Integrated Clinical Orthodontics
Integrated Clinical Orthodontics

Edited by

Vinod Krishnan, BDS, MDS, MOOrth, RCS Ed
Professor, Department of Orthodontics, Sri Sankara Dental College, Trivandrum, Kerala, India

Ze’ev Davidovitch, DMD, Cert Ortho
Professor of Orthodontics, Emeritus, Harvard University, Boston, Massachusetts, USA
Clinical Professor, Department of Orthodontics, Case Western Reserve University, Cleveland, Ohio, USA
Dedicated to

My ever-inspiring family, who supported me throughout this project
My children, Jithu and Malu

My mentors, Dr Jyothindra Kumar (orthodontist) and the late Dr Ponnuswamy (anatomist),
who changed the way I looked at my profession

and

All those who would love to see advancement in the ‘Science of Orthodontics’

Vinod Krishnan

My wife, for her continuous support and advice; my children, for their compassion and constructive suggestions;
and my grandchildren, for their excellence in computer science

Ze’ev Davidovitch
Laure Lebret and Anna-Marie Grøn: for lives committed to integrated orthodontic education

It is fitting to dedicate a book titled Integrated Clinical Orthodontics to two teachers whose lives were committed to interactive and integrated education: Laure Lebret and Anna-Marie Grøn. Both were full-time faculty members in the Departments of Orthodontics at the Forsyth Dental Center (initially The Forsyth Infirmary for Children and now The Forsyth Institute) and the Harvard School of Dental Medicine. The two affiliated institutions co-sponsored the orthodontic postgraduate program in an unparalleled combination until 1990. Together with Dr Coenrad F A Moorrees, the Chairman of both departments for over 40 years, they were the pillars of a unique educational program. The fact that the three of them originated from three different countries stands as an important detail in the history of a program whose graduates have spread worldwide, carrying with them the notion that professional excellence requires constant curiosity, and a search for contributing factors derived from any reasonable source. Coenrad Moorrees was born in Holland, Laure Lebret in France, and Anna-Marie Grøn in Denmark. Each was touched with difficult experiences during the Second World War.

To many generations of Harvard/Forsyth orthodontic graduates, our education was nurtured with the indelible impact of these three teachers, who were role models of civility, collegiality, scientific thinking, and productivity. Dr Moorrees departed in 2003, Dr Lebret in 2009, and one year later, Dr Grøn joined them, leaving behind a legacy of goodness, along with the hard and patient work of educating hundreds of orthodontists, many of whom became academicians, among them an unconventional number of chairpersons or program directors.

Laure Lebret and Anna-Marie Grøn were pioneer women, as dentists, orthodontists, and postgraduate teachers. Known as the important cornerstones in Coenrad Moorrees’ team, both had solid and independent cores with sharp minds and caring dispositions. They were involved with Dr Moorrees in seminal studies on the dentition and various aspects of facial growth, the most important of which was a long-term study of over 400 sets of twins, investigating the relation of facial and dental development.

In addition to co-authoring papers with Dr Moorrees and other workers on dental development, natural head position, and the mesh diagram analysis, Laure Lebret worked and published on the growth of the human palate, the reproducibility of rating stages of tooth movement, and physiological tooth migration. While tackling with Dr Moorrees the principles of diagnosis and also dental development, Anna-Marie Grøn’s role was cut in the equally demanding and meticulous research of reproducibility of rating stages of osseous development, and the prediction of the timing of tooth emergence. The research that both women engaged in was not easy, for they mastered the intricacies of, and fully understood the variations in, clinical research, let alone longitudinal investigations with thousands of collected measurements per child. Their inquiry was clean, responsible, and painfully detailed. Their publications are, currently some 40 and 50 years later, having an impact on clinical decisions for thousands of children worldwide. One particular summary of much of the combined efforts of Lebret, Grøn, and Moorrees is embedded in a paper entitled ‘Growth studies of the dentition: a review’ (Moorrees CF, Grøn AM, Lebret LM, Yen PK, Fröhlich FJ, American Journal of Orthodontics 1969; 55: 600–16). Rarely is it not referenced in a paper or chapter on dental development.

Beyond the research and organized, clear didactics, the clinical teaching of Grøn and Lebret was in line with what today is labeled evidence-based practice and critical appraisal. ‘Justify the plan’, was their modus operandi, and ‘consider the alternatives’, before you decide. They were not necessarily unique in these requests. They simply transferred their research experience into daily clinical practice. They translated the central tendencies developed by research into the individual environment, to choose and deliver sound individualized treatment. That was the educational culture they helped us go through, and later propagate on our own as we became educators.

For all the gifts of knowledge and humanity they bestowed on their students worldwide, we dedicate this book to Laure Lebret and Anna-Marie Grøn. They deserve recognition in a book built around the idea of integrated sciences in the ever-expanding world of clinical orthodontics. By honouring their memory, we acknowledge that the explorations are going on, extending from theirs, for the benefit of mankind.

Joseph G Ghafari, DMD
Ze'ev Davidovitch, DMD
Contents

List of Contributors xiii
Preface xvii

Chapter 1 The Increased Stature of Orthodontics 1
Ze’ev Davidovich, Vinod Krishnan
 Introduction 1
 The broadening scope of orthodontics 4
 The orthodontic patient as a human being 4
 The patient’s biological status – does it influence orthodontic treatment? 5
 Conclusions 9
 References 14

Chapter 2 Effective Data Management and Communication for the Contemporary Orthodontist 15
Ameet V Revankar
 Introduction 15
 The role of information technology in the orthodontic practice 16
 Computer-aided diagnosis and treatment planning to enhance communication 17
 Other arenas of communication 22
 Electronic data management 28
 Virtual patient record for integration of specialties 32
 Conclusion 34
 References 35

Chapter 3 Orthodontic Diagnosis and Treatment Planning: Collaborating with Medical and Other Dental Specialists 37
Om P Kharbanda, Neeraj Wadhawan
 Introduction 37
 The other side of the story 38
 Orthodontic diagnosis from a broad perspective 38
 The first interaction with the patient 38
 The importance of the medical history in the orthodontic diagnosis and treatment planning 39
 Identifying local dental abnormalities before attempting orthodontic treatment 50
 Evaluation of the occlusion and the temporomandibular joint 60
 Radiographic examination of the jaws 62
 Conclusions 62
 References 65

Chapter 4 Psychosocial Factors in Motivation, Treatment, Compliance, and Satisfaction with Orthodontic Care 69
Donald B Giddon, Nina K Anderson
 Introduction 69
 Motivation for orthodontic care 69
 Psychosocial variables influencing compliance 77
Chapter 5 Nutrition in Orthodontic Practice
Lauren Schindler, Carole A Palmer
Introduction: the role of the orthodontist in nutrition
83
What is an adequate diet?
84
Nutrition and the orthodontic patient
86
Effective nutrition management of the orthodontic patient
89
Conclusions
94
References
94

Chapter 6 Anomalies in Growth and Development: The Importance of Consultation with a Pediatrician
Adriana Da Silveira
Introduction
96
Pervasive sucking habits and tongue thrusting
97
Growth-related problems
98
Trauma-related issues
100
Conclusions
106
References
107

