Food Oral Processing
fundamentals of eating and sensory perception
Food Oral Processing
Food Oral Processing
Fundamentals of Eating and Sensory Perception

Edited by
Jianshe Chen
School of Food Science and Nutrition
University of Leeds
UK

Lina Engelen
Faculty of Health Sciences
University of Sydney
Australia
PART ONE ORAL ANATOMY AND PHYSIOLOGY 1

1 Oral Cavity 3
Luciano José Pereira
1.1 Introduction 3
1.2 The oral cavity 3
1.3 Salivary glands and saliva secretion 6
1.4 Orofacial muscles 7
1.5 The tongue 9
1.6 Concluding remarks 12
Acknowledgements 12
References 13

2 Oral Receptors 15
Lina Engelen
2.1 Introduction to oral receptors 15
2.1.1 Babies sense the world around them through the mouth 15
2.1.2 Receptors 15
2.1.3 Innervation and transduction 16
2.2 Taste 17
2.2.1 Taste receptors 18
2.2.2 Taste molecules and modalities 20
2.2.2.1 What substances give rise to the different sensations? 20
2.3 Mechanoreception 22
2.3.1 Tactile stimulation 22
2.3.2 Function during eating 23
2.3.3 Mechanoreceptors in the mouth 24
2.3.3.1 SA1 – form and texture 25
2.3.3.2 FA1 25
2.3.3.3 SA2 – shape and position of tongue 25
Contents

2.3.4 Proprioceptors 26
 2.3.4.1 Proprioception 26
 2.3.4.2 Muscle spindles 27
 2.3.4.3 Golgi tendon organ 27
 2.3.4.4 Mechanoreceptors as proprioceptors 28
2.3.5 Periodontal receptors 28
 2.3.5.1 Function of periodontal receptors 28
2.3.6 Signal transduction and central processing 29
2.4 Nociception 30
 2.4.1 Nociceptors 30
 2.4.2 Nociception in food 31
 2.4.3 Nociceptive transduction 32
2.5 Thermal perception 33
 2.5.1 Thermal sensation 33
 2.5.2 Thermoreceptors 34
 2.5.3 Thermal transduction 34
 2.5.4 Temperature and food 35
 2.5.5 The thermoreception and nociception relation 36
2.6 Olfaction 36
 2.6.1 Olfaction and food 36
 2.6.2 Olfactory receptors and transduction 37
2.7 Concluding remarks 38
References 38

3 Role of Saliva in the Oral Processing of Food 45

Guy Carpenter

3.1 Introduction 45
3.2 Control of salivary secretion 46
3.3 Functionalities of saliva 50
 3.3.1 Salivary interactions with the oral mucosa 51
 3.3.2 Perception of taste 52
 3.3.3 Protection of the oral environment 53
3.4 Saliva in bolus formation, swallowing and oral clearance 54
 3.4.1 Bolus formation and swallowing 54
 3.4.2 Post-mastication oral clearance 54
3.5 Concluding remarks 56
Acknowledgements 56
References 57

PART TWO FOOD ORAL MANAGEMENT 61

4 Oral Management of Food 63
 Andries van der Bilt
 4.1 Introduction 63
 4.2 Factors influencing oral function 63
 4.2.1 Dental factors 66
 4.2.2 Jaw muscle activity (EMG) and bite force 67
4.2.3 Masticatory performance 68
4.2.4 Swallowing of food 69
4.2.5 Saliva 70
4.3 Influence of food characteristics on chewing 72
 4.3.1 Influence of food type on muscle activity, chewing force and jaw movement 74
 4.3.2 Crispy food 75
 4.3.3 Influence of food type and volume on swallowing 75
 4.3.4 Muscle activity and jaw movement in various phases of chewing 78
4.4 Neuromuscular control of chewing and swallowing 79
 4.4.1 Cortical masticatory area 80
 4.4.2 Central pattern generator 80
 4.4.3 Peripheral feedback 80
 4.4.4 Simulated chewing experiments 81
 4.4.5 Neuromuscular control of chewing crispy food 83
4.5 Concluding remarks 84
References 85

5 Breaking and Mastication of Solid Foods 95
Carolyn F. Ross and Clifford L. Hoye Jr.
 5.1 Introduction 95
 5.2 Mechanical properties and food texture 96
 5.3 Characterisation of mechanical properties 96
 5.4 Oral selection of food particles 99
 5.4.1 The role of the tongue 99
 5.4.2 Selection function 100
 5.5 Breakage function 101
 5.5.1 Definition of breakage function 101
 5.5.2 Crack initiation and propagation 103
 5.5.3 Correlations between breakage function and food mechanical properties 105
 5.5.4 Limitations of breakage function 107
 5.6 Concluding remarks 107
References 108

