Contents

Preface xix
Acknowledgements xxiii
About the Editors xxii
Contributors xxiv

Volume I

1 Food Preservation and Processing Methods 1
Mohammad Shafiur Rahman

Introduction 1
Purpose of Food Preservation 2
Food Preservation Methods 3
References 16

2 Food Process Design: Overview 18
Mohammad Shafiur Rahman and Jasim Ahmed

Introduction 18
Components of Food Process Design 19
Unit Operations and Complete Process 20
Process Flow Diagram 20
Codes, Standards and Recommended Practices 21
Process Severity, Quality and Safety 22
References 23

3 Units and Dimensions 24
E. Özgül Evranuz

Introduction 24
Systems of Measurement 25
Contents

The SI System 27
Definition of Some Derived Physical Quantities 28
Dimensional Consistency 35
Precision and Accuracy 35
Unit Conversions 36
Guidelines for Using SI Units 36
References 38

4 Material and Energy Balances 39
E. Özgül Evranuz and Meral Kılıç-Akyılmaz

Introduction 39
Fundamentals of Material Balances 40
Examples of Material Balance Calculations with and without Reaction 45
Overview of Food Processes 53
Energy Balances 56
Examples of Material and Energy Balances in Food Processing 65
References 71

5 Thermodynamics in Food Process Design 74
Santanu Basu and Pinaki Bhattacharya

Introduction 74
Thermodynamic Fundamentals 75
First Law of Thermodynamics: Conservation of Energy 76
Second Law of Thermodynamics: Entropy 82
Application of Thermodynamics in Food Systems 89
References 111

6 Chemical Reaction Kinetics Pertaining to Foods 113
Jasim Ahmed, Kirk Dolan and Dharmendra Mishra

Introduction 113
Basics of Chemical Reaction Kinetics 114
Types of Reactions 115
Fraction Conversion Concept 118
Temperature Dependence of the Rate Constants 119
Types of Reactor 120
Reaction Kinetics Related to Food 122
Statistical Aspects of Kinetic Modeling 144
Conclusions 158
References 159
7 Thermal Food Processing Optimization: Single and Multi-objective Optimization Case Studies 167
Ricardo Simpson and Alik Abakarov

Introduction 167
Types of Optimization Methods 169
Single-objective Optimization of Thermal Food Processing 171
Multi-objective Optimization of Thermal Food Processing 173
Results and Discussion 177
Summary and Conclusion 185
References 185

8 Instrumentation, Sensor Design and Selection 190
Weibiao Zhou and Nantawan Therdthai

Introduction 190
Classification of Sensors 191
Measurements and Sensors in Food Process Control Systems 192
Criteria for Selection of Sensors 197
Recently Developed Measurement Techniques for Food Processes 201
Summary 207
References 207

9 Automation and Process Control 211
Kazi Bayzid Kabir and M.A.A. Shoukat Choudhury

Introduction 211
Food Processing Automation and Control: Current Status 212
Basic Control Theory 217
Current Practice and Future Trends in Food Process Automation 233
Conclusions 236
References 236

10 Use of Various Computational Tools and gPROMS for Modelling Simulation Optimisation and Control of Food Processes 239
I.M. Mujtaba

Introduction 239
Reactor in Food Processing 240
Distillation in Food Processing 242
Extraction in Food Processing 244
Thermal Treatments in Food Processing 245
Model-based Techniques in Food Processing: Simulation, Optimisation and Control 246
Food Properties in Model-based Techniques 250
Computational Software in Food Processing 251
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Fluid Flow and Pump Selection
 Jasim Ahmed and Rajib Ul Alam Uzzal</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Nature of Fluids</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Basic Equations Related to Fluid Flow</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Measurement of Flowing Fluids</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>Pipes, Fittings and Valves</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>Pumps</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>Fans, Blowers and Compressors</td>
<td>294</td>
</tr>
<tr>
<td></td>
<td>Selection of Pump and Performance Evaluation</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>296</td>
</tr>
<tr>
<td>12</td>
<td>Heating and Cooling System Analysis Based on Complete Process Network
 Martín Picón-Núñez</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>Determination of Process Heating and Cooling Needs</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Process Heating</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>Process Cooling</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>Heat Exchangers for Heating and Cooling in the Food Industry</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>333</td>
</tr>
<tr>
<td>13</td>
<td>Pasteurisation Process Design
 Gary Tucker</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>HACCP in Pasteurisation Process Design</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>Processing Options</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>Pasteurisation Design Principles</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>Empirical Data and P-Value Guidelines</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>Equipment for Pasteurisation Processes</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>Summary and Future Trends</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>361</td>
</tr>
<tr>
<td>14</td>
<td>Sterilization Process Design
 Ricardo Simpson, Helena Núñez and Sergio Almonacid</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>Importance of Microorganisms in Sterilization and Pasteurization</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>Heat Transfer in Thermal Processing</td>
<td>370</td>
</tr>
</tbody>
</table>
Quality Evaluation 373
Industrial Equipment 375
Acknowledgments 379
References 379