Chapter 7 The Benefits of Obtaining the Opinion of a Clinical Geneticist Regarding Orthodontic Patients
James K Hartsfield Jr
Introduction
109
Interaction with the clinical geneticist
109
Evolution of the clinical (medical) geneticist specialist
110
When to refer?
111
Radiographic signs
112
History of premature tooth exfoliation
115
Conditions in which premature tooth exfoliation may occur occasionally
116
Supernumerary teeth and hypodontia (oligodontia)
118
Syndromic hypodontia
120
Supernumerary teeth or hypodontia (oligodontia) and cancer
120
Failure of dental eruption
121
Soft and hard tissue asymmetry
122
Maxillary hypoplasia
123
Functional (neuromuscular) asymmetry
124
Mandibular retrognathism
124
Connective tissue dysplasia
125
Cleft lip and cleft palate
127
Conclusion
128
References
128

Chapter 8 Multidisciplinary Team Management of Congenital Orofacial Deformities
Sherry Peter, Maria J Kuriakose
Introduction
132
Orofacial malformations
133
Craniosynostoses
143
Achondroplasia/FGFR3 mutations
148
Holoprosencephalic disorders
149
Conclusion
150
References
150
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Cleft Lip and Palate: Role of the Orthodontist in the Interdisciplinary Management Team</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Anne Marie Kuijpers-Jagtman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>153 Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>154 Interdisciplinary team care</td>
<td></td>
</tr>
<tr>
<td></td>
<td>154 Members of the cleft lip and palate team and their task</td>
<td></td>
</tr>
<tr>
<td></td>
<td>156 Orthodontic management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>165 Conclusions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>165 References</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>What can Orthodontists Learn from Orthopaedists Engaged in Basic Research?</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Carlalberta Verna, Birte Melsen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>168 A common language</td>
<td></td>
</tr>
<tr>
<td></td>
<td>175 Bone adaptation to mechanical deformation and orthodontic tooth movement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>177 Bone reaction to skeletal anchorage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>179 Conclusions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180 References</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>When Should an Orthodontist Seek the Advice of an Endocrinologist?</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>Nadine G Haddad, Linda A DiMeglio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>182 Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>182 Growth hormone deficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>184 Growth hormone excess</td>
<td></td>
</tr>
<tr>
<td></td>
<td>184 Thyroid disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>185 Hyperparathyroidism-jaw tumor syndrome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186 Hypophosphatasia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>187 Rachitic disorders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>188 Osteopetrosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>190 Fibrous dysplasia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>191 Diabetes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>192 Adrenal disorders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>192 Turner syndrome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>193 Conclusions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>193 References</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>The Benefits of Consulting with an Ear, Nose, and Throat (ENT) Specialist Before and During Orthodontic Treatment</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Joseph G Ghafari, Anthony T Macari</td>
<td></td>
</tr>
<tr>
<td></td>
<td>195 Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>195 The anatomical connection: the mouth in its relation with the nose, throat, and ear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>197 Areas of interaction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>211 Conclusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>211 Acknowledgments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>211 References</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Obstructive Sleep Apnea: Orthodontic Strategies to Establish and Maintain a Patent Airway</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Mimi Yow, Eric Lye Kok Weng</td>
<td></td>
</tr>
<tr>
<td></td>
<td>214 Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>215 The spectrum of obstructive sleep-disordered breathing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>215 Decoding OSA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>217 Respiration: effect of anatomy and sleep</td>
<td></td>
</tr>
<tr>
<td></td>
<td>218 OSA in children</td>
<td></td>
</tr>
<tr>
<td></td>
<td>221 OSA in adults</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 14 Acute and Chronic Infections Affecting the Oral Cavity: Orthodontic Implications
Vinod Krishnan, Gunnar Dahlén, Ze’ev Davidovitch

Introduction
Bacterial infections
Chronic infections with oral manifestations
Viral infections
Fungal infections
Parasitic infections
The oral cavity as a source for focal infections
Conclusions
References

Chapter 15 Orthodontics and Pediatric Dentistry: Two Specialties, One Goal
Elliott M Moskowitz, George J Cisneros, Mark S Hochberg

Introduction
Coordinating orthodontic and pediatric dental appointments in a group or solo practitioner setting
Identifying orthodontic and pediatric dental problems earlier than later
Restoring form and function – revisiting the unilateral posterior crossbite with a functional mandibular shift
Congenitally missing maxillary lateral incisors – who does what, when, and how?
Retention considerations and beyond
Enamel demineralization during orthodontic treatment – who takes responsibility for prevention?
Conclusions
References

Chapter 16 Dental Caries, Tooth Fracture and Exposed Dental Pulp: The Role of Endodontics in Orthodontic Treatment Planning and Mechanotherapy
Neslihan Arhun, Ayca Arman-Ozcirpici, Mete Ungor, Omur Polat Ozsoy

Introduction
Pretreatment evaluation and early orthodontic treatment
Interactive collaboration during orthodontic treatment
Emergency orthodontic treatment in trauma cases
Immediate post-orthodontic period, and the long-term retention requirements for avoiding relapse
Conclusion
References

Chapter 17 Pre-Prosthetic Orthodontic Tooth Movement: Interdisciplinary Concepts for Optimizing Prosthodontic Care
Julie Holloway, Meade C Van Putten Jr, Sarandeep Huja

Introduction
Case 1: Orthodontic intrusion
Case 2: Use of dental implants for anchorage and orthodontic tooth extrusion for implant site development
Case 3: Minor tooth movement to gain canine guidance for full mouth rehabilitation
Orthodontic techniques in maxillofacial prosthodontics
Case 4: Restoration after a maxillectomy for osteomyelitis
Case 5: Prosthetic restoration of maxillectomy due to adenoid cystic carcinoma
Contents

Conclusions 330
Acknowledgments 330
References 330

Chapter 18 Orthodontic Treatment in Patients Requiring Orthognathic Surgical Procedures 332
David R Musich
The importance of the sequence/checklist 332
Team preparation – Steps I and II 335
Diagnosis and patient care – Steps III–X 338
Presurgical – Steps XI and XII 351
Postsurgical – Steps XIII–XVI 357
Feedback – Steps XVII–XVIII 362
Conclusions 362
References 364

Chapter 19 The Role of Biomedical Engineers in the Design and Manufacture of Customized Orthodontic Appliances 366
William A Brantley, Theodore Eliades
Introduction 366
Past research activities 366
Current research activities and potential future applications 373
Conclusions 377
References 377

Chapter 20 Tissue Engineering in Orthodontics Therapy 380
Nina Kaukua, Kaj Fried, Jeremy J Mao
Introduction 380
Tissue engineering principles 381
Impact of tissue engineering on orthodontics 384
Orthodontics and dentofacial orthopedics as clinical motivation for tissue engineering 388
Conclusions 389
Acknowledgments 389
References 389

Chapter 21 Corticotomy and Stem Cell Therapy for Orthodontists and Periodontists: Rationale, Hypotheses, and Protocol 392
Neal C Murphy, Nabil F Bissada, Ze’ev Davidovitch, Simone Kucska
Introduction 392
Twentieth-century ‘OldThink’ 393
Orthodontic ‘NewThink’: the age of the stem cell 400
Conclusions 418
Acknowledgment 419
References 419