6 Oral Behaviour of Food Emulsions 111
Anwesha Sarkar and Harjinder Singh
 6.1 Introduction 111
 6.2 Food emulsions in general 112
 6.3 Interfacial layers 113
 6.4 Emulsion stability 117
 6.4.1 Depletion flocculation 118
 6.4.2 Bridging flocculation 119
 6.4.3 Coalescence 120
6.5 Behaviour of emulsions under oral conditions 121
 6.5.1 Saliva-induced destabilisation 122
 6.5.1.1 Neutral or negatively charged emulsion–saliva interactions 124
 6.5.1.2 Positively charged emulsion–saliva interactions 125
 6.5.2 Shear-induced destabilisation 127
 6.5.3 Relating oral destabilisation to sensory perception 129
 6.5.3.1 Droplet flocculation 129
 6.5.3.2 Droplet coalescence 130
6.6 Concluding remarks 131
References 132

7 Bolus Formation and Swallowing 139
Jianshe Chen

 7.1 Introduction 139
 7.2 Mechanisms of swallowing 139
 7.2.1 Stages of swallowing 139
 7.2.1.1 The oral phase 140
 7.2.1.2 The pharyngeal phase 141
 7.2.1.3 The oesophageal phase 142
 7.2.2 Oral pressure and bolus swallowing 143
 7.2.2.1 Bolus location before swallowing 143
 7.2.2.2 The oral pressure 144
 7.2.2.3 Measurements of oral pressure 146
 7.3 The formation of a food bolus and the triggering criteria of bolus swallowing 147
 7.3.1 Dynamics of bolus formation 147
 7.3.2 Critical criteria in triggering a swallow 149
 7.3.3 Influences of food properties on bolus formation 152
 7.4 Concluding remarks 154
References 155

PART THREE FOOD ORAL PROCESSING AND SENSORY PERCEPTION 157

8 Oral Processing and Texture Perception 159
Lina Engelen and René A. de Wijk

 8.1 Introduction 159
 8.1.1 What is texture? 159
 8.1.2 Why is texture important for the perception of foods? 160
 8.2 Where is texture sensed in the mouth? 161
 8.2.1 The special case of the texture of fat 161
 8.3 Texture versus food structure 162
 8.3.1 Liquids 162
 8.3.2 Semi-solids 162
8.3.3 Solids
- **8.3.3.1 Crispy and crunchy food*** 163

8.4 The measurement of oral processes 164

8.5 Texture versus oral processing 165

8.6 Texture attributes are systematically related 167

8.7 The role of saliva in texture perception
- **8.7.1 Saliva flow rate and texture perception*** 169
- **8.7.2 Saliva composition and texture perception*** 170
- **8.7.3 Salivary enzymes and texture perception*** 171

8.8 Oral temperature and texture perception 171

8.9 Concluding remarks 172

References 173

9 Oral Processing and Flavour Sensing Mechanisms
Sarah Adams and Andrew J. Taylor

9.1 Introduction 177

9.2 Mechanisms for sensing and measuring taste
- **9.2.1 Taste thresholds*** 179
- **9.2.2 Food structure, oral breakdown and tastant release*** 180

9.3 Mechanisms for sensing and measuring aroma 181

9.4 Mechanisms for sensing and measuring texture 184

9.5 Multi-sensory interactions 187

9.6 Measuring food breakdown and deposition *in vivo*
- **9.6.1 Imaging food *in vivo*** 190
- **9.6.2 Spectroscopy of food components *in vivo*** 192
- **9.6.3 Following mastication *in vivo*** 193

9.7 Biochemical flavour changes during oral processing 193

9.8 Applications of knowledge to real food products 195

9.9 Concluding remarks 195

Acknowledgements 196

References 196

10 Multi-sensory Integration and the Psychophysics of Flavour Perception
Charles Spence

10.1 Introduction 203

10.2 Taste/Gustation 205

10.3 Olfactory–gustatory interactions in multi-sensory flavour perception 206

10.4 Oral–somatosensory contributions to multi-sensory flavour perception 208

10.5 Auditory contributions to multi-sensory flavour perception 210

10.6 ‘Visual flavour’: visual contributions to multi-sensory flavour perception 211

10.7 The cognitive neuroscience of multi-sensory flavour perception 215

10.8 Concluding remarks 216

References 219
PART FOUR PRINCIPLES AND PRACTICES OF INSTRUMENTAL CHARACTERISATION FOR EATING AND SENSORY PERCEPTION STUDIES 225

11 ‘Oral’ Rheology 227
Jason R. Stokes

11.1 Introduction to food rheology and oral processing 227
11.2 Liquid food rheology and structure 229
 11.2.1 Dispersions of particles and polymers 229
 11.2.2 Shear thinning 231
 11.2.3 Viscoelasticity 234
 11.2.3.1 Linear viscoelasticity 235
 11.2.3.2 Non-linear viscoelasticity: normal stresses 236
 11.2.3.3 Extensional viscosity 237
 11.2.4 Instrumentation for liquid foods 237
 11.2.4.1 Cone-and-plate 237
 11.2.4.2 Parallel plate 238
 11.2.4.3 Concentric cylinder 238
 11.2.4.4 Extensional viscosity 238
11.3 Soft food rheology and microstructure 239
 11.3.1 Microstructure: gels and glasses 239
 11.3.2 Rheology 241
 11.3.3 Mechanical properties and fracturing behaviour 244
11.4 Solid food breakdown and rheology 245
11.5 Saliva and rheology 246
 11.5.1 Saliva 246
 11.5.2 Real or artificial saliva to study food–saliva interactions? 247
 11.5.3 Saliva rheology 248
11.6 Sensory perception and the fluid dynamics between tongue and palate 249
 11.6.1 Shear flow 250
 11.6.2 Shear flow and sensory thickness: what is the shear rate in the mouth? 251
 11.6.3 Squeeze flow 253
 11.6.4 Shear and squeeze flow: defining an oral shear stress? 255
 11.6.5 Micro-rheology: gap dependency, confinement and slip 258
11.7 Concluding remarks 258
References 259