15 Refrigeration, Air Conditioning and Cold Storage 381
Mohd. Kaleem Khan

Introduction 381
Refrigeration 382
Air Conditioning Systems 399
Cold Storage 410
Worked Examples 413
References 428

16 Chilling, Freezing and Thawing Process Design 430
Mohammad Shafiur Rahman

Introduction 430
Chilling 430
Freezing 433
Thawing 452
Nomenclature 453
References 455

17 Thermal Evaporator Design 460
Tarif Ali Adib

Introduction 460
Thermophysical Properties of Liquid Food 461
Characteristics of Liquids and Some Evaporator Problems 462
Single-effect Evaporator and Design Calculations for Evaporators 463
Types of Evaporator 465
Heat Transfer Coefficient in Evaporators 470
Energy Economics 475
Hygienic Design and Methods of Cleaning 479
Example 481
Nomenclature 485
References 487

18 Food Processing and Control by Air Jet Impingement 489
Gianpaolo Ruocco and Maria Valeria De Bonis

Introduction 489
Principles of Air Jet Impingement 491
A Conjugate Approach 493
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Hot Air Drying Design: Tray and Tunnel Dryer</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>Jasim Ahmed, U.S. Shivhare and Rajib Ul Alam Uzzal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>Drying of Food</td>
<td>513</td>
</tr>
<tr>
<td></td>
<td>Drying Systems</td>
<td>518</td>
</tr>
<tr>
<td></td>
<td>Design Considerations in Tray and Tunnel Dryers</td>
<td>519</td>
</tr>
<tr>
<td></td>
<td>Design of Tray Dryers</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>Design of Tunnel Dryers</td>
<td>528</td>
</tr>
<tr>
<td></td>
<td>Economic Performance of Tray and Tunnel Dryers</td>
<td>536</td>
</tr>
<tr>
<td></td>
<td>Energy Management of Tray and Tunnel Dryers</td>
<td>538</td>
</tr>
<tr>
<td></td>
<td>Costs of Drying Operations</td>
<td>538</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>539</td>
</tr>
<tr>
<td>20</td>
<td>Hot Air Drying Design: Fluidized Bed Drying</td>
<td>542</td>
</tr>
<tr>
<td></td>
<td>R.T. Patil and Dattatreya M. Kadam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>542</td>
</tr>
<tr>
<td></td>
<td>Design Features</td>
<td>544</td>
</tr>
<tr>
<td></td>
<td>Design of HTST Pneumatic Fluidized Bed Dryer</td>
<td>559</td>
</tr>
<tr>
<td></td>
<td>Types of Fluidized Bed Dryers</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>Application of Fluidized Bed Drying</td>
<td>572</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>576</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>576</td>
</tr>
<tr>
<td></td>
<td>Websites</td>
<td>577</td>
</tr>
<tr>
<td>21</td>
<td>Heat Pump Design for Food Processing</td>
<td>578</td>
</tr>
<tr>
<td></td>
<td>M.N.A. Hawlader and K.A. Jahangeer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>578</td>
</tr>
<tr>
<td></td>
<td>Types of Heat Pump</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td>Drying of Agricultural Products and Heat Pump</td>
<td>582</td>
</tr>
<tr>
<td></td>
<td>Heat Pumps for Food Processing</td>
<td>584</td>
</tr>
<tr>
<td></td>
<td>Modelling, Simulation and Design of Heat Pumps</td>
<td>594</td>
</tr>
<tr>
<td></td>
<td>Practice Problems</td>
<td>612</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td>Nomenclature</td>
<td>616</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>618</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>22</td>
<td>Freeze-drying Process Design</td>
<td>621</td>
</tr>
<tr>
<td></td>
<td>Cristina Ratti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>621</td>
</tr>
<tr>
<td></td>
<td>Underlying Principles of Freeze-drying</td>
<td>622</td>
</tr>
<tr>
<td></td>
<td>Process Design</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>Modeling the Process</td>
<td>636</td>
</tr>
<tr>
<td></td>
<td>Industrial Freeze-drying</td>
<td>636</td>
</tr>
<tr>
<td></td>
<td>Costs</td>
<td>639</td>
</tr>
<tr>
<td></td>
<td>Unconventional Freeze-drying</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>641</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>642</td>
</tr>
<tr>
<td>23</td>
<td>Crystallization Process Design</td>
<td>648</td>
</tr>
<tr>
<td></td>
<td>John J. Fitzpatrick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>648</td>
</tr>
<tr>
<td></td>
<td>Crystallization</td>
<td>651</td>
</tr>
<tr>
<td></td>
<td>Crystallization Equipment</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>Process Design of Batch Cooling Crystallizers</td>
<td>663</td>
</tr>
<tr>
<td></td>
<td>Process Design of Continuous Evaporative and Vacuum Evaporative Crystallizers</td>
<td>672</td>
</tr>
<tr>
<td></td>
<td>Monitoring and Control of Crystallization Processes</td>
<td>678</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>680</td>
</tr>
<tr>
<td>24</td>
<td>Aseptic Process Design</td>
<td>682</td>
</tr>
<tr>
<td></td>
<td>Prabhat Kumar, K.P. Sandeepp and Josip Simunovic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>682</td>
</tr>
<tr>
<td></td>
<td>History of Aseptic Processing</td>
<td>683</td>
</tr>
<tr>
<td></td>
<td>Important Aspects of Aseptic Process Design</td>
<td>686</td>
</tr>
<tr>
<td></td>
<td>Regulations Related to Aseptic Processing</td>
<td>705</td>
</tr>
<tr>
<td></td>
<td>Case Study: Aseptic Processing of Sweetpotato Purée</td>
<td>705</td>
</tr>
<tr>
<td></td>
<td>Future Trends</td>
<td>707</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>707</td>
</tr>
<tr>
<td>25</td>
<td>Extrusion Process Design</td>
<td>710</td>
</tr>
<tr>
<td></td>
<td>Kasiviswanathan Muthukumarappan and Chinnadurai Karunanithy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>710</td>
</tr>
<tr>
<td></td>
<td>Types of Extruder</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>Extruder Components</td>
<td>712</td>
</tr>
<tr>
<td></td>
<td>Extruder Variables</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>Feed Ingredient Variables</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>Interactions Between Extruder and Ingredient Variables</td>
<td>722</td>
</tr>
<tr>
<td></td>
<td>Product Qualities</td>
<td>727</td>
</tr>
</tbody>
</table>
26 Baking Process Design 743
Emmanuel Purlis

