Do you manage patients with prostate cancer?
Are you keen on learning more about the very latest form of treatment?

Focal therapy represents a potentially huge shift in the way in which men with localized prostate cancer are treated. By targeting and treating only the cancer areas in the gland, it offers a credible alternative to more traditional radical surgery or active surveillance.

Focal Therapy in Prostate Cancer provides you with an evidence-based, dynamic and comprehensive review of this exciting new form of treatment, written by an outstanding international team of leading urologists, oncologists, radiologists and pathologists. Well-illustrated throughout, chapters are divided into key sections covering the key questions faced by cancer specialists and patients interested in focal therapy:

- Is there a role for focal therapy in localized prostate cancer?
- How can we accurately locate cancer within the gland?
- How can we create discrete tissue necrosis?
- How can we determine the success of focal therapy?

No other book goes into such detail or covers the range of different technologies used for this cutting-edge therapy. With expert guidance throughout to help improve your clinical knowledge, Focal Therapy in Prostate Cancer is an essential guide for all training and practicing oncologists, urologists, and radiologists as well as the general physician with a keen interest in cancer care.

Titles of Related Interest
Challenges in Prostate Cancer, 2nd Edition
Bowsher, ISBN 9781405107525
Interventional Techniques in Uro-oncology
Ahmed, ISBN 9781405192729
Focal Therapy in Prostate Cancer
Focal Therapy in Prostate Cancer

EDITED BY

Hashim U Ahmed MRCS, BM, BCh, BA(Hons)
Division of Surgery and Interventional Science
University College London
London, UK

Manit Arya FRCS, FRCS(Urol)
Department of Urology
University College London
London, UK

Peter Carroll
Department of Urology
University of California
San Francisco, CA, USA

Mark Emberton
Division of Surgery and Interventional Science
University College London
London, UK
Contents

Contributor List, vii
Preface, xi

Section I Is there a role for Focal Therapy in Localised Prostate Cancer?, 1
1 The Rationale for Focal Therapy of Prostate Cancer, 3
 Cole Davis, Matthew Cooperberg, and Peter R. Carroll
2 Factors That Affect Patients’ Choice of Treatment, 11
 Deb Feldman-Stewart and Michael D. Brundage
3 Histological Trends and the Index Lesion in Localized Prostate Cancer, 17
 Vladimir Mouraviev, Thomas Wheeler, and Thomas J. Polascik
4 Selection Criteria for Prostate Cancer Focal Therapy, 29
 Rajat K. Jain, Timothy K. Ito, and Samir S. Taneja

Section II How can we accurately locate cancer within the gland?, 37
5 Localisation of Cancer within the Gland: Biopsy Strategies, 39
 Winston E Barzell and Rodrigo Pinochet
6 Localisation of Cancer within the Gland: Ultrasound Imaging, 47
 Ulrich Scheipers
7 Localization of Cancer within the Prostate: Dynamic Contrast-Enhanced MRI, 55
 Philippe Puech, Arwar Padhani, Laurent Lemaitre, Nacim Betrouni, Pierre Colin, and Arnauld Villers
8 Localization of Cancer within the Gland: Diffusion-Weighted Magnetic Resonance Imaging of the Prostate, 66
 Sophie F Riches, Nina Tunaru, and Nandita M deSouza
9 The future of Molecular and Biomolecular Imaging in Prostate Cancer, 75
 Michael S. Gee and Mukesh G. Harisinghani
Contents

Section III How can we create discrete tissue necrosis?, 85
10 Energies for Focal Ablation: Cryoablation, 87
 John F. Ward
11 Focal Salvage Cryoablation in Recurrent Prostate Cancer, 98
 Katsuto Shinohara
12 High-Intensity Focused Ultrasound, 106
 Hashim Uddin Ahmed and Mark Emberton
13 Energies for Focal Ablation: Photodynamic Therapy, 114
 Caroline M. Moore, Nimalan Arumainayagam and Mark Emberton
14 Focal Therapy for Prostate Cancer Using Radiation, 126
 Irving Kaplan, Elizabeth Genega and Neil Rofsky
15 Image Registration and Fusion for Image-Guided Focal Ablation, 132
 Dean Barratt and David Hawkes

