. Vincent's Hospital Melbourne, University of Melbourne, Melbourne, VIC, Australia;
Victorian Infectious Diseases Reference Laboratory (VIDRL), North Melbourne, VIC, Australia;
Department of Gastroenterology and Duke Clinical Research Institute
Duke University
Durham, NC, USA
Contributors

Edmund Tse MBBS, FRACP
School of Molecular and Biomedical Science
The University of Adelaide and the Center for Cancer Biology
SA Pathology
Adelaide, SA, Australia

Heiner Wedemeyer MD
Professor
Department of Gastroenterology, Hepatology and Endocrinology
Medizinische Hochschule Hannover
Hannover, Germany

Johannes Wiegand MD
Private Lecturer
Department of Gastroenterology and Rheumatology
Division of Hepatology
University of Leipzig
Leipzig, Germany

Kenneth Yan MBBS, Mmed (Clin Epi), FRACP
Conjoint Associate Lecturer
St George Clinical School
Faculty of Medicine
University of New South Wales
Sydney, NSW, Australia

Amany Zekry MBBS, PhD, FRACP
Department of Gastroenterology and Hepatology
Clinical School of Medicine
St George Hospital
Sydney, NSW, Australia
Preface

Hepatitis C virus results in chronic liver disease in over 170 million people worldwide. This book arrives at a watershed in the history of antiviral treatment of the hepatitis C virus. It is the beginning of the end of non-specific antiviral approaches via interferon-based therapies. From now on the field will be dominated by the arrival of HCV-specific direct antiviral agents. Initially these agents will still require interferon and ribavirin but already clinical trials are under way that do not include either of these agents.

This publication outlines the current standard of care up until this time and includes therapeutic approaches to wide patient groups. We believe that the structure of the book will remain relevant for future editions as the new therapies are gradually rolled out across these patient groups, as well as across an increasing number of countries.

G.W.M.
J.G.M.
J-M.P.
Foundations for Understanding Antiviral Therapies in HCV
HCV Replication

Michael R. Beard
School of Molecular and Biomedical Science, University of Adelaide, and Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia

Introduction

Hepatitis C virus (HCV) is classified in the Hepacivirus genus within the family Flaviviridae and is the leading cause of chronic hepatitis and liver disease related morbidity worldwide. With an estimated 170 million people infected worldwide and the ability of the virus to establish a chronic infection in approximately 70% of cases, it is not surprising that HCV represents a major cause of global suffering and morbidity and a burden to many public health systems. Chronic HCV infection is often associated with development of serious liver disease, including cirrhosis, liver failure, and hepatocellular carcinoma. Accordingly, a thorough understanding of the life cycle and molecular biology of HCV and its interaction with the host are essential in the development of treatment and vaccine strategies. Although these studies have been hampered by the lack of a small-animal model and, until recently, a lack of a tissue culture system that accurately reflects the life cycle of HCV, significant progress has been made in the understanding of HCV molecular biology and pathogenesis. In this chapter we discuss recent advances in models to study HCV replication and the HCV life cycle.

The HCV Genome

HCV possesses a 9.6 kb single-stranded, positive-sense RNA genome composed of a 5′ UTR (untranslated region), a long open-reading frame (ORF) encoding a polyprotein of approximately 3000 amino acids, and a 3′ UTR (Figure 1.1). The polyprotein can be divided into three segments based on the functional aspects of the proteins: the NH2 terminal region comprises the structural proteins (core, E1, and E2); a central region consists of two proteins (p7 and NS2) that are not involved in HCV replication or are structural components of the virus, but probably play a role in virion morphogenesis; and the COOH-terminal proteins (NS3, NS4A, NS4B, NS5A, and NS5B) that are required for HCV replication (Figure 1.1). A detailed description and function of the HCV proteins can be found in an excellent review from Moradpour and colleagues [1]. After release of the HCV genome into the cytoplasm the genome is exposed to the host cellular machinery for translation of the viral polyprotein. The 3′UTR is approximately 341 nucleotides long and contains a highly structured RNA element known as the internal ribosome entry site (IRES) that is recognized by the cellular 40S ribosomal subunit to initiate translation of the RNA genome in a cap-independent manner. The importance of the secondary and tertiary structure of the IRES domain for initiation of translation has been demonstrated by mutational analysis. However, the primary sequence, particularly in stem-loop IIId and IIIe, is also critical for efficient HCV IRES activity [2,3]. Recently, the structural nature of HCV IRES interactions with the 40S ribosomal subunit and the eIF3 complex has been revealed by cryo-electron microscopy [4,5]. Preceding the IRES at the extreme 5′ end are elements required for viral replication that overlap partially with the IRES region (domain II), leading to speculation that this region is involved in regulation of a viral translation to replication switch [6]. Consistent with this speculation is the recent observation that a short highly conserved RNA segment at the 5′ end of the HCV genome binds a liver-specific
4 Chapter 1