Introduction 743
The Baking Process 745
Baking Design Based on Process Modelling and Simulation 751
Baking Equipment 756
Trends in Baking Technology 759
Conclusions 760
Appendix: Worked Examples 761
Nomenclature 765
References 766

27 Membrane Separation and Design 769
Rohit Ruhal and Bijan Choudhury

Introduction 769
Process Flow-sheet for Membrane Operation 770
Basic Theoretical Principle, Membrane Operation Mode and Membrane Materials 772
Membrane Modules 773
Types of Membrane Process 775
Flux Equations 779
Mode of Operation 781
Design of Membrane 782
Fouling of Membrane in Ultrafiltration and Microfiltration 784
Cleaning and Sanitation 784
Cost 784
Applications 784
Conclusions 786
References 787

28 Food Frying Process Design 789
Ferruh Erdogdu and T. Koray Palazoglu

Introduction 789
Fried Products 793
Contents

Quality Attributes of Fried Products 793
Frying Oils 795
Frying Equipment 797
Heat and Mass Transfer during Frying 801
Process Control 805
Conclusions and Future Needs 806
References 807

29 Mechanical Separation Design 811
Timothy J. Bowser

Definition and Purpose 811
Food Products Processed by Mechanical Separation 812
Theoretical Principles of Mechanical Separation 812
Equipment Used for Mechanical Separation 816
Design of Mechanical Separation Processes 824
Process Control 827
Hazard and Safety Issues 828
Cleaning and Sanitation Methods 828
Capital and Operating Costs 829
Future Needs 829
References 830

30 Mixing and Agitation Design 834
Siddhartha Singha and Tapobrata Panda

Introduction 834
Mixing and Agitation: Theoretical Principles 835
Mixing Equipment: Mode of Operation and Comparative Analysis 839
Design Principles of Mixers in the Food Industry 849
Operational Issues of Mixing Equipment 863
Capital and Operating Costs for Different-sized Equipment 866
Summary and Future Needs 867
References 868

31 Extraction Process Design 871
Q. Tuan Pham and Frank P. Lucien

Introduction 871
Liquid–Liquid Extraction 872
Solid–Liquid Extraction (Leaching) 890
Supercritical Fluid Extraction 901
Hygienic Design Aspects 909
Economics 911
Summary and Future Needs 912
Nomenclature 913
References 915

32 Size Reduction Process Design 919
M. Reza Zareifard, Ali Esehaghbeygi and Amin Allah Masoumi

Introduction 919
Texture of Materials 921
Size Classifications 921
Size Reduction Procedures 925
Types of Stresses and Energy Requirements 928
Performance Characteristics 934
Devices 936
Solid Foods Size Reduction 949
Liquid Foods Size Reduction 951
Nanoparticles in the Food Industry 955
References 961