Section IV How can we determine the success of Focal Therapy?, 143
16 Determining Success of Focal Therapy: Biochemical and Biopsy Strategies, 145
 Al Barqawi, Paul Maroni, and David Crawford
17 Determining Success of Focal Therapy: Imaging, 153
 Alex Kirkham and Clare Allen
18 Evaluating Focal Therapy: Future Perspectives, 170
 Hashim Uddin Ahmed and Mark Emberton

Index, 179
Colour plate section can be found facing page 116
Contributor List

Hashim U. Ahmed MRCS, BM, BCh, BA (Hons)
MRC Clinician Scientist in Uro-Oncology
Clinical Lecturer in Urology
Division of Surgery and Interventional Sciences
University College London
London, UK

Clare Allen MD, FRCR, BM, BCh
Consultant Radiologist
Department of Radiology
University College London Hospitals NHS Foundation Trust
London, UK

Nimalan Arumainayagam MD
Specialist Registrar in Urology
Division of Surgery and Interventional Sciences
University College London
London, UK

Dean C. Barratt PhD
Senior Lecturer in Medical Image Computing
UCL Centre for Medical Image Computing
University College London
London, UK

Al B. Barqawi MD, FRCS
Associate Professor of Surgery/Urology
Director of Prostate Cancer Fellowship Program
Division of Urology
University of Colorado Denver School of Medicine
Aurora, CO, USA

Winston E. Barzell MD, FRCS, FACS
Clinical Assistant Professor
FSU College of Medicine
Urology Treatment Center
Sarasota, FL, USA

Nacim Betrouni PhD
INSERM
University of Lille Nord de France
Lille, France

Michael D. Brundage MSc, FRCPC, MD
Professor
Department of Oncology and Department of Community Health and Epidemiology
Queen’s University; and
Radiation Oncologist
Cancer Centre of Southeastern Ontario
Kingston, ON, Canada

Peter R. Carroll MD, MPH
Professor and Chair
Department of Urology
UCSF Helen Diller Family Comprehensive Cancer Center
University of California, San Francisco
San Francisco, CA, USA

Pierre Colin MD
Chef de clinique Assistant
Department of Urology
CHRU Lille, University of Lille Nord de France
Lille, France

Matthew Cooperberg MD, MPH
Assistant Professor
Department of Urology
UCSF Helen Diller Family Comprehensive Cancer Center
University of California, San Francisco
San Francisco, CA, USA
<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. David Crawford MD</td>
<td>Professor of Surgery/Urology/Radiation Oncology Head Urologic Oncology E. David Crawford Endowed Chair in Urologic Oncology University of Colorado, Denver Aurora, CO, USA</td>
</tr>
<tr>
<td>Cole Davis MD</td>
<td>Clinical Oncology Fellow Department of Urology UCSF Helen Diller Family Comprehensive Cancer Center University of California, San Francisco San Francisco, CA, USA</td>
</tr>
<tr>
<td>Nandita M. deSouza BSc, MBBS, MD, FRCP, FRCR</td>
<td>Professor of Translational Imaging Institute of Cancer Research and Royal Marsden Hospital London, UK</td>
</tr>
<tr>
<td>Mark Emberton FRCS (Urol), FRCS, MD, MBBS, BSc</td>
<td>Professor of Interventional Oncology and Honorary Consultant Urological Surgeon Division of Surgery and Interventional Science University College London London, UK</td>
</tr>
<tr>
<td>Deb Feldman-Stewart PhD</td>
<td>Cognitive Psychologist Division of Cancer Care and Epidemiology Cancer Research Institute Queen’s University Kingston, ON, Canada</td>
</tr>
<tr>
<td>Elizabeth M. Genega MD</td>
<td>Staff pathologist Beth Israel Deaconess Medical Center Boston, MA, USA Assistant Professor Harvard Medical School Boston, MA, USA</td>
</tr>
<tr>
<td>Michael S. Gee MD, PhD</td>
<td>Assistant Radiologist Abdominal Imaging and Interventional Radiology Massachusetts General Hospital Harvard Medical School Boston, MA, USA</td>
</tr>
<tr>
<td>David J. Hawkes PhD, CPhys, FMedSci, FREng, FInstP, FIPEM</td>
<td>Director of the UCL Centre for Medical Image Computing University College London London, UK</td>
</tr>
<tr>
<td>Mukesh G. Harisinghani MD</td>
<td>Director of Abdominal MRI Associate Professor of Radiology Department of Radiology Harvard University Boston, MA, USA</td>
</tr>
<tr>
<td>Timothy K. Ito</td>
<td>Resident in Urology Division of Urologic Oncology Department of Urology New York University Langone Medical Center New York, NY, USA</td>
</tr>
<tr>
<td>Rajat K. Jain</td>
<td>Resident in Urology New York University Langone Medical Center School of Medicine New York, NY, USA</td>
</tr>
<tr>
<td>Irving Kaplan MD</td>
<td>Assistant Professor Radiation Oncology Harvard Medical School Boston, MA, USA Beth Israel Deaconess Medical Center Boston, MA, USA</td>
</tr>
<tr>
<td>Alex Kirkham BM, BCh, FRCS, FRCR, MD</td>
<td>Consultant Radiologist Department of Radiology University College London Hospitals NHS Foundation Trust London, UK</td>
</tr>
</tbody>
</table>
Contributor List