Chapter 22 The Application of Lasers in Orthodontics 422
Neal D Kravitz
Definition and laser physics 422
Historical perspective 423
Laser versus scalpel 423
Diode versus solid-state lasers 424
Choosing a proper anesthetic 425
Laser machine set-up 427
Procedures and surgical technique 429
Laser safety 440
Chapter 23
Implant Orthodontics: An Interactive Approach to Skeletal Anchorage
Hyo-Sang Park
- **Introduction**
- **Interactive approaches**
- **Holding the molar vertical position**
- **Intrusion of molars**
- **Molar uprighting**
- ** Forced eruption**
- **Surgical placement of micro-implants**
- **Conclusion**
- **References**

Chapter 24
Temporomandibular Dysfunction: Controversies and Orthodontics
Donald J Rinchuse, Sanjivan Kandasamy
- **Temporomandibular disorders – the evolution of controversy**
- **Orthodontics and TMD**
- **Centric relation controversy**
- **Functional occlusion and TMD**
- **Asymptomatic internal derangements – need for treatment?**
- **Controversies regarding TMD treatments**
- **Contemporary multidisciplinary, evidence-based treatment options**
- **Conclusion**
- **References**

Chapter 25
Orthodontic Treatment for the Special Needs Child
Stella Chaushu, Joseph Shapira, Adrian Becker
- **Introduction**
- **Therapeutic access**
- **Patient management**
- **Drawing up a tentative treatment plan**
- **Relapse and retention**
- **Case descriptions**
- **Conclusion**
- **References**

Index
List of Contributors

Nina K Anderson PhD
Clinical Instructor
Department of Developmental Biology
Harvard School of Dental Medicine
Boston, Massachusetts
USA

Neslihan Arhun DDS, PhD, MSc
Associate Professor
Department of Conservative Dentistry
Baskent University, Faculty of Dentistry
Ankara
Turkey

Ayca Arman-Ozcirpici DDS, PhD
Associate Professor
Department of Orthodontics
Baskent University, Faculty of Dentistry
Bahcelievler, Ankara
Turkey

Adrian Becker BDS, LDS, DDO
Clinical Associate Professor Emeritus
Department of Orthodontics and Center for the Treatment of Craniofacial Disorders in Special Needs Individuals
The Hebrew University-Hadassah School of Dental Medicine
Jerusalem
Israel

Nabil F Bissada DDS, MSD
Professor and Chair
Department of Periodontics
Case Western Reserve University
School of Dental Medicine
Cleveland, Ohio
USA

William A Brantley PhD
Professor and Director
Graduate Program in Dental Materials Science
Division of Restorative and Prosthetic Dentistry, College of Dentistry
and
Department of Biomedical Engineering, College of Engineering
Ohio State University
Columbus, Ohio
USA

Stella Chaushu DMD, MSc
Associate Professor and Chair
Department of Orthodontics and Center for the Treatment of Craniofacial Disorders in Special Needs Individuals
The Hebrew University-Hadassah School of Dental Medicine
Jerusalem
Israel

George J Cisneros DMD, MMSc
Professor and Chair
Department of Orthodontics
New York University College of Dentistry
New York
USA

Adriana Da Silveira DDS, MS, PhD
Chief of Orthodontics
Dell Children’s Craniofacial & Reconstructive Plastic Surgery Center and
Adjunct Assistant Professor
Department of Biomedical Engineering
University of Texas at Austin
Austin, Texas
USA

Gunnar Dahlén BSc, DDS, PhD (Dr Odont)
Professor and Chairman
Department of Oral Microbiology
Institute of Odontology
Sahlgrenska Academy at University of Gothenburg
Gothenburg
Sweden

Ze’ev Davidovitch DMD, Cert Ortho
Professor of Orthodontics, Emeritus
Harvard University, Boston
Massachusetts
USA
and
Clinical Professor
Department of Orthodontics
Case Western Reserve University
Cleveland, Ohio
USA

Linda A DiMeglio MD, MPH
Associate Professor
Section of Pediatric Endocrinology and Diabetology
Riley Hospital for Children
Indiana University School of Medicine
Indianapolis, Indiana
USA

Theodore Eliades DDS, MS, Dr Med, PhD
Professor and Director
Graduate Program in Dental Materials Science
Center of Dental Medicine, University of Zurich
Zurich
Switzerland

Kaj Fried DDS, PhD
Professor of Neuroscience
Karolinska Institutet
Department of Dental Medicine
Huddinge
Sweden
Joseph G Ghafari DMD
Professor and Head
Division of Orthodontics and Dentofacial Orthopedics
American University of Beirut Medical Center
Beirut
Lebanon

Donald B Giddon MA, DMD, PhD, FACD
Associate Professor of Clinical Pediatrics
Department of Developmental Biology
Harvard School of Dental Medicine
Boston, Massachusetts
USA

Nadine G Haddad MD, FAAP
Associate Professor of Clinical Pediatrics
Indiana University School of Medicine
Riley Hospital for Children
Section of Endocrinology and Diabetology
Indianapolis, Indiana
USA

James K Hartsfield Jr DMD, MS, MMSc, PhD, FACMG, CDABO
Adjunct Professor
Department of Orthodontics and Oral Facial Genetics
Indiana University School of Dentistry
and
Department of Medical and Molecular Genetics
Indiana University School of Medicine
and
Department of Orthodontics
University of Illinois at Chicago College of Dentistry
Chicago, Illinois
USA

Mark S Hochberg DMD
Program Director
Emeritus, Pediatric Dentistry, Interfaith Medical Center
and
Attending, New York Presbyterian Hospital
New York
USA

Julie Holloway DDS, MS
Program Director
Graduate Prosthodontics Program
Ohio State University College of Dentistry
Columbus, Ohio
Ohio
USA

Sarandeep Huja DDS, PhD
Program Director
Graduate Orthodontics Program
Ohio State University College of Dentistry
Columbus, Ohio
USA

Sanjivan Kandasamy BDSc, BScDent, DocClinDent, MOrthRCS, MRACDS
Clinical Associate Professor
Dental School
University of Western Australia
and
Centre for Advanced Dental Education
St Louis University
St Louis, Missouri
USA

Nina Kaukua DDS
Post Doctoral Fellow
Columbia University Medical Center
Craniofacial Regeneration Center, College of Dental Medicine
New York
USA

O P Kharbanda BDS, MDS, MOrth RCS Ed, MMEd
Professor and Head
Department of Orthodontics and Dentofacial Deformities
Centre for Dental Education and Research
All India Institute of Medical Sciences
New Delhi
India

Neal D Kravitz DMD, MS
Faculty, Washington Hospital Center
Washington, DC
and
Baltimore College of Dental Surgery
Dean's Faculty, University of Maryland
Baltimore, Maryland
USA

Vinod Krishnan BDS, MDS, MOrth RCS (Edin)
Professor
Department of Orthodontics
Sri Sankara Dental College
Trivandrum, Kerala
India

Simone Kucskà BDS, MSD
Kucskà Facial Orthopedics
Sao Paulo, Brazil
and
Post-Doctoral Scholar
Los Angeles, California
USA