33 Irradiation Process Design 967
Rod Chu

Introduction 967
Applications of Food Irradiation 969
The Food Irradiation Process 970
The Food Irradiation Process Flow 971
Basic Theoretical Principles 972
Design Considerations for Food Irradiators 975
Rules of Thumb 980
Simple Equations 982
Process Control 985
Software for Modeling Food Irradiators 987
Cleaning and Sanitation Methods 990
Capital and Operating Costs for Different Sizes of Equipment 991
Summary and Future Needs 992
Examples of Food Irradiators 993
References 994

34 Design for High-Pressure Processing 998
Tatiana Koutchma

Introduction 998
The Commercial Market for HHP-Processed Products 999
The Potential of HHP Technology as a Unit Operation 999
The HHP Processing Cycle 1002
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Microwave and Radio-Frequency Heating Processes for Food</td>
<td>1031</td>
</tr>
<tr>
<td></td>
<td>Francesco Marra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>1031</td>
</tr>
<tr>
<td></td>
<td>Indirect Electroheating: Basic Information about MW and RF Heating</td>
<td>1032</td>
</tr>
<tr>
<td></td>
<td>Empirical Data and Properties Needed for Designing MW and RF Processes</td>
<td>1038</td>
</tr>
<tr>
<td></td>
<td>Conceptual Design of Electroheating Processes</td>
<td>1040</td>
</tr>
<tr>
<td></td>
<td>Equipment</td>
<td>1041</td>
</tr>
<tr>
<td></td>
<td>Processes, Products and Potential Products</td>
<td>1044</td>
</tr>
<tr>
<td></td>
<td>MW and RF Safety Guidelines</td>
<td>1049</td>
</tr>
<tr>
<td></td>
<td>The Economics of MW and RF Processing</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>1052</td>
</tr>
<tr>
<td>36</td>
<td>Design of Ohmic Heating Processes</td>
<td>1057</td>
</tr>
<tr>
<td></td>
<td>Ilkay Sensoy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>1057</td>
</tr>
<tr>
<td></td>
<td>Applications of Ohmic Heating and Moderate-Electric-Field Processing</td>
<td>1059</td>
</tr>
<tr>
<td></td>
<td>The Ohmic Heating Process</td>
<td>1062</td>
</tr>
<tr>
<td></td>
<td>Summary and Future Needs</td>
<td>1071</td>
</tr>
<tr>
<td></td>
<td>Nomenclature</td>
<td>1071</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>1072</td>
</tr>
<tr>
<td>37</td>
<td>Design of Equipment for Pulsed Electric Field Processing</td>
<td>1078</td>
</tr>
<tr>
<td></td>
<td>Federico Gómez Galindo and Pär Henriksson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>1078</td>
</tr>
<tr>
<td></td>
<td>Principles and Technology</td>
<td>1080</td>
</tr>
<tr>
<td></td>
<td>Calculations, Monitoring and Optimization of Treatment Parameters</td>
<td>1093</td>
</tr>
<tr>
<td></td>
<td>Capital and Operating Costs</td>
<td>1097</td>
</tr>
<tr>
<td></td>
<td>Summary and Future Needs</td>
<td>1098</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>1100</td>
</tr>
</tbody>
</table>
38 Process Design Involving Ultrasound 1107
 Jordi Salazar, Antoni Turó, Juan A. Chávez
 and Miguel J. García-Hernández

 Introduction 1107
 Fundamentals of Ultrasound 1108
 Low-Intensity Ultrasound 1109
 High-Intensity Ultrasound 1134
 Conclusions 1155
 References 1156

39 Process Design Involving Pulsed UV Light 1166
 Ali Demirci and Nene M. Keklik

 Introduction 1166
 End Products of the Process 1167
 Process Components 1170
 Basic Theoretical Principles and Mode of Operation 1171
 Equipment [Advantages and Limitations] and Parameters 1173
 Empirical Data and Rules of Thumb 1174
 Estimation of the Design Parameters 1177
 Process Control, Operations and Maintenance 1178
 Advanced Levels of Process Design for Complicated Systems 1178
 Cleaning and Sanitation Techniques 1179
 Capital and Operating Costs 1180
 Examples of Studies 1180
 Worked Examples 1182
 Summary and Future Needs 1183
 References 1184

40 High-Voltage Food Processing Technology: Theory, Processing
 Design and Applications 1188
 Paul Takhistov

 Introduction 1188
 Unified Analysis of Electric-Field-Based Food
 Processing Technologies 1190
 Pulsed Electric Fields in Food Processing and Preservation 1202
 Treatment Chambers and Equipment 1203
 Mechanisms of Microbial Inactivation 1207
 Events in Electroporation and Microbial Lysis 1208
 Kinetics of Microbial Inactivation 1211
 PEF Process Calculations and Variables 1213
 Mathematical Model of Continuous Operation [Esplugas et al., 2001] 1218
Process Calculations 1219
Physical Properties of Food Products for PEF Processing 1219
Application of PEF Treatment to Food Preservation 1221
PEF Treatment as a Hurdle Technology 1225
References 1229

