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To Rebecca and Sarah





The extensive application of transition metal-catalysts to organic synthesis over the last
40 years has dramatically changed the manner in which organic compounds are now
prepared. Among the many transition metal-catalysts used in organic synthesis, the
noble metal triad, namely palladium, ruthenium and rhodium, has played an increas-
ingly important role in this regard. Hence, it is not an exaggeration to say that the
present day is the golden age of these noble metals, which of course have their own
characteristic features. Currently, palladium represents the most widely used and versa-
tile metal, given its synthetic utility for carbon-carbon and carbon-heteroatom bond for-
mation. More recently, ruthenium-catalysts have provided exquisite functional group
tolerance and selectivity in olefin metathesis and the asymmetric hydrogenation of car-
bonyl compounds.

Organorhodium chemistry on the other hand has a long history, which dates back to
its emergence as the metal of choice in carbonylation processes. Historically, commer-
cial hydroformylation was carried out using a cobalt carbonyl complex as the catalyst.
However, this catalyst was gradually replaced by a more active rhodium catalyst, which
remains the one predominantly utilized today. A noteworthy example is the Monsanto
process, which is a rhodium-catalyzed carbonylation reaction that was developed in
early 1970’s for the production of acetic acid from methyl iodide. The discovery of the
Wilkinson complex by Wilkinson in the mid 1960’s proved to be the harbinger of the
development of modern organorhodium chemistry, since its discovery opened the new
field of homogeneous hydrogenation. This development ultimately led to the remark-
able progress in asymmetric hydrogenation, as exemplified by the commercial produc-
tion of L-Dopa by a rhodium-catalyzed asymmetric hydrogenation developed in 1974 by
Monsanto. Notwithstanding the early developments in hydroformylation and the dis-
covery of the Wilkinson complex, progress in organorhodium chemistry seemed to be
somewhat slower than that of organopalladium chemistry. Nonetheless, organorho-
dium chemistry is now rapidly emerging in organic synthesis as the number of useful
synthetic methods increases. A number of new rhodium-catalyzed reactions, including
several new types of cycloadditions have been discovered, offering unique synthetic
methods that are often complimentary to those of palladium and ruthenium. More re-
cent advances have come from the rhodium-catalyzed decomposition of diazo com-
pounds to generate metal carbenoids, which in the presence of alkenes afford cyclopro-
panes and other derivatives. Indeed, these studies have paved the way for the recent
advances in C–H activation, which facilitates the selective formation of carbon-carbon
and carbon-nitrogen bonds.
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Although numerous rhodium-catalyzed reactions have now been reported, frankly
speaking it has been somewhat difficult to often categorize them in a systematic man-
ner. From this standpoint, a book that summarizes the newer aspects of modern orga-
norhodium chemistry is clearly overdue. The publication of this book, edited by Profes-
sor P. Andrew Evans, is both timely and worthwhile. The editor, in the first attempt to
summarize the field of organorhodium chemistry, brings together nearly twenty topics,
covering almost all known aspects of rhodium-catalyzed reactions. This book covers
the following asymmetric rhodium-catalyzed organic reactions: hydrogenation (Zhang),
hydroboration (Brown), conjugate addition (Hayashi), olefin isomerization and hydro-
acylation (Fu), hydroformylation, hydrosilylation and silylformylation (Leighton and
Matsuda), cycloisomerization and cyclotrimerization (Ojima), Alder-ene (Brummond),
allylic substitution (Evans and Fagnou), carbocyclizations (Jeong, Robinson and Wen-
der), cyclopropanation and carbon-hydrogen insertion (Davies, Doyle and Taber), oxida-
tive amination (Du Bois), ylide rearrangements (West), 1,3-dipolar cycloadditions (Aus-
tin), in which each of the chapters is clearly written by an expert in the field.

Overall, this book clearly illustrates “what we can do in organic synthesis using rho-
dium catalysis” and I have no doubt that it will serve as an excellent reference text for
both graduate students and synthetic chemists at all levels in academia and industry.
Moreover, I anticipate that this book will stimulate additional research in the area of
organorhodium chemistry, and serve to inspire those involved in the development and
application of new synthetic methodology.

November 2004 Jiro Tsuji
Professor Emeritus
Tokyo Institute of Technology

ForewordVIII



Although there are countless examples of rhodium-catalyzed organic reactions in the
chemical literature, it is often very difficult to categorize and thereby appreciate the
full impact of this transition metal within the context of target directed synthesis. Mod-
ern Rhodium-Catalyzed Organic Reactions provides the first comprehensive account of
some of the most exciting and seminal advances in this rapidly developing field, and
also serves as a historical guide to the origin of many of these impressive advances. I
have tried to match internationally recognized scholars within each of the individual
areas covered, while trying to be as inclusive as possible, to provide a fairly compre-
hensive overview of the field. However, as with any project of this nature, there are ad-
ditional topics that could have been included. This book represents the contributions
that utilize two of the most common oxidation states, namely rhodium(I) and (II), as
catalysts and pre-catalysts for synthetic applications.