Figure 1.1 Genomic organization and polyprotein processing of the HCV genome. The HCV genome consists of a positive-stranded RNA genome that is flanked by 5′ and 3′ UTRs of highly ordered secondary structure. The polyprotein is cleaved by either host- or viral-encoded proteases (depicted by triangles) to liberate the mature structural and non-structural proteins.

Like the 5′ UTR, the 3′ UTR of the HCV genome contains a high degree of secondary structure. This region is 200–300 nucleotides in length and is comprised of three major elements involved in replication: (i) a variable region (30–50 nucleotides), which directly follows the NS5B stop codon; (ii) a polyuridine (U/C) tract (20–200 nucleotides); and (iii) a highly conserved region (98 nucleotides), known as the 3′ X region, which forms a three stem-loop structure [10–12]. Mutational analysis has revealed that the poly-U/C tract and the 3′ X region play a more important role than the variable region in the synthesis of negative-strand RNA [13].

Models to Study HCV Replication

HCV Replicons

The development of the subgenomic HCV replicon system, first reported in 1999, significantly enabled the study of HCV replication in cultured cells for the first time [14]. Replicons represent autonomously replicating HCV RNAs, and typically contain an in-frame insertion of a selectable antibiotic marker (e.g., neomycin phosphotransferase: G418) within the amino terminal HCV core sequence, followed downstream by a heterologous IRES from encephalomyocarditis virus (EMCV), a picornavirus, to drive internal translation of the downstream HCV open reading frame (NS2 to NS5B) (Figure 1.2). The minimal requirements for a viable HCV replicon are HCV-derived 5′ and 3′ termini and the non-structural proteins (NS3 to NS5B) that form the replication complex, however, replication-competent HCV replicons encoding the complete HCV polyprotein are viable [15,16]. Transfection of Huh-7 (hepatoma-derived) cells with synthetically derived transcripts followed by selection with G418 results in the establishment of cell lines that harbor autonomous
replication of the virus. HCV RNA isolated from cell lines under antibiotic selection often contains cell-culture adapted mutations that greatly enhance replication, although the molecular basis for this increased replication is unclear [15,17,18]. These adaptive mutations often map to the NS5A protein and may potentially influence phosphorylation, resulting in a hypophosphorylated state and increased replication. Adaptive mutations have also been mapped to NS3, NS4A, NS4B, and NS5B. Interestingly, these replication-adaptive cell-culture mutations have been shown to reduce \textit{in vivo} infectivity in chimpanzees, highlighting the adaptive nature of these viruses derived from cell culture [19]. HCV replicons are not restricted to Huh-7 cells, and other cell lines such as HeLa and cells of murine origin have also yielded selected clones of replicating HCV, highlighting that HCV replication is not restricted to liver-derived cells of human origin [20,21].

The antibiotic selection process not only selects for HCV genomes with high replication capacity but also clones of Huh-7 cells that are highly permissive for HCV infection. One such cell line, Huh-7.5, has been “cured” of HCV by treatment with low doses of interferon-\textalpha, is hyperpermissive for HCV replication [22], and is clearly enriched for factors that promote replication and/or defects in innate viral sensing pathways. For example, Huh-7.5 cells have a spontaneous knockout of the dsRNA cellular sensing protein RIG-1 and do not mount a robust antiviral response to viral infection that allows for HCV replication. This highlights the importance of innate immune sensing in HCV infection and is consistent with the ability of the HCV NS3/4A protein to cleave IPS-1, which is integral to the innate immune RIG-I pathway [23].