Laurent Lemaitre MD, PhD
Professor
Department of Radiology
University of Lille Nord de France
Lille, France

Paul D. Maroni MD
Assistant Professor
Division of Urology
Department of Surgery
University of Colorado School of Medicine
Aurora, CO, USA

Caroline M. Moore MD, MRCS (Ed)
Clinical Lecturer in Urology
University College London and University College London Hospitals NHS Trust
London, UK

Vladimir Mouraviev MD
Clinical Fellow Instructor
Urology Division
Department of Surgery
University of Cincinnati
College of Medicine
Cincinnati, OH

Anwar Padhani MBBS
Consultant in Radiology
Paul Strickland Imaging Centre
Mount Vernon Cancer Centre
Northwood, Middlesex, UK

Rodrigo Pinochet MD
Urologic Oncology Fellow
Memorial Sloan-Kettering Cancer Center
New York, NY, USA

Associate Instructor
Department of Urology
Pontificia Universidad Catolica de Chile
Santiago, Chile

Louis L. Pisters MD
Professor of Urology
The University of Texas MD Anderson Cancer Center
Houston, TX, USA

Thomas J. Polascik MD, FACS
Director of Urologic Oncology
Duke Cancer Institute
Duke University Medical Center
Durham, NC, USA

Philippe Puech MD, PhD
Associate professor of Radiology
CHRU Lille
University of Lille Nord de France
Lille, France

INSERM
University of Lille Nord de France
Lille, France

Neil Rofsky MD
Professor of Radiology
Department of Radiology
Beth Israel Deaconess Medical Center
Boston, MA, USA

Sophie F. Riches MPhys Msc
Clinical Physicist
Institute of Cancer Research and Royal Marsden Hospital
London, UK

Ulrich Scheipers PhD
TomTec Imaging Systems GmbH
Unterschleissheim, Germany
Ruhr-University Bochum, Bochum, Germany

Katsuto Shinohara MD
Helen Diller Family Chair in Clinical Urology
Professor, Department of Urology and Radiation Oncology
University of California, San Francisco
San Francisco, CA, USA

Samir S. Taneja MD
James M. Neissa and Janet Riha Neissa
Associate Professor of Urologic Oncology
Director, Division of Urologic Oncology
Department of Urology
GU Program Leader, New York University Cancer Institute
New York University Langone Medical Center
New York, NY, USA

Chief
Urology Section
Veterans Administration
New York Harbor Healthcare System (Manhattan campus)
New York, NY USA

Nina Tunariu MD
Specialist Registrar in Radiology
Institute of Cancer Research and Royal Marsden Hospital
London, UK
Contributor List

Arnauld Villers MD, PhD
Professor in Urology
Department of Urology
CHRU Lille, University of Lille Nord de France
Lille, France