Anne Marie Kuijpers-Jagtman DDS, PhD
Professor of Orthodontics
Head of Department of Orthodontics and Craniofacial Biology
Head of Cleft Palate Craniofacial Unit
Radboud University Nijmegen Medical Center
Nijmegen
The Netherlands
Maria J Kuriakose BDS, PhD, Cert Ortho
Associate Professor
Department of Cleft and Craniofacial Surgery
Amrita Institute of Medical Sciences
Kochi, Kerala
India

Anthony T Macari DDS, MS
Instructor/Clinical Director
Division of Orthodontics and Dentofacial Orthopedics
American University of Beirut Medical Center
Riad El Solh
Beirut
Lebanon

Jeremy J Mao DDS, PhD
Professor and Zegarelli Endowed Chair
Columbia University
Director, Center for Craniofacial Regeneration
Senior Associate Dean for Research
Columbia University College of Dental Medicine
New York
USA

Birte Melsen DDS, Dr Odont
Professor and Chairman
Department of Orthodontics, School of Dentistry
Faculty of Health Sciences, Aarhus University
Aarhus
Denmark

Elliott M Moskowitz DDS, MSd, CDE
Clinical Professor
Department of Orthodontics
New York University College of Dentistry
New York
USA

Neal C Murphy DDS, MS
Clinical Associate Professor
Departments of Orthodontics & Periodontics
Case Western Reserve University
School of Dental Medicine
Cleveland, Ohio USA

David R Musich DDS, MS
Clinical Professor of Orthodontics
University of Pennsylvania School of Dental Medicine
Philadelphia, Pennsylvania
and
Lecturer
Department of Orthodontics
University of Illinois, School of Dentistry
Chicago, Illinois
Private practice
Schaumburg, Illinois
USA

Omur Polat Ozsoy DDS, PhD
Associate Professor
Department of Orthodontics
Baskent University, Faculty of Dentistry
Ankara
Turkey

Carole A Palmer EdD, RD, LDN
Professor
Division of Nutrition and Oral Health Promotion
Department of Public Health and Community Service
Tufts University School of Dental Medicine
Boston, Massachusetts
USA

Hyo-Sang Park DDS, MSD, PhD
Professor and Chair
Department of Orthodontics, School of Dentistry
Kyungpook National University
and
Director, Orthodontic Research Center, Kyungpook National University Hospital
Daegu
Korea

Sherry Peter BDS, MDS, FRCS
Clinical Professor
Department of Cleft and Craniofacial Surgery
Amrita Institute of Medical Sciences
Kochi, Kerala
India

Ameet V Revankar BDS, MDS
Assistant Professor
Department of Orthodontics and Dentofacial Orthopedics
SDM College of Dental Sciences and Hospital
Dharwad, Karnataka
India

Donald J Rinchuse DMD, MS, MDS, PhD
Professor and Graduate Orthodontic Program Director
Seton Hill University
Greensburg, Pennsylvania
USA

Lauren Schindler MS, RD
Senior Bariatric Dietitian
St Alexius Hospital NewStart
St Louis, MO
USA

Joseph Shapira DMD
Professor and Chair
Department of Pediatric Dentistry
The Hebrew University-Hadassah School of Dental Medicine
Jerusalem
Israel
Mete Ungor DDS, PhD
Professor
Head of Department of Endodontics
Baskent University, Faculty of Dentistry
Ankara
Turkey

Meade C Van Putten Jr, DDS, MS
Director of Maxillofacial Prosthodontics
The AG James Cancer Hospital and Solove Research Institute
Ohio State University
Columbus, Ohio
USA

Carlalberta Verna DDS, PhD
Associate Professor
Department of Orthodontics, School of Dentistry
Faculty of Health Sciences, Aarhus University
Aarhus
Denmark

Neeraj Wadhawan BDS, MDS
Research Officer
Department of Orthodontics and Dentofacial Deformities
Centre for Dental Education and Research
All India Institute of Medical Sciences
New Delhi
India

Eric Lye Kok Weng BDS, MDS, FRA CDS, FAMS
Consultant
Department of Oral and Maxillofacial Surgery Singapore
and
Assistant Director
Integrated Sleep Service
Changi General Hospital
Singapore

Mimi Yow BDS, FDS RCS, MSc (Orthodontics), FAMS
Senior Consultant
Department of Orthodontics
National Dental Centre
Singapore
and
Clinical Associate Professor
Faculty of Dentistry
National University of Singapore
Singapore
Preface

The subject of this book, integrated clinical orthodontics, seemed initially to be a straightforward topic. After all, we know that we depend on each other, in all walks of life, not excluding orthodontics. Therefore, we thought that it would be helpful to try to compose a publication that would reflect clearly each area where orthodontists interact with experts in other medical specialties, in an effort to upgrade their services to their patients.

Each individual who needs, seeks, or receives orthodontic care, differs from every other individual, molecularly, functionally, and esthetically. This natural variability is reflected in the orthodontic clinic, defining the identity of the specialty whose experts could be beneficial to the orthodontist and the patient alike. Our goal has been to learn from people engaged in clinical research in different medical fields, about their experience and advice on interactions with orthodontists. These interactions stem from the simple fact that none of us knows everything, and whether we like it or not, we depend on the professional opinions of our colleagues in other specialties, whose knowledge can remedy the voids in our own.

In planning the contents of this book, we immediately realized that there are many fields of knowledge that can augment the diagnostic and therapeutic capabilities of the orthodontist. In fact, we were amazed at the large number of these specialties, clearly reflected in the number of chapters in this book, 25, each dedicated to a specialty whose members interact with orthodontists. This increasingly widening scope of orthodontics is enabled by the availability and relative ease of electronic communication, and the expanding new findings in medicine and dentistry. It becomes increasingly difficult to command all relevant information about emerging new and exciting fields, such as tissue engineering and stem cells, and becoming aware of ongoing progress in seemingly traditional fields, such as genetics, psychology, and material science. Interaction with others seems to offer the means to clarify and confirm the identity of clinical findings in the diagnostic phase, and elucidate the road ahead, in terms of treatment plans and the choice of the most suitable mechanotherapy for the individual patient.

The concept emerging from this book is that orthodontics is not merely an exercise in wire bending, but rather a specialty leaning on many others. Interactions, whenever indicated, between the orthodontist and other medical specialists are a powerful tool on the way to excellence. In short, we would like to see each and every reader of this book to think like a healthcare professional and as a conscientious member of the dental profession who wishes to bring credit upon a high calling that has lifted itself from a questionable mechanical art to a most respected and esteemed health service to humankind.

We would like to extend our heartfelt thanks to all our contributing authors, who have generously shared their valuable knowledge and wisdom for the benefit of all those who are eager to learn about the advancements in ‘science of orthodontics’. We were excited to read the manuscripts and are hopeful that the response of our esteemed readers will be the same too. Although the chapters are based on the contributors’ own work and experiences, all the information can be applied to similar settings across the world.

We would also like to express our sincere gratitude to all the staff at Wiley-Blackwell, Oxford, UK, especially Sophia Joyce, Nick Morgan, Catriona Cooper, Lucy Nash, and James Benefield, as well as Lotika Singha (copyeditor), and Anne Bassett (project manager) whose relentless efforts helped us to accomplish this laborious, but fulfilling, task.