12 ‘Oral’ Tribology 265
Jason R. Stokes

12.1 Introduction 265
12.2 Principles of tribology 266
 12.2.1 Hydrodynamic lubrication and the Reynolds equation 266
 12.2.2 Elastohydrodynamic lubrication 267
12.2.3 Film thickness and friction in isoviscous elastohydrodynamic lubrication 268
12.2.4 Limits of hydrodynamic lubrication: Stribeck curve 270
12.2.5 Boundary lubrication 271
12.3 Food lubrication 273
 12.3.1 Kokini models for ‘smoothness’ and ‘slipperiness’ 274
 12.3.2 Biosubstrates and simulated oral contacts 275
 12.3.3 Soft-tribology
 12.3.3.1 Master curves 277
 12.3.3.2 Emulsions 278
 12.3.3.3 Hydrocolloids 280
 12.3.3.4 Saliva 282
12.4 Concluding remarks 284
Acknowledgements 285
References 285

13 Applications of Electromyography (EMG) Technique for Eating Studies 289
Yadira Gonzalez Espinosa and Jianshe Chen

13.1 Introduction 289
13.2 Principles of electromyography technique 289
 13.2.1 Muscle motors and their activation 289
 13.2.2 Surface electromyography vs. intra-muscular electromyography 290
 13.3.3 Main mastication muscles for surface electromyography studies 292
13.3 EMG experimental design and set-up 293
 13.3.1 Electrodes, location and placement 293
 13.3.2 Selection criteria of subjects for EMG studies 298
 13.3.3 Experimental procedures
 13.3.3.1 Preparation 299
 13.3.3.2 Set-up 300
 13.3.3.3 Set-up checking and validation 300
 13.3.3.4 Test performance 301
13.4 Data analysis 304
 13.4.1 Processing of raw EMG signals
 13.4.1.1 Rectification 305
 13.4.1.2 Integration 305
 13.4.1.3 Root mean square (RMS) 305
 13.4.2 Masticatory parameters: analysis of chewing sequence and individual chewing cycles
 13.4.2.1 Analysis of the whole chewing sequence 306
 13.4.2.2 Analysis of individual chewing cycles 309
13.5 Case studies 312
13.6 Concluding remarks 314
References 315
14 Soft Machine Mechanics and Oral Texture Perception 319
Micha Peleg and Maria G. Corradini

14.1 Introduction 319
14.2 Sensory terms and vocabulary 321
14.3 Soft machine mechanics 322
 14.3.1 The signal generated by stiff and soft machines 322
 14.3.2 Mechanical sensitivity of soft machines 325
14.4 The ‘amplifier’ and sensory sensitivity 327
14.5 Adaptation and fatigue 333
14.6 Concluding remarks 334
References 335

PART FIVE APPLICATIONS AND NEW PRODUCT DEVELOPMENTS 337

15 Appreciation of Food Crispness and New Product Development 339
Paula Varela and Susana Fiszman

15.1 Introduction 339
15.2 Appreciation of crispy and crunchy texture 339
15.3 Mechanical and structural features of crispy/crunchy food 340
 15.3.1 Wet-crisp food products 340
 15.3.2 Dry-crisp food products 341
 15.3.3 Crusted or multi-layered food products 342
15.4 Characterisation of crispy/crunchy textures 342
 15.4.1 Sensory perception and measurement of crispness/crunchiness 342
 15.4.2 Instrumental characterisation of crispness/crunchiness 343
 15.4.2.1 Texture measurements 343
 15.4.2.2 Acoustics 344
 15.4.3 Instrumental characterisation of crispness – structure and microstructure 346
15.5 Influence of the product design and formulation, process and storage conditions in the attainment, enhancement and maintenance of the crispy/crunchy character in wet, dry and crusted food products 348
 15.5.1 Wet-crisp products 348
 15.5.2 Dry and crusted products 350
 15.5.2.1 Bread as an example of composite crisp food 350
 15.5.2.2 Deep fried products 351
15.6 Concluding remarks 353
References 353

16 Design of Food Structure for Enhanced Oral Experience 357
Adam Burbidge

16.1 Introduction 357
16.2 Biophysics of oral perception 357
16.3 Structural stimuli of mechanoreceptors 363
16.4 Engineering of microstructures in food 370
 16.4.1 Freeze drying 373
 16.4.2 Puffed cereals 375
 16.4.3 Spray dried powders 376
 16.4.4 Ice cream production 377
16.5 Acknowledgements 378
References 378

Index 381

A colour plate section falls between pages 190 and 191.
Preface

‘It is critically important not only what we eat but also how we eat!’