John F. Ward MD, FACS
Assistant Professor
Department of Urology

The University of Texas
MD Anderson Cancer Center
Houston, TX, USA

Thomas M. Wheeler MD
Harlan J. Spjut Professor and Chair
Department of Pathology and Immunology
Baylor College of Medicine
Houston, TX, USA
Preface to the first edition

The diagnostic and therapeutic landscape of prostate cancer is one of the most exciting areas of medical research in our modern age. Very few conditions or diseases have caused as much controversy and debate in the medical and popular literature. The manner in which we currently diagnose and treat prostate cancer seems to lead to ever increasing cost to the individual patient, to his family, and to healthcare systems in general, but with great uncertainty over the benefits. The entire pathway has come into question, based as it is on inherent inaccuracy and lack of precision in locating, targeting, and treating the malignant tumor. Almost all other solid organ cancers rely on visualizing the cancer, sampling it accurately, and delivering therapy only to that area which requires it.

Focal therapy in prostate cancer supports a similar, albeit belated, paradigm shift. Such a change relies on accurate imaging, accurate biopsy, and accurate destruction of the cancer while minimizing collateral damage and preserving as much normal tissue as possible. What are the benefits? We may have an isoeffective treatment that carries less harm to the individual man in a more cost-effective way that benefits society. The challenges are tremendous—locating cancers in a walnut-sized organ is not easy—ablating areas to millimeter accuracy and ensuring the remainder of the tissue does not develop new cancers which progress into life-threatening disease. This book is written by international experts at the forefront of imaging and focal therapy of prostate cancer and will provide the reader with a comprehensive scientific approach to the aspirations and challenges of focal therapy.

Hashim U. Ahmed
Manit Arya
Peter Carroll
Mark Emberton
November 2011
SECTION I

Is there a role for Focal Therapy in Localised Prostate Cancer?
CHAPTER 1

The Rationale for Focal Therapy of Prostate Cancer

Cole Davis MD, Matthew Cooperberg MD MPH, and Peter R. Carroll MD MPH

Department of Urology, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA

Introduction

The goals of cancer therapy are either to prevent, cure, or control disease while minimizing the side effects of treatment. One must balance the number of life years gained (quantity) with the morbidity of a given treatment technique (quality). The ultimate goal is to match treatment type with the biological aggressiveness of the disease in an individual patient. A difficult initial hurdle is predicting disease aggressiveness. Nomograms and other risk-prediction instruments incorporating multiple pathologic, laboratory, and clinical measures have become the cornerstone in prostate cancer risk assessment. Accurate risk assessment guides treatment. In contemporary practice there is a continuing movement toward maximizing survival while minimizing morbidity.

This movement is seen clearly when examining the increasing use of laparoscopic and, more recently, robot-assisted laparoscopic techniques in the treatment of prostate and renal cancers as well as conformal and intensity-modulated radiation therapy (IMRT), cryotherapy, brachytherapy, and experimental modalities such as high-intensity focused ultrasound (HIFU) and photodynamic therapy in the treatment of prostate cancer. Minimally invasive techniques that deliver therapy to the cancer alone, with a margin of normal tissue, are attractive since the risks of local progression and thus metastasis are, at least in theory, decreased compared to surveillance, while the morbidity associated with radical resection or whole-organ ablation decreased.
Chapter 1

The therapeutic dilemma

The morbidity associated with radical prostatectomy and radiotherapy is well described and is primarily a result of treatment effects on adjacent structures [1]. Overall, each of the whole-gland radical treatments can be associated with significant morbidity. Radiotherapy causes short-term moderate bowel and urinary toxicity in almost 50% with most having limited toxicity. However, 5–20% with bowel toxicity have long-term persistence. Select surgical series report as high as 27% risk of chronic urinary symptoms. Both radiotherapy and surgery have a near 50% reduction in sexual function, though the reports are widely variable. Additionally, newer techniques and increasing refinement in technology have shown very little change in the toxicity profiles [2].