The chapters highlight the synthetic utility of the various transformations, covering
each reaction from inception to its development as a synthetically useful process that
is capable of achieving exquisite selectivity with excellent efficiency. Throughout each
chapter the authors describe rhodium-catalyzed reactions in terms of the scope, selec-
tivity, and mechanism, thereby providing important insight into each transformation. I
think it is fair to say that many of these contributions are quite unique since they have
not been previously reviewed. Moreover, the most striking feature of each contribution
is the underlying difference in chemical reactivity of the rhodium-catalyzed version of
a specific transformation to that involving an alternative metal-complex. Indeed, hav-
ing read all the chapters the reader is left with the notion that rhodium-catalysis is
unique, since it provides unparalleled levels of chemo-, regio- and stereoselectivity for
many synthetic reactions. The chapters also provide a brief summary and outlook for
the continued development of each of the transformations, which will be helpful to in-
dividuals already active in this area as well as those planning on breaking into the
field. It is my hope that this book will provide an excellent resource for graduate stu-
dents, and be a suitable reference text for a graduate level course. I also believe that
this book will serve practicing synthetic chemists in academia and industry, by provid-
ing an up-to-date account of the field that given the current state-of-the-art will provide
an indication of where the specific challenges remain.

I would like to dedicate this book to my loving daughters Rebecca and Sarah, in the
hope that they will one day understand all the hard work required to provide a won-
derful life full of opportunities. I also acknowledge my parents for their unwavering
strength and encouragement to pursue my dreams irrespective of the outcome.
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I would like to sincerely thank David K. Leahy, Erich W. Baum, and Santosh J. Ghar-
pure for their assistance with the proofreading of the various chapters. I would espe-
cially like to thank and acknowledge the efforts of James R. Sawyer, who gave a signifi-
cant amount of his time to painstakingly assist in the editing of the manuscript. I sin-
cerely thank Katie for her love, support and understanding throughout what was often
a very difficult time. Finally, this book would not have be possible without the partici-
pation of the authors; I am deeply indebted to each of them for taking the time out of
their busy schedules, and their enduring patience throughout this project.

November 2004 P. Andrew Evans
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1.1
Introduction

Molecular chirality plays a very important role in science and technology. For example,
the biological activity of many pharmaceuticals and agrochemicals is often associated
with a single enantiomer. The increasing demand for enantiomerically pure pharma-
ceuticals, agrochemicals, and fine chemicals has therefore driven the development
of asymmetric catalytic technologies [1, 2]. Asymmetric hydrogenation, using molecu-
lar hydrogen to reduce prochiral olefins, ketones, and imines, has become one of the
most efficient, practical, and atom-economical methods for the construction of chiral
compounds [3]. During the last few decades of the 20th century, significant attention
was devoted to the discovery of new asymmetric catalysts, in which transition metals
bound to chiral phosphorous ligands have emerged as preferential catalysts for asym-
metric hydrogenation. Thousands of efficient chiral phosphorous ligands with diverse
structures have been developed, and their application to asymmetric hydrogenation
has been established. Indeed, many represent the key step in industrial processes for
the preparation of enantiomerically pure compounds. The immense significance of
asymmetric hydrogenation was recognized when the Nobel Prize in Chemistry was
awarded to Knowles and Noyori.

In this chapter, we focus on the rhodium-catalyzed hydrogenation and the develop-
ment of chiral phosphorous ligands for this process. Although there are other chiral
phosphorous ligands, which are effective for ruthenium-, iridium-, platinum-, tita-
nium-, zirconium-, and palladium-catalyzed hydrogenation, they are not discussed in
this account. However, this does not preclude complexes of other transition metals as
effective catalysts for asymmetric hydrogenation. Fortunately, there are numerous re-
views and books that discuss this particular aspect of asymmetric hydrogenation [3].

1.2
Chiral Phosphorous Ligands

The invention of efficient chiral phosphorous ligands has played a critical role in the de-
velopment of asymmetric hydrogenation. To a certain extent, the development of asym-
metric hydrogenation parallels that of chiral phosphorous ligands.
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The introduction of Wilkinson’s homogeneous hydrogenation catalyst, [RhCl(PPh3)3]
[4], prompted the development of the analogous asymmetric hydrogenation by
Knowles [5] and Horner [6] using chiral monodentate phosphine ligands, albeit with
poor enantioselectivity. Kagan and Knowles each demonstrated that improved enantios-
electivities could be obtained using bidentate chiral phosphine ligands. For example,
Kagan and Knowles independently reported the C2-symmetric bisphosphine ligands,
DIOP [7] and DIPAMP [8], for rhodium-catalyzed asymmetric hydrogenation. Due to
its high catalytic efficiency in rhodium-catalyzed asymmetric hydrogenation of dehy-
droamino acids, DIPAMP was employed in the industrial production of l-DOPA [9].
Subsequently to this work, several other successful chiral phosphorous ligands were
developed, as exemplified by Kumada’s ferrocene ligand BPPFOH [10] and Achiwa’s
BPPM ligand [11].