Eating, or food oral consumption, is an essential part of our daily life. It is a routine process of obtaining the energy and nutrients essentially required for living and well-being and also the appreciation of sensory pleasure and enjoyment. The eating process can be seen as the ultimate stage of the food supply chain and is the starting point of food disintegration and the digestion process. Therefore, the eating quality and sensory experience of a food always remains a top concern to food researchers, food manufacturers and retailers, as well as consumers. How a food is broken down inside the mouth could also have important implications for our well-being and health, as indicated by Horace Fletcher (1849–1919) almost a century ago. Even though the practice of eating is well-known to most, the fundamental principles involved in eating and sensory perception of food are not as obvious as they are normally perceived. This book endeavours to review the latest research findings on food oral processing and sensory perception. The main objective of the book is to provide readers with up-to-date knowledge and understanding of the underpinning principles of food physics, oral physiology and sensory psychology of an eating process.

Studies of food texture, taste, flavour, aroma and colour as independent scientific disciplines began only around the middle of the last century, shortly after food science and technology became the subject of degree courses. Knowledge of food sensory properties was in urgent demand due to largely industrialised food manufacturing and supply, which led to huge expansions of research activities in these areas during the second half of last century. Approaches during the early stages of eating and food sensory studies were mostly either through an objective instrumental characterisation or a human subject sensory description method. For example, for food texture studies, rheology and mechanical investigations were most commonly used, where food was essentially treated as a material, that is mechanical and rheological properties (e.g. hardness, springiness, viscosity, cohesiveness, etc.) were characterised using instrumental devices, and results were interpreted in relation to sensory perception. On the other hand, food taste and aroma studies focused mainly on small molecules, their release, characterisation and detection. It is only during the last one or two decades that cross-disciplinary approaches were introduced into eating and food sensory studies. During the last decade, increased use of physiological methodologies and techniques has been reported by food scientists. Food texture studies have been conducted in combination with the observation of orofacial muscle activities and the analysis of saliva interactions. Very recently, fNMI (functional Nuclear Magnetic Imaging) observation by neuroscientists revealed positive correlations between increased brain activities and the eating and sensory pleasure perception. Eating is no longer seen as a simple
process of food break down, but is recognised as a highly sophisticated process of human responses (physiological, psychological and neurological) to the changing physicochemical properties of the food.

Based on this background, we feel that there is a need for a book that elucidates the multi-disciplinary nature of eating and sensory perception and that reviews the latest progress in related areas, from fundamental studies to industrial applications. This book endeavours to be a multi-disciplinary source of stimulation and reference, and we hope it will encourage further researches in these areas. The book is divided into five sections: 1 Oral anatomy and physiology; 2 Food oral management; 3 Oral processing and sensory perception; 4 Principles and practices of instrumental characterisation for eating and sensory perception studies; and 5 Applications and new product development.

The first section covers the oral cavity, where Luciano Pereira describes the anatomy and function of the different parts of the oral cavity; oral receptors, where Lina Engelen reviews the oral tactile and chemosensory receptors; and saliva, where Guy Carpenter discusses the origins and composition of saliva as well as its role in the oral processing of food. In Section 2 Andries van der Bilt starts by discussing the strategies of food oral management, from ingestion to swallow; followed by a chapter on the oral break down and mastication of solid foods and the determining physical principles (Carolyn Ross and Clifford Hoye Jr.). Anwesha Sarkar and Harjinder Singh introduce food emulsions and their behaviour in the mouth. This chapter explains the possible mechanisms of oral destabilisation of food emulsions and their implications on sensation. The section ends with a review by Jianshe Chen on the mechanisms of food bolus formation and the critical criteria in triggering a swallowing action.

The third section of the book covers the interactions between oral processing and sensory perception, regarding texture by Lina Engelen and Rene de Wijk, and flavour by Sara Adams and Andrew Taylor, followed by an account of sensory integration and psychophysics by Charles Spence.

Section 4 begins with two chapters by Jason Stokes on ‘oral’ rheology and ‘oral’ tribology, in which he discusses the underlying physical principles of food oral break down and food oral movement and their roles in sensory perception. This is followed by a chapter on the EMG (electromyography) technique (by Yadira Gonzalez and Jianshe Chen), covering the theories and practices of the technique and its application to eating studies. Micha Peleg and Maria Corradini conclude Section 4 with a chapter on food–body interactions, where, by treating the human mouth as a soft machine, soft machine mechanics are discussed in relation to instrumental characterisation of textural properties of a food.

The final section is dedicated to possible applications of recent research findings for new product developments. Paula Varela and Susana Fiszman focus mainly on crispy and crunchy foods and the principles and practices applied in industry in designing and providing such products. Adam Burbidge finishes off the book by reviewing the biomechanics of oral stress and strain, which (micro-)structures elicit these effects, and considers potential routes for creating these structures in a food context.