Therefore, minimally invasive techniques applied to discreet tumor areas, rather than the whole gland, stand to modify treatment impact the most with regard to urethral, rectal, and cavernosal nerve injury. Additional advantages could include reduced hospital stay and earlier return to work. Prostate cancer is biologically unique given the indolent nature and protracted natural history of many lesions. This demands individualized treatment decisions that include active surveillance or active treatment currently in the form of whole-gland therapy. Although the trend is changing in recent years as more compelling data becomes available, few patients elect to defer initial treatment. Between 1989 and 2008, 11,892 men with localized prostate cancer were registered in the CaPSURE multi-institutional database, and of those, only 810 (6.8%) elected to defer treatment and be managed with watchful waiting or active surveillance [3].

The rationale for use of minimally invasive therapies must be based on the following principles:

1. The technique offers similar disease control compared to the current options.
2. It is less morbid.
3. It offers improved outcomes compared to patients managed conservatively.
4. The technique is cost effective.

Prostate cancer has significant mortality worldwide, yet has an incidence-to-mortality ratio of 8.6 in the United States, 3.0 in the United Kingdom, and 1.2 in Africa [4]. Such differences may reflect many factors, one of which is screening rates. This is supported by multiple autopsy series showing that 30–40% of men suffering nonprostate cancer related deaths harbor prostate cancer [5]. Additionally, incidental prostate cancer is found in 23–45% of men undergoing cystoprostatectomy for the management of bladder cancer.

The difficult choices faced by men who have localized prostate cancer are further confounded by the findings from the recent publication of the
third interim analysis from the European Randomized Study of Screening for Prostate Cancer (ERSPC). This demonstrated a reduction in prostate cancer specific mortality from PSA screening and treatment [6]. However, the healthcare policy implications of screening need to be tempered. First, a randomized controlled study in the United States has shown no difference between PSA screening and control [7], although the control arm had a high degree of contamination since many men had already undergone a PSA test prior to enrolment. Second, there are considerable harms associated with a screening strategy. These include overtreatment and treatment-related harms. The ERSPC showed that 1410 men need to be screened and 48 diagnosed and treated in order that one prostate cancer related death is avoided over a 9-year interval. Overtreatment becomes less of a problem if the treatment is cost effective and associated with very low rates of harm, while eliminating potentially high-risk disease.

Cost

The cancer-attributable costs associated with the first 6 months of treatment in 1999 demonstrated that radical prostatectomy cost $8113, external beam radiotherapy cost $6116, and brachytherapy cost $7596 [8]. Another study from the same time period found mean hospital charges of $5660 for radical prostatectomy compared to $4150 for cryotherapy. Most of the cost savings for cryotherapy arise from hospitalization costs of $2348 for radical prostatectomy and $682 for cryotherapy [9]. Most cost analyses do not take into account lost productivity from multiple treatment visits required for radiation therapy or postoperative visits and urethral catheter time associated with surgery. Costs for newer forms of radiation such as IMRT and proton therapy are higher. Insurers and public interest groups are paying more attention to the costs of care in conjunction with their utility and wide variation in application [10,11]. Minimally invasive interventional techniques delivering focal therapy may have the advantage of being performed in a single, outpatient setting with fewer downstream costs of dealing with side effects, but this may need to be balanced with the rate of salvage therapies in the event of failure.

Conservative management

Active surveillance with the potential for delayed therapy must incorporate several elements:

1. Markers for disease progression are reliable.
2. Patients are compliant.
Chapter 1

3 The cancer will not progress at a speed exceeding follow-up windows.
4 Treatment at the time of progression is effective.
5 Patients accept the potential anxiety associated with untreated cancer.

A meta-analysis including 828 patients on surveillance protocols found the risk of metastasis at 10 years after diagnosis in those with well-differentiated tumors to be 19% and cancer-specific mortality 13% [12]. Albertsen and colleagues have shown that many men with prostate cancer die of other diseases. Further, those with low-risk disease (well-differentiated tumors) managed conservatively can expect 10-year prostate cancer specific mortality of 8.3% [13]. Other studies suggest that men with prostate cancer may be at higher risk. Johansson et al. showed that cancer-specific survival dropped from 79% to 54%, as patients managed conservatively were followed past 15 years [14]. In addition, the Scandinavian prostate cancer group randomized trial of patients with localized prostate cancer in the pre-PSA era treated by radical prostatectomy or watchful waiting, revealed significant relative risk reductions in overall mortality, prostate cancer specific mortality, metastasis, and local progression in the former group. However, the benefit to treatment was seen in those less than 65 years of age. In addition, the patients in this trial were notably different than those currently detected with aggressive screening in the United States. For instance, only 12% had T1c disease and 20% had an initial PSA ≥20 ng/mL [15].