Vinod Krishnan
Ze’ev Davidovitch
Editors
emotional complex, by virtue of its ability to participate actively in these functions, involving its soft (cheeks, lips, and tongue) and hard (jaws and teeth) tissues. Painters, sculptors, and photographers have noted these features, and frequently, when creating images of human faces, included the rest of the body, or at least the torso, in their artwork, demonstrating acceptance of the principle that the face and the rest of the body are one unit. The specialty of orthodontics is taught predominantly as a field of endeavor dedicated to the improvement of orofacial esthetics and function. Consideration of biological principles and constraints is shadowed by the desire of both the patient and his/her orthodontist to achieve noticeable improvement in the position and location of the malpositioned crown(s), ignoring the fact that the crowns are anchored in the jaws by their roots, which are surrounded by tissues that act and react like any other organ to any local or systemic factor that comes their way. This situation is similar to an iceberg, visible partially above the water surface, but invisible under it.

Malocclusions are situations where individual teeth or entire dental arches are positioned in undesirable locations, either esthetically or functionally. The goal of orthodontics is to correct or minimize deviations from accepted normal characteristics of dental occlusion, orofacial function, and esthetics. We tend to focus on these deviations from normalcy as the main target of our specialty, while keeping other health-related issues far in the background, sometimes behind the horizon, as if a malocclusion exists in a vacuum, detached from the rest of the body. Maintenance of this outlook may, however, jeopardize the quality of orthodontic diagnosis, treatment plan, outcome, and long-term maintenance of the corrected malocclusion. What is

Introduction

Facial esthetics, balance, and harmony, and/or their absence, have attracted attention from time immemorial, by artist and art viewer alike. Facial expressions can readily reflect various moods, emotions, and feelings, thereby conveying unspoken messages from person to person. The mouth is an essential component of this anatomical–physiological–emotional complex, by virtue of its ability to participate actively in these functions, involving its soft (cheeks, lips, and tongue) and hard (jaws and teeth) tissues. Painters, sculptors, and photographers have noted these features, and frequently, when creating images of human faces, included the rest of the body, or at least the torso, in their artwork, demonstrating acceptance of the principle that the face and the rest of the body are one unit. The specialty of orthodontics is taught predominantly as a field of endeavor dedicated to the improvement of orofacial esthetics and function. Consideration of biological principles and constraints is shadowed by the desire of both the patient and his/her orthodontist to achieve noticeable improvement in the position and location of the malpositioned crown(s), ignoring the fact that the crowns are anchored in the jaws by their roots, which are surrounded by tissues that act and react like any other organ to any local or systemic factor that comes their way. This situation is similar to an iceberg, visible partially above the water surface, but invisible under it.

Malocclusions are situations where individual teeth or entire dental arches are positioned in undesirable locations, either esthetically or functionally. The goal of orthodontics is to correct or minimize deviations from accepted normal characteristics of dental occlusion, orofacial function, and esthetics. We tend to focus on these deviations from normalcy as the main target of our specialty, while keeping other health-related issues far in the background, sometimes behind the horizon, as if a malocclusion exists in a vacuum, detached from the rest of the body. Maintenance of this outlook may, however, jeopardize the quality of orthodontic diagnosis, treatment plan, outcome, and long-term maintenance of the corrected malocclusion. What is
required for attainment of optimal results in orthodontics is broadening of its scope, to include other specialties, dental and medical, that may expose etiological factors, and biological processes that could determine the nature of the cellular/tissue response to mechanotherapy. In short, we should not treat a malocclusion, but rather a person with a malocclusion (McCoy, 1941; Kiyak, 2008).

Presently, orthodontics is viewed by the general population as a field occupied mainly by concerns about facial esthetics, and limited to the application of ‘braces’ to crooked teeth. This image has been cultivated and nurtured by many members of the orthodontic specialty, because it simplifies their lives by highlighting the known fact that teeth move when subjected to mechanical forces. This outlook is deeply embedded in the curricula of the majority of the orthodontic educational/training programs around the world. Orthodontic residents are made to believe, at least subconsciously, that correcting a malocclusion in a human being is just as easy as moving metallic teeth through the warm, soft wax of a typodont (Davidovitch and Krishnan, 2009). Furthermore, this attitude has encouraged general dentists to engage in the practice of orthodontics without obtaining proper education that would qualify them for this task. An example of a poor outcome of such treatment is seen in Figure 1.1. However, orthodontics, which had been viewed until recently as being mainly a technique-oriented profession, has actually evolved into a comprehensive specialty, with a rapidly expanding scope, increasingly interacting with experts in biology, medicine, dentistry, engineering, and computer science. These interactions can provide the orthodontist with important information pertaining to individual patients that may lead to modifications in the diagnosis and treatment plans.

Voluminous expansion of the scientific and clinical bases of orthodontics is occurring in various directions, biological and technical. The role of biology in the diagnosis, treatment planning, and treatment of individual patients is becoming increasingly clear (Cartwright, 1941; Davidovitch and Krishnan, 2009). An orthodontist may be an expert in mechanics, but he/she is not a nutritionist, psychologist, pediatrician, endocrinologist, primary care physician, oral and maxillofacial surgeon, endodontist, prosthodontist, or any other medical and/or dental specialist. Therefore, it seems only prudent to request advice from other specialists whenever a condition is recognized in a person seeking orthodontic treatment, or in a patient who is already being treated.

The reality is that people who possess malocclusions may also have pathological conditions that could significantly impact the course and outcome of orthodontic treatment. This probability creates a need to consult and interact with other specialists familiar with an individual patient, or with the health problem afflicting this individual. Moreover, some people may have communicable diseases that may endanger the well-being of others who are in their environ-

ment. The existence of rapid communication systems enables an orthodontist to easily seek advice from other specialists, leading to the crafting of diagnoses and treatment plans tailored specifically for each individual patient. These systems are also very useful in fostering strong doctor–patient trust, increasing cooperation and improving outcomes.

Likewise, recent advances in material science, metallurgy and biomedical engineering have introduced an increasing array of alloys, capable of generating a wide spectrum of mechanical forces. A continuous interaction between the orthodontist and these engineers has already produced major changes in the design of orthodontic brackets, and the composition of the metallic and nonmetallic wires that generate the proper orthodontic forces, while controlling factors such as friction and strain. This interaction is a fertile ground for the development of new appliances capable of engendering optimal tooth movement, biologically and mechanically, for each patient. Moreover, these engineers are crucial participants in the design and manufacturing of the multiple prototypes of metallic implants and mini-implants, which are used for the creation of intraoral anchorage, thereby taking away this responsibility from teeth and thus avoiding altogether any undesirable tooth movement.