Integrated studies of eating and sensory perception have been adopted only fairly recently and this book is probably the first of its kind. We anticipate that this book will be of interest to scientists, technologists and engineers in food-related areas, as well as to those from other disciplines such as oral physiology, oral biology, dentistry and sensory science. This book could also be used as a useful reference for undergraduate and postgraduate students studying in above disciplines and for R&D researchers in food manufacturing and food service industries.
We would like to take this opportunity to thank all the contributors; their expert knowledge, enthusiasm and hard work have enabled us to put a book together of high scientific quality; the editorial staff at Wiley-Blackwell for their support and advices; and our families and friends for bearing with us through the long nights and weekend hours.

Jianshe Chen (Leeds, UK)
Lina Engelen (Sydney, Australia)
Contributors

Sarah Adams
Unilever Discover
Port Sunlight
Wirral, Meseyside, CH63 3JW
UK

Adam Burbidge
Nestlé Research Centre
vers-chez-les Blanc
CH-1000 Lausanne 26
Switzerland

Guy Carpenter
Salivary Research Unit
Dental Institute
King’s College London
Guy’s Hospital
London, SE1 9RT
UK

Jianshe Chen
School of Food Science and Nutrition
University of Leeds
Leeds LS2 9JT
UK

Maria G. Corradini
Instituto de Tecnología
Facultad de Ingeniería y Ciencias Exactas
Universidad Argentina de la Empresa
Cdad. de Buenos Aires
Argentina

René A. de Wijk
WUR/Food & Biobased Research.
P.O. Box 17,
6700 AA Wageningen
The Netherlands

Lina Engelen
University of Sydney
Faculty of Health Sciences
75 East Street, J013
Lidcombe NSW 2141
Australia

Susana Fiszman
Instituto de Agroquímica y Tecnología de Alimentos (CSIC)
Agustín Escardino 7
46980 Paterna – Valencia
Spain

Yadira Gonzalez Espinosa
School of Food Science and Nutrition
University of Leeds
Leeds LS2 9JT
UK

Clifford L. Hoye, Jr.
School of Food Science
Washington State University
Pullman, WA 99164-6376
USA
Micha Peleg
Department of Food Science
University of Massachusetts
Amherst, MA 01003
USA

Luciano José Pereira
DMV – Physiology and Pharmacology
Federal University of Lavras – UFLA
Minas Gerais, Caixa Postal 3037
CEP 37200-000
Brazil

Carolyn F. Ross
School of Food Science
Washington State University
Pullman, WA 99164-6376
USA

Harjinder Singh
Riddet Institute
Massey University
Palmerston North
New Zealand

Anwesha Sarkar
Riddet Institute
Palmerston North
New Zealand

Charles Spence
Crossmodel Research Lab
Department of Experimental Psychology
Somerville College
Oxford
UK

Jason R. Stokes
School of Chemical Engineering
University of Queensland, Brisbane
Australia

Andrew J. Taylor
Division of Food Sciences
University of Nottingham
Sutton Bonington Campus
Loughborough LE12 5RD
UK

Andries van der Bilt
Department of Oral-Maxillofacial Surgery, Prosthodontics and Special Dental Care
University Medical Center Utrecht
P.O. Box 85500, 3508 GA Utrecht
The Netherlands

Paula Varela
Instituto de Agroquímica y Tecnología de Alimentos (CSIC)
Agustín Escardino 7
46980 Paterna – Valencia
Spain
Part One
Oral Anatomy and Physiology
1 Oral Cavity
Luciano José Pereira

1.1 INTRODUCTION

The oral cavity is the first part of the digestive tract. However, the mouth is not only responsible for digestive functions. It also plays a role in breathing, behavioural and social activities (talking, smiling, yawning, sucking) and taste perception. The oral cavity consists of two parts: the vestibule, which is limited externally by the lips and cheeks and internally by the gums and teeth; and the oral cavity itself (1.1), which is limited laterally and ventrally by the alveolar process and teeth and dorsally communicates with the pharynx through the isthmus faucium (Gray, 2000).

Mastication is the most important function of the mouth. Teeth, muscles of mastication and salivary glands all work together to shred and break down food for swallowing. The teeth are the hardest tissues in the jaw and are involved in different activities, such as food ingestion and pronunciation of words, and also play an important role in facial aesthetics (Honda et al., 2008; Koussoulakou et al., 2009). The muscles of mastication promote the force needed to elevate the jaw so that food can be shredded between the teeth as the upper and lower arches come into contact (Fontijn-Tekamp et al., 2000). Simultaneously, saliva is produced by major and minor salivary glands. The water in saliva moistens food particles and salivary mucins bind masticated food into a coherent, moist bolus that can be easily swallowed (Pedersen et al., 2002).

This chapter reviews the main anatomical and physiological aspects of the oral cavity – teeth, tongue, salivary glands and major orofacial muscles. The review focuses on the physiological behaviour of the mouth and fundamental knowledge of oral operations covered in four main sections: the oral cavity (including teeth and periodontal tissue); saliva (saliva glands, saliva secretion, composition, physical and chemical properties); orofacial muscles (location, function, activity) and tongue (tongue muscles, function).