41 An Overview of Food Packaging: Material Selection and the Future of Packaging 1237
Jasim Ahmed and Tanweer Alam

Introduction 1237
Why Do We Need Packaging? 1239
Mass Transfer and Food–Package Interactions 1242
Food Packaging Materials 1245
Sterilization of Packaging Materials 1256
Packaging Design 1258
Packaging for Nonthermal Processes 1260
Biodegradable Packaging 1266
The Future of Packaging 1268
Packaging Safety, Legislation and Regulations 1274
Conclusions 1276
References 1276

42 Mass Transport Phenomena in Food Packaging Design 1284
Marcella Mastromatteo, Amalia Conte and Matteo Alessandro Del Nobile

Introduction 1284
Barrier Properties: Steady State 1288
Barrier Properties: Transient State 1320
References 1332

43 Design of Modified and Controlled Atmospheres 1340
Gurbuz Gunes and Celale Kirkin

Introduction 1340
Gases Used in Modified Atmospheres 1341
Packaging Materials 1342
Design of Modified-Atmosphere Packaging for Foods 1343
Equipment for MAP 1359
Controlled-Atmosphere Storage 1360
Nomenclature 1361
References 1362
44 Packaging for Processed Food and the Environment

Eva Almenar, Muhammad Siddiq and Crispin Merkel

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1369</td>
</tr>
<tr>
<td>Packaging for Processed Food and the Environment</td>
<td>1370</td>
</tr>
<tr>
<td>Traditional Packaging Materials and the Environment</td>
<td>1379</td>
</tr>
<tr>
<td>Novel Packaging Materials and the Environment</td>
<td>1390</td>
</tr>
<tr>
<td>The Future: the Role of Consumers and the Food Industry in the</td>
<td></td>
</tr>
<tr>
<td>Impact of Packaging on the Environment</td>
<td></td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>1395</td>
</tr>
<tr>
<td>References</td>
<td>1397</td>
</tr>
</tbody>
</table>

45 Food Quality and Safety Assurance by Hazard Analysis and Critical Control Point

Tomás Norton and Brijesh Tiwari

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1406</td>
</tr>
<tr>
<td>Introduction to Hazard Analysis Critical Control Points (HACCP)</td>
<td>1408</td>
</tr>
<tr>
<td>The Advantages of Using the HACCP Approach</td>
<td>1410</td>
</tr>
<tr>
<td>Prerequisite Programmes</td>
<td>1411</td>
</tr>
<tr>
<td>Developing a HACCP Plan</td>
<td>1412</td>
</tr>
<tr>
<td>The Seven Principles of HACCP</td>
<td>1413</td>
</tr>
<tr>
<td>Implementing the HACCP Plan</td>
<td>1415</td>
</tr>
<tr>
<td>Using HACCP during Food Manufacturing</td>
<td>1420</td>
</tr>
<tr>
<td>HACCP in a Meat Plant</td>
<td>1422</td>
</tr>
<tr>
<td>HACCP in a Cheese Plant</td>
<td>1425</td>
</tr>
<tr>
<td>HACCP in a Fish-Smoking Plant</td>
<td>1425</td>
</tr>
<tr>
<td>The Influence of HACCP on Hygienic Design</td>
<td>1429</td>
</tr>
<tr>
<td>Combining HACCP and ISO 22000:2005</td>
<td>1431</td>
</tr>
<tr>
<td>References</td>
<td>1433</td>
</tr>
</tbody>
</table>

46 Commercial Imperatives

Gerard La Rooy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1436</td>
</tr>
<tr>
<td>Fundamental Financial Matters</td>
<td>1437</td>
</tr>
<tr>
<td>Financial Impacts of Technical Projects</td>
<td>1442</td>
</tr>
<tr>
<td>Analytical Concepts and Techniques</td>
<td>1444</td>
</tr>
<tr>
<td>Process Variability</td>
<td>1452</td>
</tr>
<tr>
<td>Adopting a ‘Process-Based Approach’</td>
<td>1455</td>
</tr>
<tr>
<td>A Sound Design Process</td>
<td>1460</td>
</tr>
<tr>
<td>Applying the Concepts and Techniques</td>
<td>1470</td>
</tr>
<tr>
<td>References</td>
<td>1470</td>
</tr>
</tbody>
</table>

Index to Volumes I and II
Generally, a process is defined as a sequence of events that transforms the biological materials of food products, via biochemical changes, into stable forms with added value. This can create new products or modify existing ones. Process design refers to the design of food processes and manufacturing methods, while plant design refers to the design of the whole processing plant. The processing of food is no longer as simple or straightforward as in the past. Food process design is an interdisciplinary science that is highly regarded by the food industry. The architecture of food process engineering is based on the solid foundations of chemical and mechanical engineering, together with the basics of microbiology, chemistry, nutrition, and economics. Other related disciplines, including instrumentation, computer science and mathematics, complete the discipline. Process design is the core of food engineering, and frequently begins with a concept and eventually ends in fabrication. Many types of documentation are involved in the process to test theories, display results, and organize data.