HCV replicons have been valuable tools for studying numerous aspects of the HCV life cycle and interaction with the host cell. However, their major limitation has been inability to produce infectious virus particles even when the complete complement of HCV proteins is expressed, for reasons that are not entirely clear [15,16,22]. The original replicon concept has undergone evolution and replicons are now available that contain various markers (e.g., GFP, luciferase) that allow quantitative assessment of HCV replication and have been useful in high-throughput screening of antiviral compounds.

Productive Viral Infection in Cell Culture

The recent identification in 2005 of a cloned HCV genome (genotype 2a), known as JFH-1, that is capable of initiating high-level replication in cell culture and production of infectious virus particles represents a major breakthrough in the pursuit of a cell-culture model for HCV [24,25]. In contrast to HCV replicon systems, transfection of Huh-7 cells with RNA synthesized \textit{in vitro} from the cloned JFH-1 cDNA genome and a related genotype 2a chimera, FL-J6/JFH replicate efficiently in Huh-7 cells without the need for cell-culture adaptive mutations. Moreover, virus particles produced by these cells are infectious in chimpanzees and can be serially passaged \textit{in vivo} [25] while the FL-J6/JFH virus can infect mice containing human liver grafts [24]. Interestingly, virus produced \textit{in vivo} has a lower buoyant density than virus produced in cell
culture, suggesting association with low-density lipids [26]. This system represents a major advance in the study of virus-host interactions and the virus life cycle, all in the context of replicating virus. Similarly, the highly adapted genotype 1a HCV isolate known as H77-S (derived from the H77 isolate) [27] is also capable of instigating HCV RNA replication and production of infectious virus particles [28]. This represents another breakthrough in the generation of tools to study the HCV life cycle, particularly because this genotype is more prevalent worldwide and is associated with more significant liver disease. Intragenotypic and intergenotypic chimeras of HCV that contain the non-structural protein-encoding regions of JFH-1 and the structural protein-encoding regions of other HCV genomes may help define regions of structural proteins that influence the efficiency of virus particle synthesis and secretion [29]. This relatively new cell-culture model system will be invaluable in the study of many aspects of virus-host interaction, including viral entry, and assembly and release, which were previously inaccessible to manipulation.

The HCV Virion and Entry

The relatively low levels of HCV in plasma samples have hampered visualization of viral particles; however, virus-like particles have been identified by electron microscopy, which has indicated that infectious HCV virions are roughly spherical particles of diameter 55–65 nm with fine projections of approximately 6 nm ([25] and references therein). The major protein constituents of the host-derived lipid bilayer envelope are the highly glycosylated HCV envelope glycoproteins E1 and E2 that surround the viral nucleocapsid, composed of many copies of the HCV core protein and the genomic HCV RNA (Figure 1.3). HCV from serum and plasma fractionates with a wide range of buoyant densities that can be attributed to association of the virus with lipoproteins, in particular apolipoprotein-B (Apo-B) and apolipoprotein-E (Apo-E), which are components of host low density lipoprotein (LDL, Apo-B) and very low density lipoprotein (VLDL, Apo-B, Apo-E) and suggest a close association with circulating LDL/VLDL [26]. The physiological association of HCV with LDL/VLDL remains unexplained mechanistically; however, it could be involved in viral uptake (see below), or alternatively the association of Apo-B with HCV virions may indicate a role for the hepatic LDL/VLDL secretory pathway in release of the virus.

Hepatocytes are the main target for infection with HCV; however, identification of the cellular receptors responsible for HCV entry has proven difficult due to the lack of appropriate model systems. However, using a combination of HCV pseudotyped particles (HCVpp) [30,31] and cell-culture-derived HCV (HCVcc) [25], the complement of HCV receptors now seems complete.