1.2 THE ORAL CAVITY

The oral cavity is delimited anteriorly by the upper and lower lips (vermilion surface, mucosal lip, labial mucosa), laterally by the cheeks, superiorly by the hard palate and
inferiorly by the tongue and muscles attached to the internal side of the mandible, including the geniohyoid, mylohyoid and digastric muscles. The upper and lower dentition, salivary glands, mucosal glands, tongue and the mucosal tissue covering the hard palate are found in this cavity (German and Palmer, 2006) (Figure 1.1).

The oral cavity is continuous with the pharyngeal cavity. The region where the pharynx connects to the oral cavity is called the oropharynx, and it embraces the base of the tongue, vallecula, soft palate, uvula, lateral pharyngeal walls (including the palatine tonsils and tonsillar pillars) and the posterior pharyngeal wall extending from the plane of the soft
palate/hard palate junction to the level of the pharyngoepiglottic folds at the hyoid bone. The base of the tongue is the part posterior to the circumvallate papillae (Yousem and Chalian, 1998).

The mucous membrane that covers the mouth connects to the integument at the free margin of the lips and with the mucous covering the pharynx. It has a rose-pink colour and it becomes thicker on hard parts limiting the cavity. The mucous membrane is covered by stratified squamous epithelium (Gray, 2000).

The bones adjacent to the oral cavity are the maxilla and mandible. These bones support the dentition and form the hard palate, which is made up of the palatine process of the maxilla and the maxillary process of the palatine bones. The final portion of the oral cavity is formed by muscle, with the hyoid bone and cartilages of the larynx functioning as the pharyngeal arch structures (German and Palmer, 2006).

The dentition is placed in the maxilla and mandible and consists of 32 teeth. Children are born edentulous; the first deciduous (primary) teeth erupt approximately six months after birth. There are five types of deciduous teeth: medial incisor, lateral incisor, canine, first molar and second molar. These teeth are replaced by permanent teeth. However, the permanent dentition is composed of two additional premolars and a third molar. The permanent dentition is usually complete (except for the third molar) at 12 years of age. The third molar erupts at around 16 to 20 years of age and frequently fails to erupt at all (German and Palmer, 2006). Some individuals do not even present those teeth (agenesia).

The main component of a tooth is dentine, which is calcified tissue produced by odontoblasts (Koussoulakou et al., 2009). The dentine surrounds the pulp, which is rich in fibroblast-like cells, blood vessels and nerves. The dentine that forms the tooth crown (the visible part of the tooth in the oral cavity) is covered by a layer of enamel, which is produced by ameloblasts. The enamel is the hardest tissue in the human body and is collagen free. Its main proteins are amelogenin (90%), ameloblastin, enamelin and tuftelin. The teeth are firmly attached to the jaw by their roots, which support the teeth within an alveolar socket by means of the periodontal ligament. The periosteum is connected to the fibrous structure of the gums (Gray, 2000).

The teeth are important to the masticatory system, as they break down food particles during occlusal contact (Pereira et al., 2006). A significant reduction in masticatory function occurs following the loss of post-canine teeth. Moreover, individuals with natural dentition present better masticatory function than those who wear removable dentures or have an implant-supported prosthesis (van der Bilt, 1994; Wilding, 1993; Julien et al., 1996; Fontijn-Tekamp et al., 2000; Hatch et al., 2001; van Kampen et al., 2004). A linear relationship has been found between masticatory performance and the number of occluding teeth (van der Bilt et al., 1993). However, individuals who have lost posterior teeth do not necessarily chew longer before swallowing than individuals with all teeth. This indicates that, on average, people with a bad masticatory performance swallow larger food particles (Fontijn-Tekamp et al., 2004).

Tooth loss is related not only to a reduced occlusal area, but also to the disappearance of the periodontal ligament. Mechanoreceptors located in the periodontal ligament obtain detailed information on the spatial relationship and load modulation in the process of food fragmentation (Johanson et al., 2006). Thus, chronic periodontal disease can cause the destruction of the support tissue, with consequent loss of periodontal mechanoreceptors, resulting in tooth mobility and masticatory impairment (Alkan et al., 2006). The subjective perception of the impact of oral health on mastication diminished after periodontal treatment (Pereira et al., 2011).
1.3 **SALIVARY GLANDS AND SALIVA SECRETION**

The major salivary glands are characterized by three pairs of organs: parotid, submandibular (Figure 1.2) and sublingual glands that work simultaneously to produce saliva for the oral cavity (Denny et al. 1997). The major salivary glands secrete more than 90% of the total volume of saliva and the remaining amount is secreted by the minor glands. These glands are located all over the mouth except the gums and anterior portion of the hard palate (Tenovuo, 1997). Salivary glands are made up of acinar and ductal cells. The formation of saliva inside the salivary glands occurs in a similar manner to the action of the tubular filtration in the kidneys. A plasma-like filtrate is formed by the acinar cells. Initially, this fluid is isotonic with respect to blood plasma. During its way through the gland ducts the filtrate becomes hypotonic due to resorption and secretion of ions and other components. (Turner et al., 2002; Dodds et al., 2005). Secretion is controlled by the autonomic nervous system. Parasympathetic stimulation induces the output of a large volume of saliva with a low protein concentration, whereas sympathetic stimulation has the opposite effect, causing the release of a relatively small volume of saliva, with a high protein concentration (Anderson et al., 1984). Even though both parasympathetic and sympathetic stimulation can evoke salivary flow, stress situations can cause dry mouth symptoms due to vasoconstriction.