Today, the food industry is one of the largest manufacturing industries in the world and the significant contribution of food engineers to the industry is well recognized. A professional food engineer should be well versed in the basic principles, processes, flow diagrams, instrumentation and process control. The Handbook of Food Process Design has been developed primarily for fulfilling these expectations and is intended to be used by students in undergraduate and graduate courses in food process engineering/food technology/biochemical engineering, as well as by professionals working in the food industry. It could also be used by graduates in other disciplines, such as chemical and/or mechanical engineering.

The editors of this book have vast experience in teaching, research, and extension activities related to the food industry and have long realized the need for such a handbook on process equipment design to fill the current gap in the basic and applied fields of food engineering. They have endeavoured to gather eminent academics and professionals from across the globe and have succeeded in securing their participation in this book. All the contributors have diverse backgrounds, ranging from electronic engineering to food science.

The book contains 46 chapters in two volumes, with chapters grouped according to their similar subject matter. Chapters 1–12 are devoted to the basic principles, starting with units and dimensions, moving on to thermodynamics and reaction kinetics pertaining to foods, and followed by sensors and instrumentation involved in process automation. The handbook is well balanced by its coverage of unit operations involved in conventional and novel processing technologies to be used by the food industry.
Each chapter is intended to provide concise up-to-date descriptions of fundamentals, applications, solved problems, and methods of cost analysis. Chapters 13–18 cover heating and cooling systems used in food processing, including pasteurization, sterilization, refrigeration, and freezing. Drying is considered one of the most successful unit operations used in the food industry. Process design related to the drying of food materials is covered in Chapters 19–22.

Some important process designs, such as crystallization, extrusion, aseptic processing, baking, and frying, are well discussed in Chapters 23–28. Chapters 29–32 cover mechanical operations related to food process industries, including mixing/agitation, size reduction, and extraction and leaching processes. Chapters 33–40 focus on novel process designs, including pulsed light, ultrasound, ohmic heating, pulsed electric field, high pressure, and irradiation. Food packaging is discussed in Chapters 41–44, while quality systems and cost analysis are covered in Chapters 45 and 46.

The editors are confident that this handbook will prove to be interesting, informative, and enlightening to readers in the field. They would appreciate receiving new information and comments to assist in future development of the next edition.

Jasim Ahmed
Mohammad Shafiur Rahman
We would like to thank Almighty Allah for giving us life and the opportunity to gain knowledge to write this important book. We wish to express our sincere gratitude to the Sultan Qaboos University, Polymer Source Inc. and Kuwait Institute for Scientific Research for providing the opportunity and facilities to execute such an exciting project, and for supporting us in research and other intellectual activities around the globe.

We sincerely acknowledge the sacrifices made by our parents during our early education. Appreciation is due to all our teachers in the course of our careers. Special thanks to our colleagues and other research team members for their support and encouragement. We are grateful to our contributors for their wonderful cooperation and, finally, we are indebted to our families for their continued support and patience throughout the project.

Acknowledgements
Jasim Ahmed

Jasim Ahmed, Research Scientist, at Kuwait Institute for Scientific Research, Kuwait, is the author or co-author of over 150 technical articles including 95 refereed journal papers, 40 conference papers, 18 book chapters, 20 popular articles, and 4 books. He has edited several books including *Novel Food Processing: Effects on Rheological and Functional Properties* and *Starch-based Polymeric Materials and Nanocomposites: Starch Chemistry, Processing and Applications* published by CRC Press, Boca Raton, Florida, and *Handbook of Vegetables and Vegetables Processing* and *Handbook of Tropical and Subtropical Fruits Processing and Packaging* published by Wiley-Blackwell, NJ.

Dr Ahmed has served as an editor of the *International Journal of Food Properties* for more than 5 years. Furthermore, he has served as special editor for a number of other journals. He is also associated with the editorial boards of three international journals. In 2010, he was invited to serve as a sub-panel member for the Food Processing and Packaging Section of the Institute of Food Technology (IFT), Chicago, USA.

Dr Ahmed is a professional member of the Institute of Food Technology (IFT) and a life member of the Association of Food Scientists and Technologists (AFST), India. He has been involved in many professional activities, such as organizing international conferences, industrial training and workshops. He received the BTech (Food and Biochemical Engineering) in 1991 and M Tech (Food and Biochemical Engineering) in 1993 from Jadavpur University, Kolkata, India, and PhD in Food Technology in 2000 from GND University, India. He worked as Visiting Professor and Research Director at McGill University, and Polymer Source Inc., Montreal, Canada, before moving to Kuwait.