The 25 kDa tetraspanin molecule CD81 and the human scavenger receptor class B type I (SR-B1) both bind HCV E2 and are necessary but not sufficient for HCV entry [32]. For example, CD81 ectopic expression in hepatocyte-derived cell lines that are negative for CD81 confers susceptibility to HCVpp and HCVcc; however, expression of both factors in non-hepatocyte-derived cell lines does not confer infectivity [24,30]. Clearly additional hepatocyte factors are required for HCV entry. Using an interactive cloning and expression approach, the tight junction protein claudin-1 (CLDN1) was recently identified as an HCV co-receptor [33]. CLDN1 was found to be essential for entry into hepatic cells and rendered non-hepatic cells susceptible to infection. However, despite the identification of CD81, SR-B1, and CLDN1 as essential HCV entry co-factors, a number of human cell lines and those of non-primate origin remained resistant to HCV infection, suggesting an additional entry factor. Using a cyclic lentivirus-based screen of a cDNA library derived from a highly HCV-permissive hepatocarcinoma cell line (Huh-7.5) for
genes that render the non-permissive CD81+, SR-BI+ 293T cell line infectable with HCVpp, the remaining crucial factor was recently identified as occludin (OCLN), also a tight junction protein [34]. Although expression of all four entry factors (CD81, SR-BI, CLDN1, OCLN) renders mouse cell lines susceptible to HCVpp infection, these cells could not support HCVcc infection. This is not surprising given past reports of inefficient replication of HCV RNA in mouse cell lines, and suggests that specific hepatocyte factors are crucial for efficient HCV replication. The identification of CD81 and OCLN as the minimal human-specific entry factors (HCV can bind to murine SR-BI and CLDN1) not only significantly advances our understanding of the molecular mechanisms of HCV entry but also provides important steps for the development of a mouse model of HCV infection and provides an attractive target for the development of novel antiviral strategies.

Other molecules have been suggested to be involved in HCV entry. The association of HCV virions in serum with LDL and VLDL suggests that the LDL receptor (LDLR) may be an attractive candidate receptor. However, its precise role remains to be determined [26,35]. LDLR is not sufficient itself for entry and it does not bind directly to HCV E2 [30]. Together with the glycosaminoglycans, the LDLR in concert with other cell-surface proteins may serve to collect HCV at the cell surface and facilitate binding with receptors crucial for HCV entry. Consistent with this, a role has been proposed for L-SIGN and DC-SIGN in HCV attachment although they do not seem to mediate cell entry of HCV and their role is unclear [36].

The precise molecular events underlying HCV binding and entry are not well understood. However, HCV binding to the cell surface is thought to occur in a stepwise process by binding to several receptors followed by transfer to the tight junction proteins CLDN1 and OCLN that may facilitate cellular uptake (Figure 1.4). Similar to other flaviviruses, HCV entry is thought to be mediated by clathrin-mediated endocytosis with delivery of the nucleocapsid from the endosome in a pH-dependent manner [37–39]. Furthermore, the E1 and E2 proteins are class II fusion proteins that result from the production of a fusion pore in the endosome membrane that facilitates genome release to the cytoplasm [40].

The HCV replication process is summarized in Figure 1.5. After translation of the HCV proteins from the positive-sense RNA genome by direct interaction of the host 40S ribosomal subunit with the IRES within the 5’ UTR of the genome, HCV replication begins. This IRES-directed translation is cap-independent and enables virus translation/replication to continue even after host cell cap-dependent translation has been shut down in response to viral infection.

Similar to other positive-stranded viruses, HCV is believed to replicate in association with intracellular membranes in a complex called the membranous web, although the exact details of this association are not well understood. It is thought that the association predominantly with endoplasmic reticulum (ER) membranes may provide support for the organization of the replication complex, compartmentalization of the viral products, concentration of lipid constituents important for replication, and protection of the viral RNA from host-mediated innate immune defenses. This membranous web was first noticed in cultured cells harboring HCV replicons and contains detectable concentrations of the non-structural proteins NS3, NS4A, NS4B, NS5A, and NS5B, and is very similar to sponge-like inclusions noted in liver tissue from HCV-infected chimpanzees [41–44]. Expression of NS4B alone induces the formation of the membranous web, and recent work has shown that membrane association is facilitated by amino acids 40 to 69 of the N-terminal region of NS4B [45].