The parotid gland (Figure 1.2) is located in the retromandibular fossa anterior to the ear and sternocleidomastoid muscle. Parts of the superficial lobe cover the ramus of the mandible and the posterior part of the masseter muscle (Bialek et al., 2006). The acinar cells of the parotid gland produce a largely serous secretion and synthesise most of the α-amylase (Llena-Puy, 2006).

The submandibular gland (Figure 1.2) is located in the posterior portion of the submandibular triangle. The submandibular triangle is limited by the anterior and posterior bellies of the digastric muscle as well as the body of the mandible. (Bialek et al., 2006).

![Figure 1.2 Parotid and submandibular salivary glands.](image-url)
The sublingual gland lies between the muscles of the oral cavity floor – geniohyoid muscle, hyoglossal muscle (medially), mylohyoid muscle and intrinsic muscles of the tongue. Its lateral side is adjacent to the mandible (Bialek et al., 2006). Mucins are glycosylated proteins, mainly produced by the submandibular and sublingual glands, whereas proline-rich and histatin-rich proteins are produced by the parotid and submandibular glands. The minor salivary glands are basically mucus (Llena-Puy, 2006) and they play an important role in lubricating the mucosa, thereby accounting for a large fraction of the total secretion of salivary proteins. The minor glands, which are distributed throughout the oral mucosa (labial, buccal, lingual, palatinal mucosa), are mixed glands largely comprising mucous acinar cells (Pedersen et al., 2002).

During non-stimulated salivary flow, about 20% of the volume is secreted by the parotid glands; about 65 to 70% by the submandibular glands, around 7 to 8% by the sublingual glands and less than 10% by the minor salivary glands. When salivary flow is stimulated, the parotids contribute more than 50% of total salivary secretion (Edgar et al., 1992).

Saliva is basically composed of water. However, it also contains several diluted electrolytes (sodium, potassium, calcium, chloride, magnesium, bicarbonate, phosphate); proteins (albumin) and enzymes; immunoglobulins and mucosal glycoproteins, among other peptides. There is also glucose, urea and ammonia (Edgar, 1992; Humphrey and Williamson, 2001).

Saliva is involved in taste perception, as its high water content provides the capacity to dissolve substances and allows the gustatory buds to perceive different flavours (de Almeida et al., 2008). Additionally, saliva mucins lubricate the food bolus and protect oral tissues from irritating agents (Nagler et al., 2004). The water in the saliva moistens food particles, allowing salivary amylase to access available starch. The salivary mucins bind masticated food into a coherent, moist bolus that can easily be swallowed (Pedersen et al., 2002). The dilution effect seems to be the most important factor related to digestive properties, since the act of adding fluids to the food significantly reduces the number of chewing cycles and total muscle effort. The type of fluid (water, artificial saliva containing mucins or a solution of \(\alpha \)-amylase) has been found to have no significant effect on the chewing process (van der Bilt et al., 2007) and salivary flow does not seem to have a significant influence on masticatory performance (de Matos et al., 2010). In addition to diluting substances, saliva provides the mechanical removal of residues, non-adherent bacteria and food debris (Almeida et al., 2008).

The most known enzyme of saliva is \(\alpha \)-amylase, which breaks carbohydrates down to maltooses by cleaving the \(\alpha \)-1-4 glycosidic bindings. Salivary \(\alpha \)-amylase is considered to be of small significance in digestion because of its rapid inactivation in stomach (Pedersen et al., 2002). Salivary \(\alpha \)-amylase is secreted mainly from the serous acinar cells of the parotid and submandibular gland. An additional salivary digestive enzyme is lingual lipase, which is secreted from acinar cells of the serous von Ebner’s glands located on the posterior region of the tongue and beneath the circumvallate papillae. Lingual lipase is, however, considered to be of limited significance (Pedersen et al., 2002).

1.4 OROFACIAL MUSCLES

The anterior limit of the oral cavity is formed by the orbicularis oris muscle, which surrounds the opening of the mouth. The labial muscles also control the lips and therefore the movements of the mouth: levator labii superioris, depressor anguli oris and risorius. The
buccinator is the cheek muscle. These are superficial facial muscles and receive motor supply from branches of the facial nerve (VII) (German and Palmer, 2006).

Although they do not form the boundaries of the oral cavity or pharynx, the muscles of mastication are critical to moving the jaws and therefore oral function. The muscles of mastication are the masseter, temporalis, internal pterygoid (raisers of the mandible) and external pterygoid muscle (mandible protruder) (Figure 1.3). These muscles act in a group more than individually. They move the mandible in different directions, with the temporomandibular joint acting as a fulcrum. They are innervated by the motor root of the trigeminal nerve (Madeira, 2003).