Dr Ahmed was awarded a gold medal by Jadavpur University, India for securing the top position in the M.Tech degree. He has received several grants from various funding agencies to carry out his research during his academic career. He received a best reviewers’ award by Elsevier in the area of food engineering in 2009.

Dr Ahmed has been involved in food processing teaching, research and industry over 18 years and has proved himself an active scientist in the area of food engineering. He has worked on food product development, food rheology and structure, novel food processing and the thermal behaviors of foods. His current research focus is on biopolymer and starch-based nanocomposites. Dr Ahmed’s work has been well recognized globally: there are more than 1000 citations of his work and his h-index is 20.
Mohammad Shafiur Rahman

Mohammad Shafiur Rahman, Professor at the Sultan Qaboos University, Sultanate of Oman, is the author or co-author of over 250 technical articles including 90 refereed journal papers, 87 conference papers, 58 book chapters, 34 reports, 12 popular articles, and seven books. He is the author of the internationally acclaimed and award-winning *Food Properties Handbook*, published by CRC Press, Boca Raton, Florida, which was one of CRC’s bestsellers in 2002. The second edition is now released under his editorship. He was also the editor of the popular book *Handbook of Food Preservation* published by CRC Press, Boca Raton, Florida. The first edition was one of CRC’s bestsellers in 2003, and the second edition is now on the market. He was invited to serve as one of the associate editors for the *Handbook of Food Science, Engineering and Technology*, and as one of the editors for the *Handbook of Food and Bioprocess Modeling Techniques* published by CRC Press.

Professor Rahman initiated the *International Journal of Food Properties* (published by Marcel Dekker) and has served as the founding editor for more than 10 years. He also serves on the editorial boards of eight international journals. He is a member on the Food Engineering Series Editorial Board of Springer Science, New York, and serves as a section editor for the Sultan Qaboos University Journal of Agricultural Sciences.

In 1998 he was invited to serve as a Food Science Adviser for the International Foundation for Science (IFS) in Sweden.

Professor Rahman is a professional member of the New Zealand Institute of Food Science and Technology and the Institute of Food Technologists, a member of the American Society of Agricultural Engineers and the American Institute of Chemical Engineers, and Member of the Executive Committee of the International Society of Food Engineering (ISFE). He has been involved in many professional activities, such as organizing international conferences, training workshops and other extension activities related to the food industry. He has been a keynote/plenary speaker at many international conferences. He received the BSc Eng. (Chemical) in 1983 and MSc Eng. (Chemical) in 1984 from Bangladesh University of Engineering and Technology, Dhaka, MSc in food engineering in 1985 from Leeds University, England, and PhD in food engineering in 1992 from the University of New South Wales, Sydney, Australia.

Professor Rahman has received numerous awards and fellowships in recognition of his research and teaching achievements, including the HortResearch Chairman’s Award, the Bilateral Research Activities Program (BRAP) Award, CAMS Outstanding Researcher Award 2003, SQU Distinction in Research Award 2008, and the British Council Fellowship. In 2008 Professor Rahman ranked among the top five leading scientists and engineers of 57 OIC member states in the agroscience discipline.

Professor Rahman is an eminent scientist and academic in the area of food processing. He is recognized for his significant contributions to the basic and applied knowledge of food properties related to food structure, engineering properties and food stability. His total SCOPUS citation is more than 1200 and his h-index is 20, which indicates the high impact of his research in the international scientific community.
Contributors

Mohammad Shafiur Rahman, PhD
Professor
Department of Food Science and Nutrition, Sultan Qaboos University, Muscat, Oman
email: shafiur@squ.edu.om

Jasim Ahmed, PhD
Research Scientist
Food and Nutrition Program, Kuwait Institute for Scientific Research, Safat, Kuwait
email: jahmed2k@yahoo.com and jaahmed@kisr.edu.kw

Alik Abakarov, PhD
Visiting Professor
Technical University of Madrid, Higher Technical School of Agricultural Engineering, Madrid, Spain
email: alik.abakarov@upm.es

Tarif Ali Adib, PhD
Research Scientist
Water Quality Observation Laboratory, Lattakia, Syria
email: aliadib@hotmail.fr

Rajib Ul Alam Uzzal, PhD
Powertrain Control Engineer
Chrysler Technical Center
Chrysler Drive, Auburn Hills, Michigan, USA
email: rajiboic@gmail.com

Tanweer Alam, PhD
Associate Professor (Joint Director)
Indian Institute of Packaging, Mumbai, India
email: amtanweer@rediffmail.com
Eva Almenar, PhD
Assistant Professor
School of Packaging, Michigan State University, East Lansing, Michigan, USA
email: ealmenar@msu.edu