The pioneers of modern orthodontics were pathfinders in a field full of challenges and obstacles. Those leaders utilized the best therapeutic tools available for eliminating malocclusions, paving the way for greater achievements by their successors. Edward H Angle, the ‘father of modern orthodontics’, advocated at the end of the nineteenth century the inclusion of basic medical sciences, such as anatomy, physiology, and pathology, in the curriculum designed for educating dentists as specialists in orthodontics. He apparently saw clearly the functional connection between the head and the rest of the body. Three decades on, one of his students, Albert Ketcham (1929), in attempting to elucidate the reasons for dental root resorption (a major undesirable side effect of tooth movement), concluded that the etiology is associated with the patient’s metabolism. In the following years, resorption of roots was attributed to factors such as nutritional deficiencies, hormonal fluctuations, genetic predisposition, and psychological stress. All these factors point to the notion that tissue remodeling that facilitates tooth movement is dependent, at least in part, on the unique pathophysiological profile of the individual patient. Detailed information on this biological profile may be obtained from a number of different healthcare providers familiar with individual patients.

However, despite the recognition of the importance of life sciences in orthodontic education and practice, considerable emphasis is still being placed on the mechanical aspect of this specialty. Consequently, conditions such as excessive root resorption are labeled as idiopathic, unpre-
dictable and an ‘act of God’. These explanations fly in the face of the long-recognized principle of the intimate union between biology and mechanics in orthodontic therapy. This proximity was first suggested by Farrar (1888), who speculated that tooth movement is facilitated by either resorption or bending of the alveolar bone, or by both processes. Farrar’s comment was surprisingly correct, although it was based on empirical evidence. Experimental evidence supporting Farrar’s hypothesis was provided by Sandstedt (1904–5), and by Baumrind (1969). While Sandstedt used
histological sections to demonstrate that paradental cells are responsible for the force-induced tissue remodeling. Baumrind confirmed in experiments on rats that orthodontic forces indeed bend the alveolar bone.

The broadening scope of orthodontics

The chief purpose of orthodontic treatment is to assist nature in the proper development of the orofacial system in growing children, and correct malocclusions in young and adult patients. Ideally, orthodontics should be practiced in a facility that houses all other medical specialists, such as a hospital, or a large group practice. In such an environment, reaching various experts and obtaining their advice about health-related problems of individual orthodontic patients may be accomplished with relative ease. Specialists such as primary care/family physicians, orthopedists, surgeons, psychologists and nutritionists may be within walking distance from the orthodontic clinic. However, the widespread network of electronic communications today has enabled an orthodontist to refer a patient for consultation and receive the specialist’s opinion in a timely fashion, without dependence on geographical proximity or venue location.

Contemporary orthodontics is a fusion of biology and mechanics, starting with the process of diagnosis, which is based on estimating and documenting the extent of malocclusion, as well as asking: ‘Who is the patient, biologically?’ This question must be answered before any plans of tooth movement can be contemplated. The presence of any systemic or local pathological condition may cause significant alterations in the orthodontic therapeutic plans for any and every individual patient, regardless of age or gender. A comprehensive orthodontic diagnosis should start with a detailed presentation of the patient’s biological profile, including all conditions that may impact on mechanotherapy. This segment of the diagnosis is followed by a detailed description of the malocclusion. The biological segment is the part where interaction with specialists in various medical fields is expressed, and is later reflected in the crafting of an individual treatment plan. A brief example of such a diagnosis is as follows: ‘AZ is a 34-year-old female nurse, mother of two children, with multiple sclerosis that started 5 years ago, with a history of familial neuropathies. She has a Class II Division 1 malocclusion, with a steep mandibular plane, an 8° ANB angle, and a 12 mm overjet.’ This concise but detailed diagnosis implies that the patient is growing and has health-related issues that may overshadow the orthodontic problem and its treatment outcome. Systemic issues of this nature, involving the immune, endocrine, and vascular systems, may alter the response of cells surrounding teeth to applied mechanical stress, modify the velocity of tooth movement and contribute to the creation of undesirable side effects to orthodontic treatment, such as irreversible loss of alveolar bone and shortening of dental roots. Moreover, if medical and/or socioeconomic problems are ignored, and are allowed to persist, maintenance of the corrected malocclusion may be jeopardized. Therefore, in the case of RM, it may be advisable for the orthodontist to communicate with the patient’s pediatrician, endocrinologist, and nutritionist prior to solidifying the diagnosis and treatment plan.

The orthodontic patient as a human being

Orthodontists not only see young individuals, who are ready to face the world with a lot of enthusiasm and confidence, but also adult patients with various needs and expectations. In some instances, patients may be having psychosocial issues, and may seek orthodontic therapy in an attempt to alleviate their personality deficits, improve their social status and find solutions to problems in their professional and personal life. It is extremely important to realize that every patient considered for treatment is an individual with a metabolic profile and physiological traits unique to him/her (Bartley et al., 1997) even though all humans share similar genetic, anatomical, physiological, and biochemical bases. The interindividual differences may arise from physical, social, ethnic, psychological, and metabolic variations, among other factors. It is important to realize that orthodontic treatment is provided to vital tissues that respond in a similar fashion in all patients. However, the extent, duration, and outcome of this response are frequently dependent on biological factors only remotely related to the malocclusion at hand.

The pattern and timing of craniofacial growth and development events are intimately associated with somatic growth-related functions, controlled and regulated by a myriad of chemical and physical factors, of internal and external origin, interacting with target cells in many or all organs and systems. This complex reality faces every orthodontist, as well as any other healthcare provider. It is rather unrealistic to expect that any one individual, in any medical specialty, would be able to comprehend, manage, and memorize all this voluminous knowledge. Hence the need for the orthodontist to keep abreast of new developments in the entire field of medicine, and to interact with members...
of other specialties whenever a situation arises that requires input from other experts.

One fundamental interaction in this formula is between orthodontists, who move teeth with mechanical forces, and the experts who create the means to generate these forces: biomedical and metallurgical engineers. The requirement for a perpetual interaction between experts in these entities is because orthodontic tooth movement requires close interaction between the biological and the mechanical environments (Krishnan and Davidovitch, 2006a; Meikle, 2006) and, even in a healthy patient, the response to orthodontic forces can vary from time to time, because the duration of treatment is often measured in years. In addition, the presence of an underlying ailment that affects the physiological condition may alter the nature of the acute and chronic inflammation that are core events in tooth movement, and modify craniofacial growth and development (Alvear et al., 1986). Cellular signaling molecules generated either in the vicinity of the periodontal ligament or in distant sites have the potential to disrupt tooth movement by altering the levels of biomolecules in the local biological environment of the periodontal ligament (Krishnan and Davidovitch, 2006b).

The patient’s biological status – does it influence orthodontic treatment?

Due to the uniqueness of every individual patient’s biology, it is imperative for the orthodontist to create and maintain open communication channels with practitioners in every medical field. Patients may be referred for consultation to their personal physician, or to experts in specific areas, such as endocrinology, neurology, immunology, genetics, metabolism, pulmonology, nutrition, psychology, and infectious diseases. Each organ or tissue system in a pathological state may have profound effects on paradental cells and tissues, by transferring signal molecules through the vascular system to any tooth being moved, and all the cells surrounding it.