The phosphorylation status of NS5A appears to be a determinant of HCV RNA replication with mutations that reduce hyperphosphorylation of NS5A dramatically enhancing HCV RNA replication [46,47]. In this manner, hyperphosphorylation of NS5A may induce a switch from genome replication to viral protein translation. NS5A also interacts with several host proteins that may be important in HCV replication through formation of the replication complex or facilitating assembly. NS5A interacts with the SNARE-like vesicle-associated membrane host proteins, VAP-A and VAP-B [48]. NS5A also interacts with geranylgeranylated F-box protein, FBL2, which is essential for replication and seems to be part of the replication complex [49]. How this interaction contributes to replication is unclear but it may help anchor the replicase complex to membranes. Its involvement in the replication process highlights the close interaction between HCV replication and the host cholesterol biosynthetic pathway [50]. Another host factor, cyclophilin B, has also been implicated in HCV replication through interaction with NS5B and stabilization of RNA binding, and was originally discovered through the ability of the powerful immunosuppressive drug cyclosporin A (CsA) to inhibit HCV replication [51]. However, more recent work suggests that
Figure 1.4 Model for HCV entry. HCV particles associated with LDL and VLDL are thought to be tethered to the hepatocyte surface by the LDL-R and GAGs and subsequent stepwise interactions with CD81 and SR-B1. HCV is transferred to the tight junction proteins OCLN and CLDN-1 from where virus enters the cell by endocytosis. Release of the HCV core containing the RNA is mediated by fusion of the E1 and E2 proteins with the endosome. The relative roles and the spatial distributions of each of the HCV receptors remain to be determined.

cyclophilin A plays a critical role in cleavage of NS5A/5B and assembly of the replication complex [52,53]. CsA analogs are currently being developed as antivirals against HCV [54].

The precise details of the HCV RNA replication process are still unclear but comparison with other flaviviruses suggests that the positive-stranded genome serves as a template for the synthesis of negative-strand RNA. Components of the membrane-bound replication complex associate with the 3′ end of the positive strand of the genome, with NS5B at the catalytic core, and initiate *de novo* synthesis of negative-strand RNA. These two strands remain base-paired, which results in the formation of a double-stranded RNA molecule that is copied multiple times by semiconservative replication by the RNA-dependent RNA polymerase (RdRp) NS5B to generate multiple progeny, positive-strand viral RNA genomes. Importantly, the NS5B RdRp has no proofreading capacity and as such is error prone. This lack of proofreading ability results in the generation of many different but closely related genomes, often referred to as quasispecies. This genetic diversity is ideally suited to escape of immune control and is a significant factor in the generation of antiviral resistance to select antiviral agents. While a proportion of new positive-strand genomes serve as templates for viral protein translation, others associate with
the core protein and form dimers within core-protein-enriched nucleocapsids. The association of the core protein with cytoplasmic lipid droplets has emerged as a critical determinant of nucleocapsid and infectious viral particle assembly. It is thought that the core uses this platform to recruit replication complexes and associated new genomes from closely associated ER-derived “lipid-droplet-associated membranes” in the assembly process [55,56]. Core particles may then become enveloped via budding through the ER where viral glycoproteins (E1/E2 heterodimers) become embedded. Little is known about the process of viral particle egress except that particles change in their biophysical properties (increased density) upon exit. Recent studies have indicated that the processes of HCV particle assembly, maturation, and secretion are dependent upon the machinery involved in the assembly and secretion of VLDL by hepatocytes [57].

The development and use of *in vitro* cell-culture model systems described above has been and continues to be fundamental in dissecting the stages of HCV replication and identification of viral-host interactions at the molecular level (Figure 1.5). While these studies are important for our understanding of HCV biology, they also provide specific targets for the development of novel therapeutics designed to completely eradicate HCV infection across all genotypes. Current therapies for HCV focus on modulation of the host immune response. However, with a greater understanding of HCV replication and host interactions, we are currently in a phase of developing therapeutics that directly target various stages of the HCV life cycle. Drugs targeting HCV entry and fusion, viral helicase, and polymerase or protease function are all under clinical investigation, with some showing exceptional promise. These targeted therapies when used in combination with the
current therapeutic regime of Peg-IFN alfa-2 and ribavirin will provide the foundation for systemic eradication of HCV in infected persons. Furthermore, defining novel host factors essential for HCV replication and a greater understanding of the immunological correlates of immunity to HCV will provide the cornerstone for further development of novel therapeutics to combat HCV infection.

References