Sergio Almonacid, PhD
Associate Professor
Department of Chemical and Environmental Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile.
email: sergio.almonacid@usm.cl

Santanu Basu, PhD
Associate Professor
Department of Food Engineering
National Institute of Food Technology, Entrepreneurship and Management, Kundli, Haryana, India
email: santbasu@gmail.com

Pinaki Bhattacharya, PhD
Professor
Department of Chemical Engineering, Jadavpur University, Kolkata, India
email: pinaki_che@yahoo.com

Timothy J. Bowser, PhD, PE
Associate Professor
Department of Biosystems and Agricultural Engineering, and the Robert M.Kerr Food and Agricultural Products Center
Oklahoma State University, Stillwater, Oklahoma, USA
email: bowser@okstate.edu

Juan A. Chávez, PhD
Associate Professor
Sensor Systems Group, Department of Electronic Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
email: juan.antonio.chavez@upc.edu

Bijan Choudhury, PhD
Assistant Professor
Department of Biotechnology, Indian Institute of Technology, Roorkee, India
email: bijanfbs@iitr.ernet.in
Contributors

M.A.A. Shoukat Choudhury, PhD
Assistant Professor
Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
email: shoukat@che.buet.ac.bd

Rod Chu, BS
Retired Scientist
Ottawa, Ontario, Canada
email: rodchu2@yahoo.ca

Amalia Conte, PhD
Researcher
Department of Food Science, University of Foggia and Istituto per la Ricerca e le Applicazioni Biotecnologiche per la Sicurezza e la Valorizzazione dei Prodotti Tipici e di Qualità – BIOAGROMED, Foggia, Italy
email: a.conte@unifg.it

Maria Valeria De Bonis, PhD
Post-doctoral teaching assistant
CFDfood-DITEC, Università degli Studi della Basilicata, Potenza, Italy
email: mv.debonis@gmail.com

Matteo Alessandro Del Nobile, PhD
Associate Professor
Department of Food Science, University of Foggia and Istituto per la Ricerca e le Applicazioni Biotecnologiche per la Sicurezza e la Valorizzazione dei Prodotti Tipici e di Qualità – BIOAGROMED, Foggia, Italy
email: ma.delnobile@unifg.it

Ali Demirci, PhD
Professor
Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
email: demirci@psu.edu

Kirk Dolan, PhD
Associate Professor
Department of Food Science and Human Nutrition, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan, USA
email: dolank@msu.edu
Contributors

Ferruh Erdogdu, PhD
Professor of Food Process Engineering
Department of Food Engineering, University of Mersin, Mersin, Turkey
email: ferruherdogdu@yahoo.com

Ali Esehaghbeygi, PhD
Associate Professor
Department of Farm Machinery, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
email: esehaghbeygi@cc.iut.ac.ir

E. Özgül Evranuz, PhD
Professor of Food Process Engineering
Food Engineering Department, Faculty of Chemical & Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
email: evranuz@itu.edu.tr

John J. Fitzpatrick, PhD
Assistant Professor
Department of Process and Chemical Engineering, University College, Cork, Ireland
email: j.fitzpatrick@ucc.ie

Federico Gómez Galindo, PhD
Research Scientist
Department of Food Technology, Engineering and Nutrition, Lund University, Sweden
email: Federico.Gomez@food.lth.se

Miguel J. García-Hernández, PhD
Professor
Sensor Systems Group, Department of Electronic Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
email: miguel.j.garcia@upc.edu

Gurbuz Gunes, PhD
Associate Professor
Food Engineering Department College of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
email: gunesg@itu.edu.tr
Contributors

M.N.A. Hawlader, PhD
Professor
Department of Mechanical Engineering, Faculty of Engineering
International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur, Malaysia
email: mehawlader@iium.edi.my

Pär Henriksson
Managing Director
Arc Aroma Pure AB, Lund, Sweden
email: info@arcaromapure.se

K.A. Jahangeer, MEng, MIES
Professional Officer {Academic Research}
Department of Mechanical Engineering, National University of Singapore, Singapore
email: mpejkah@nus.edu.sg

Kazi Bayzid Kabir, PhD
Assistant Professor
Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
email: kazibayzid@che.buet.ac.bd

Dattatreya M. Kadam, PhD
Senior Scientist
Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, Punjab, India
email: kadam1k@yahoo.com

Chinnadurai Karunanithy, PhD
Research Associate
Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, South Dakota, USA
email: Karunanithy.Chinnadurai@sdstate.edu.

Nene M. Keklik, PhD
Assistant Professor
Department of Food Engineering, Cumhuriyet University, Sivas, Turkey
email: meltemkeklik@gmail.com

Mohd. Kaleem Khan, PhD
Assistant Professor
Department of Mechanical Engineering, Indian Institute of Technology, Patna, India
email: mkkhan@iitp.ac.in