The masseter consists of two portions, superficial and deep. The superficial portion, which is larger, arises from a thick, tendinous aponeurosis of the zygomatic process of the maxilla and from the anterior two thirds of the lower border of the zygomatic arch (zygomatic-temporal suture); its fibres pass downward and backward (Gray, 2000). The smaller deep portion arises from the posterior third of the lower border and from the whole of the medial surface of the zygomatic arch; its fibres are more vertical and pass downward and forward. Both portions are inserted into the angle and lower half of the lateral surface of the ramus of the mandible (Gray, 2000). The masseter is the most powerful jaw elevator muscle.

The temporal muscle arises from the whole of the temporal fossa and from the deep surface of the temporal fascia. Its fibres converge as they descend and end in a tendon, which passes into the zygomatic arch and is inserted into the medial surface, apex and
anterior border of the coronoid process as well as the anterior border of the ramus of the mandible (Gray, 2000). It is divided into three portions based on fibre position: anterior, mid and posterior. The fibres are more vertical in the anterior portion and gradually become horizontal in the posterior region. Thus, the fibres of the anterior portion are more active during mouth closing and the posterior fibres are basically jaw retruders.

The external pterygoid muscle extends almost horizontally between the infratemporal fossa and the condyle of the mandible. It arises from two heads: an upper head from the lower part of the lateral surface of the great wing of the sphenoid and from the infratemporal crest; and a lower head from the lateral surface of the lateral pterygoid plate. Its fibres pass horizontally backward and laterally and are inserted into a depression in front of the neck of the condyle of the mandible as well as into the front margin of the articular disk of the temporomandibular articulation (Gray, 2000). The simultaneous contraction of both right and left external pterygoid muscles causes the jaw to move forward. When associated to contraction of the suprahyoid muscles (especially the digastric muscle), the mandible rotates and the mouth opens. If only one external pterygoid acts at a time, it moves the jaw to the opposite side (lateral movement) (Madeira, 2003).

The internal pterygoid muscle arises from the medial surface of the lateral pterygoid plate and the grooved surface of the pyramidal process of the palatine bone; it has a second slip of origin from the lateral surfaces of the pyramidal process of the palatine and tuberosity of the maxilla. Its fibres pass downward, laterally and backward and are inserted by a strong tendinous lamina into the lower and back part of the medial surface of the ramus and angle of the mandible at the height of the mandibular foramen (Gray, 2000).

The supra-hyoid muscles comprise the muscles of the oral floor. These are sheets of parallel fibrous tissue running from the hyoid bone to the mandible and include the digastric (V3 and VII), mylohyoid (V3) and geniohyoid (XII and C1) muscles (Figure 1.4). The digastric muscle is believed to be the principal muscle of jaw opening, whereas the geniohyoid is the most important muscle for elevation of the hyoid bone. The supra-hyoid muscles are in a group designated jaw retruders and mouth-opening muscles (Gray, 2000).

Masticatory muscle activation and coordination determine the direction of jaw movement and control occlusal force (Herring, 2007). The thickness of the muscles of mastication affects facial dimensions and bite force (Pereira et al., 2007; Castelo et al., 2010). The functioning of the jaw muscles is highly dependent on the physiological properties of their motor units. These properties (force output, fatigability and contraction speed) vary considerably (Van Eijden and Turkawski, 2001). The jaw-closing muscles seem more adapted to performing slow, tonic movements and producing a smooth, gradable force. In contrast, the jaw-opening muscles seem more adapted to producing faster, phasic movements (Korfage et al., 2005).

The soft palate is the upper limit of the oropharynx and consists of several muscles joining in an aponeurosis: tensor veli palatini, levator veli palatini, palatopharyngeus, uvulus and palatoglossus. The principal elevator of the soft palate is the levator veli palatini, but all of these muscles play an important role in opening or closing the airway during swallowing (German and Palmer, 2006).

1.5 THE TONGUE

The tongue plays a major role in food ingestion. When the tongue moves during the mastication process the food progresses distally through the oral cavity, from the anterior region
to the pharynx, for bolus formation and swallowing. Chemoreceptors and mechanoreceptors on the tongue surface sense the nature and mechanical properties of food (Hiimae and Palmer, 2003). In addition, tongue position is also important for breathing and talking.

The dorsum of the tongue is convex and marked by a median sulcus, which divides it into two symmetrical halves. This sulcus ends in a depression called foramen cecum, from which a shallow groove denominated the sulcus terminalis runs laterally and forward on both sides of the tongue. The anterior surface of the tongue is covered with papillae; the posterior region is smoother and contains numerous muciparous glands and lymph follicles (lingual tonsil) (Gray, 2000). There are different kinds of papillae. Circumvallate papillae are located on the dorsum of the tongue right in front of the foramen cecum and sulcus terminalis, forming a row on both sides; these papillae run backward and medially and meet at the mid line, forming an inverted V shape. Foliate papillae are clustered into two groups positioned on each side of the tongue just in front of the ‘V’ of the vallate papillae; these papillae are involved in taste sensation and have taste buds on their surfaces. Fungiform papillae are found both at the sides and apex, but are also scattered irregularly and sparsely.