In the Toronto active surveillance cohort of 450 men overall survival was 78.6%. The 10-year prostate cancer actuarial survival was 97.2%. Overall, 30% had been reclassified as higher risk and offered definitive therapy [16]. The UCSF active surveillance series used stricter criteria and reflected a secondary treatment rate of 24% at 3-year median follow-up, although 37% met criteria for progression and 12% elected treatment without evidence of disease progression [17]. None have died in the UCSF series at a median follow-up of 3.6 years.

Minimally invasive therapies

Minimally invasive interventional techniques have been applied to whole-gland therapy for many years in order to find a middle ground between active surveillance and radical surgery or radiotherapy. The earliest such technique introduced for prostate cancer was radium brachytherapy in 1915. Another percutaneous technique is whole-gland cryotherapy. It shares many similar advantages with brachytherapy. Early outcomes using cryotherapy were worrisome with major complications reported such as urethrocutaneous and rectourethral fistula. Refinements in monitoring, urethral warming, and probe technology have brought about resurgence in interest in cryotherapy. A prospective randomized trial comparing
cryoablation to external beam radiotherapy found near equivalent disease-free survival at 8 years and a significantly higher negative biopsy rate in those managed with cryoablation [18]. Katz et al. reviewed 5-year biochemical-free survival among patients treated with brachytherapy, conformal radiotherapy, radical prostatectomy, and whole-gland cryoablation in different series. When stratified according to low-, medium-, and high-risk disease, cryotherapy was equivalent to other modalities for low- and medium-risk patients and superior for high-risk patients [19]. The major disadvantage to whole-gland cryotherapy is the morbidity profile, most notably with regard to erectile dysfunction (approaching 100% in the whole-gland setting). Third generation, prostate cryoablation techniques have been in use since 2000 and have shown lower complication rates compared to previous techniques except for impotence. Reported complications include bladder outlet obstruction 3–21%, tissue sloughing 4–15%, and impotence 40–100% [20].

Other whole-gland techniques include HIFU and vascular-targeted photodynamic therapy (VTP). Early studies have yielded mixed results regarding efficacy and morbidity for these modalities [21]. For instance, HIFU whole-gland therapy seems to have incontinence rates (requiring pad usage) of less than 1%, impotence rates are still 20–50% [22]. However, application in a focal setting for well-selected patients may prove highly beneficial.

Focal therapy—the middle way?

Currently, minimally invasive modalities are receiving considerable interest applied as focal, rather than whole-gland, therapy [23,24]. Focal therapy involves the local application of therapy to a specific focus with a margin of normal tissue. Therapy can be applied ranging from a small focus to subtotal ablation thereby theoretically decreasing morbidity [25]. Several factors must be considered before focal therapy can be implemented as a routine option for early-stage prostate cancer. First, prostate cancer is often a multifocal disease. However, large studies have shown that between 10% and 44% of radical prostatectomy (RP) specimens harbor unilateral or unifocal cancers [26]. There is growing evidence that the majority of progression is driven by the size (>0.5 mL) and grade (Gleason ≥ 7) of the index tumor [27], and that most multifocal tumors outside the index lesion have a volume of <0.5 mL, making their clinical significance questionable. Some have argued that tumors <0.5 mL may not need immediate treatment [28], thus creating a large population of patients that may benefit from focal ablation of the index or unifocal tumor with subsequent surveillance of the smaller “clinically insignificant” lesions if present. (Figures 1.1a–h).
Figure 1.1 (a) Standard whole-gland strategies treat the entire prostate regardless of the risk category, volume, or disposition of cancer. (b–h) These figures illustrate the different strategies that could be employed using focal therapy to ablate either all areas of cancer or just the index lesion.