Inflammation is a central coordinator of orthodontic tooth movement, and as such, it ushers leukocytes and plasma out of the mechanically stressed capillaries, which become hyperpermeable in reaction to the release of vasoactive neurotransmitters from the strained nerve terminals. In this fashion, leukocytes that had become primed in remote diseased organs can enter strained dental and paradental tissues, and interact with cells carrying receptors for signaling molecules synthesized by the migratory immune cells. Experiments with human periodontal ligament (PDL) fibroblasts in vitro, revealed that these cells respond readily to cytokines, growth factors, colony stimulating factors and chemo-attractant signals, all of which are produced and released by the newly arrived leukocytes (Saito et al., 1990a,b). This intimate correlation between tooth movement and pathological conditions that happen elsewhere in the body is the main reason for interacting with physicians, nutritionists, psychologists or other experts in healthcare provision.

Many individuals seeking orthodontic care have systemic ailments, such as asthma, and are usually already under treatment for these conditions at the time of their orthodontic diagnosis appointment(s). This treatment often entails the use of various prescription and/or over-the-counter medications. Some of these medications may have insignificant effects on the process of tissue remodeling evoked by the orthodontic forces, but others, such as steroidal and nonsteroidal anti-inflammatory drugs, anticancer medications, immune suppressors, statins, and anti-osteoporotic medications, may reach the cells in and around moving teeth by exiting, in the plasma, through capillaries that have become hyperpermeable by the applied stress (Krishnan and Davidovitch, 2006b). It is, therefore, important to record all the medications taken regularly by a patient before the onset of orthodontic treatment, as well as during the course of therapy. Once a complete list of medications taken regularly by a patient is obtained, it is essential to search for information about their desirable and undesirable effects. This information can be readily found on the internet and in current pharmacopeias. An example of a profound effect of a nonsteroidal anti-inflammatory drug on cells involved in orthodontic tissue remodeling is demonstrated in Figure 1.2, showing the mesially-located, stretched PDL and alveolar bone surface lining cells of a maxillary cat canine that had been moved distally for 24h, with a force of 80 g. The tissue sections were stained immunohistochemically for prostaglandin E2, a ubiquitous inflammatory mediator. A section taken from a control cat untreated by the nonsteroidal anti-inflammatory drug, indomethacin, shows cells intensely stained for PGE2, while a section obtained from an indomethacin-treated cat demonstrates a marked reduction of staining intensity, suggesting that this drug may have a profound effect on tooth movement.

Nutrition may play an important role in determining the pattern and course of tooth movement (Palmer, 2007). A modern diet consists of proper amounts of proteins, carbohydrates, lipids, vitamins, and trace elements. However, within the same community, marked differences between individuals may be found in the relative proportion of each dietary component, and even greater differences are known to exist between members of diverse communities, despite their geographical proximity. Some items in the diet may be essential for eliciting a vigorous cellular response to mechanical forces. For example, vitamin C is an essential co-factor in the synthesis of collagen by fibroblasts, and vitamin D₃ is a key regulator of the mobilization of calcium into and out of the intestine, kidney, and skeleton. Proteins provide the amino acids needed for building and remodeling tissues surrounding moving teeth; carbohydrates supply the energy required for all cellular
integrated clinical orthodontics

activities, and lipids are a critical part of every cell’s plasma membrane.

Some dietary components may be detrimental to the patient’s health and well-being, and have a negative effect on dental and paradental tissues. In the case of alcohol, its chronic excessive consumption may cause dental root resorption in orthodontic patients, by causing liver cirrhosis, disrupting the hydroxylation of vitamin D₃ in the liver, thereby evoking increased production of parathyroid hormone (PTH), necessary for the maintenance of calcium homeostasis (Ghafari, 1997). This hormone is implicated in the resorption of mineralized tissues, including dental roots. For these reasons it may be helpful to obtain detailed information about the dietary habits of every patient prior to the onset of orthodontic treatment. An evaluation of individual daily diets by a qualified nutritionist may supply the orthodontist with important clues regarding expectations of individual tissue responses to orthodontic mechanotherapy.

Regulation of mammalian body functions is dominated to a large extent by three systems: the nervous, immune, and endocrine systems. Persons seeking orthodontic care sometimes have ailments that affect one or more of these systems. Treating such patients orthodontically with little consideration for their systemic abnormalities may result in some unpleasant surprises for the patients, as well as for their orthodontists. For example, a patient with an existing condition such as multiple sclerosis may develop trigeminal neuralgia early in the course of orthodontic treatment, because of the acute pain generated every time the orthodontic appliance is activated. The pain may even be amplified because of the direct contact between the denuded, unmyelinated trigeminal nerve fibers. In cases such as this, and in patients with other neurological diseases, either central or peripheral, administration of orthodontic forces may exacerbate the neurological condition, and/or be affected by it. Moreover, medications taken by these patients may also alter the pattern of tissue response to orthodontic forces (Krishnan and Davidovitch, 2006b). Therefore, it may be prudent to seek the advice of the neurologists treating such patients.

The immune system is a network of biological structures and processes within an organism that protects against disease by identifying and killing pathogens and tumor cells. It detects a wide variety of agents, from viruses to parasitic worms, and needs to distinguish them from the organism’s own healthy cells and tissues in order to function properly. Detection is complicated as pathogens can evolve rapidly, producing adaptations that avoid the immune system and allow the pathogens to successfully infect their hosts (Abergerth and Gudmundsson, 2006). The immune system provides the leukocytes required for the induction and maintenance of inflammation, which is the mechanism whereby tissue remodeling facilitates tooth movement. Disorders of the immune system, such as immunodeficiency that occurs when the immune system is less active than normal, result in recurring and life-threatening infections. Immunodeficiency can either be the result of a genetic disease, such as severe combined immunodeficiency, or secondary to pharmaceutical therapy or an infection (such as the acquired immune deficiency syndrome (AIDS), which is caused by the retrovirus human immunodeficiency virus (HIV)). In contrast, autoimmune diseases result from a hyperactive immune system attacking normal tissues, as if they were foreign organisms. Common autoimmune diseases include Hashimoto thyroiditis, rheumatoid arthritis, diabetes mellitus type 1 and lupus erythematosus. Figure 1.3 shows intraoral views in a 39-year-old...
integrative center for the endocrine and autonomic nervous systems, controls the function of endocrine organs by neural and hormonal pathways.

Application of orthodontic forces increases the blood flow into the tooth and the paradental tissues (Kvinnsland et al., 1989; Ikawa et al., 2001) and their capillaries become hyperpermeable, fostering plasma extravasation. This local alteration in the vascular system can cause an increase in the tissue concentration of hormones, of which some, like parathyroid hormone, calcitonin and thyroxin are known to regulate bone metabolism (Copp and Cheney, 1962; Mundy et al., 1976; Parfitt, 2003; Martin, 2004; Poole and Reeve, 2005). Figure 1.4 presents photomicrographs of the alveolar bone and PDL, as seen in sections stained immuno-histochemically for 3$, ', 5$, 'adenosine monophosphate (cyclic AMP or cAMP). The sections were obtained from three young adult cats. Figure 1.4a is from an untreated (control) cat and shows mild cellular staining intensity for cAMP near a maxillary canine. Figure 1.4b is from a cat whose maxillary canine was subjected to 24 hours of distal movement. This figure is from the zone of tension in the

Figure 1.3 A malocclusion in a 39-year-old man with a number of systemic diseases. (a) Frontal view of the dentition, demonstrating a midline shift and bilateral posterior crossbite. (b, c) Left and right views of the dentition, showing spaces resulting from prior tooth extractions. Tipping of teeth into the extraction sites is visible in both dental arches. (d) The maxillary periapical radiograph reveals severe shortening of the premolar and molar roots.
PDL, demonstrating intense staining for cAMP, resulting from the orthodontic force. Figure 1.4c was derived from a cat that had been treated in the same manner as the one shown in Figure 1.4b, and in addition received a subcutaneous injection of PTH, 30 IU/kg, 2h before euthanasia. In this figure, the cells are stained extremely dark, reflecting a high concentration of cellular cAMP. Since this cyclic nucleotide represents cellular activation by extracellular signals, it is reasonable to conclude that the biological response to orthodontic forces may be sensitive to hormonal concen-

Figure 1.4 Immunohistochemical staining for cAMP in sagittal sections, 5µm thick, of maxillary canines of 1-year-old cats after 24 hours of distal movement by an 80g translatory force. (a) Osteoblasts and (b) periodontal ligament (PDL) fibroblasts from a control cat (no orthodontic force). (c) Osteoblasts and (d) fibroblasts in PDL tension site (cat received orthodontic force, but no parathyroid hormone (PTH)). (e) Osteoblasts and (f) fibroblasts in PDL tension site. This cat received orthodontic force, and a subcutaneous injection of PTH, 30 IU/kg, at the time of the appliance activation. The intensity of staining for cAMP is light in the untreated control animal, pronounced in the animal that was treated by force alone, and was very intense in the animal treated by force and PTH.
tations in the blood. These concentrations are modified significantly by pathological conditions that develop in specific endocrine glands, suggesting that an opinion of an endocrinologist about the patient’s hormonal profile could be very helpful in crafting a proper orthodontic diagnosis and treatment plan.

Orthodontists treat human beings, who sometimes are unable or unwilling to acknowledge and comply with their share of responsibility and effort dictated by the treatment regimen. Frequently, such behavioral patterns stem from psychological stresses, rooted in genetic, developmental, and/or environmental etiologic factors. Hence, psychology is apparently a crucial element in determining and forecasting the degree of success or failure of orthodontic treatment. Psychology is a field that focuses on studying the mind. Psychologists attempt to understand the role of mental functions in individual and social behavior, while also exploring underlying physiological and neurological processes. Psychologists study such topics as perception, cognition, attention, emotion, motivation, brain functioning (neuropsychology), personality, behavior, and interpersonal relationships. Deviation from the norm in any of these areas may harbor the seed of failure of orthodontic treatment. A review of records of about 1100 patients who had completed orthodontic treatment revealed that those who had been diagnosed before the onset of treatment as having had psychological problems, such as mood swings and anxiety, displayed a high risk of developing excessive root resorption during the course of treatment (Davidovitch et al., 2000). This undesirable outcome could have been the result of alterations in the hypothalamic–pituitary–adrenal axis, caused by the psychological problems. Another unexpected side effect of orthodontic treatment is alopecia totalis (Davidovitch and Krishnan, 2008) (Figure 1.5a–g). Apparently, the mind is an important determinant of the degree of success or failure of orthodontic treatment. Therefore, it seems advantageous to interact with a psychologist whenever a psychological issue is diagnosed, both before and during treatment.

Interactions between dentists who practice one or more specialties are almost axiomatic. Patients with malocclusions are frequently being referred to an orthodontist for an initial examination and assessment of the degree of need for orthodontic care. The referring person may be a general dentist who controls the dental health of the patient and his/her family, a periodontist, a pedodontist or another dental specialist. After examining the patient, the orthodontist informs the referring dentist about his/her findings and recommendation, and whenever necessary, they coordinate the timing of various treatment phases. However, sometimes elimination of a complex malocclusion, which involves the teeth, their surrounding tissues, as well as the facial muscles and skeleton, requires the construction of a comprehensive treatment plan by a number of specialists. Such is the case in caring for patients with orofacial clefts and other craniofacial anomalies, where teams of experts convene to discuss each patient’s individual needs in a detailed and carefully coordinated sequence. These teams include experts in pediatrics, plastic surgery, psychology, social work, nutrition, dentistry, and orthodontics. A similar team approach is adopted for the treatment of adults who require reconstructive treatment. The team in this case may include a general dentist and specialists in periodontics, endodontics, maxillofacial surgery, prosthodontics, and orthodontics.

The orthodontist’s professional wish-list includes a comfortable, painless experience for all patients, efficient treatment of short duration, avoidance of iatrogenic damage, and a guarantee that the teeth have been moved to their best position, from where there is no relapse. The duration of tooth movement may be shortened significantly by decorticating the alveolar bone, leading to release of stem cells from the bone marrow, and the engineering of new tissues (Wilcko et al., 2009).

Conclusions

Treatment of a malocclusion requires high technical skills and a thorough comprehension of biological sciences, because teeth transfer the applied orthodontic force to their surrounding tissues, where strained cells remodel the PDL and alveolar bone, allowing the teeth to move to new positions. The biological component reflects the nature of the anticipated clinical response, and highlights the plethora of differences between all patients. These physiological and pathological differences may have profound effects on the outcomes of treatment. Detailed descriptions of these conditions may be found in the library or on the internet, but in addition it is advisable to communicate effectively with each patient, and with all experts who have examined and treated the patient previously. These specialists can share invaluable information about their own observations of the patient’s biological and therapeutic profile. Such details should be included in the diagnosis, and reflected in the treatment plan, that may differ from a plan that addresses only the morphological features of a malocclusion.

The continuous evolution in material and biological sciences will strengthen further the interactions between orthodontists and other healthcare specialists, leading the way toward sustainable corrections of malocclusions and craniofacial anomalies. These unfolding advances will continue to reduce the distance to the elusive target of optimal orthodontics. The common thread that unifies specialists in various disciplines is the desire to share, contribute to and participate in efforts to improve everybody’s body and spirit, a universal goal that knows no boundaries.
Figure 1.5 (a) Pre-treatment extra- and intraoral photograph of MV, at age 12 years and 10 months. Note good symmetry, smiling picture revealing maxillary midline is shifted 3.5 mm, a convex profile. Teeth in occlusion show a deep anterior overbite (80–90%) and spaces between the maxillary incisors. The maxillary midline is shifted 3.5 mm to the right. On the right side, the buccal occlusion is neutral and spaces are seen between the maxillary incisors and mesial to the canine. Left side shows a Class II Division 1 molar relationship as well as spaces between the maxillary incisors and mesial to the canine. Occlusal view of maxillary dental arch shows a parabolic shape, spaces between the anterior teeth from canine to canine, and distolabial rotations of both central incisors. Mandibular dental arch shows a U-shape, without any spacing or crowding of teeth. (From Davidovitch Z, Krishnan V (2008), courtesy of Quintessence Publishing Co Inc, Chicago.) (b) Pre-treatment lateral cephalogram demonstrating normal anteroposterior and vertical relationships between the jaws, a favorable inclination of the anterior cranial base and the palatal and mandibular planes, and a deep overbite in the incisor region. The panoramic radiograph reveals all teeth to be present and normal dental development. (From Davidovitch Z, Krishnan V (2008), courtesy of Quintessence Publishing Co Inc, Chicago.)