The mechanism of the asymmetric hydrogenation is fairly well established, due to
the seminal work of Halpern [12] and Brown [13]. Indeed, much of the early work in
this area focused on the development of chiral rhodium catalysts, rather than expand-
ing the reaction’s substrate scope, which was limited to �-dehydroamino acids. In
1980, Noyori and Takaya reported an atropisomeric C2-symmetric bisphosphine ligand,
BINAP [14, 15]. This ligand was first used in rhodium-catalyzed asymmetric hydroge-
nation of �-(acylamino)acrylic acids, in which high selectivities were reported for cer-
tain substrates [16]. The discovery that the Ru–BINAP system could efficiently and se-
lectively affect the asymmetric hydrogenation of various functionalized olefins [17],
functionalized ketones [18], and unfunctionalized ketones [19] led to the development
of other atropisomeric biaryl bisphosphine ligands, as exemplified by Miyashita’s BI-
CHEP ligand [20] and Schmid’s BIPHEMP/MeO-BIPHEP [21, 22] ligands.

Achiwa has successfully developed the modified DIOP ligands, MOD-DIOP and Cy-
DIOP, by varying their electronic and steric properties; MOD-DIOP was applied to the
asymmetric hydrogenation of itaconic acid derivatives with up to 96% enantioselectiv-
ity [23]. A series of modified BPPM ligands such as BCPM and MCCPM were also de-
veloped by Achiwa [24], and some excellent chiral 1,2-bisphosphane ligands such as
NORPHOS [25] and PYRPHOS (DEGUPHOS) [26] have been developed for the rho-
dium-catalyzed asymmetric hydrogenation. Several 1,3-bisphosphane ligands, such as
BDPP (SKEWPHOS) [27], have been prepared and examined.

Hayashi and Ito developed the (aminoalkyl)ferrocenylphosphine ligand L1, which
was successfully applied to the rhodium-catalyzed hydrogenation of trisubstituted ac-
rylic acids [28]. In the early 1990s, significant progress was achieved with the applica-
tion of the chiral bisphosphorous ligands, DuPhos and BPE developed by Burk et al.
[29, 30], to the enantioselective hydrogenation of �-(acylamino)acrylic acids, enamides,
enol acetates, �-keto esters, unsaturated carboxylic acids, and itaconic acids. Scheme
1.1 shows the several important chiral phosphine ligands studied before the early
1990s.

Inspired by the excellent results of chiral ligands such as BINAP and DuPhos, many
research groups have devoted their efforts to designing and discovering new efficient
and selective chiral phosphorous ligands. A major feature in the design of the new
chiral phosphorus ligands is the ability to tune the steric and electronic properties of
ligands within a given scaffold. These new ligands, which have proven efficient and se-
lective for the asymmetric rhodium-catalyzed hydrogenation, can be divided into sev-
eral different categories.
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1.2.1
Atropisomeric Biaryl Bisphosphine Ligands

Modification of the electronic and steric properties of BINAP, BIPHEMP, and MeO-BI-
PHEP led to the development of new efficient atropisomeric ligands. Although most
of them are efficient for ruthenium-catalyzed asymmetric hydrogenation [3], Zhang
et al. have recently reported an ortho-substituted BIPHEP ligand, o-Ph-HexaMeO-
BIPHEP, for the rhodium-catalyzed asymmetric hydrogenation of cyclic enamides
(Scheme 1.2) [31].
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1.2.2
Chiral Bisphosphane Ligands Based on the Modification of DuPhos and BPE

An array of bisphosphanes has emerged based on modification of the DuPhos and
BPE ligands, which have proven so successful for the asymmetric hydrogenation of
functionalized olefins and ketones (Scheme 1.2). Börner [32], Zhang [33], and Rajan-
Babu [34] have independently reported a series of modified DuPhos and BPE ligands –
RoPhos, KetalPhos, and L2 – derived from readily available d-mannitol. The ligand
with four hydroxy groups, KetalPhos, enabled the hydrogenation to be carried out in
aqueous solution with high enantioselectivity. Another water-soluble ligand, BASPHOS
(L3), developed by Holz and Börner, also exhibits high efficiency for asymmetric hydro-
genation in aqueous solution [35].

Zhang et al. reported a sterically bulky and conformationally rigid bisphosphane, Penn-
Phos, which shows excellent enantioselectivity for rhodium-catalyzed hydrogenation of
aryl/alkyl methyl ketones [36], cyclic enamides, and cyclic enol acetates [37]. Helm-
chen’s bisoxaphosphinane ligand L5 [38] and Zhang’s bisdinaphthophosphepine ligand
BINAPHANE [39] provide excellent enantioselectivity (up to 99% ee) for hydrogenation
of E/Z-isomeric mixtures of �-substituted arylenamides. The BPE analog (R,R,R)-1,2-
bis(phospholano)cyclopentane, L6, provides improved enantioselectivity for the hydroge-
nation of dehydroamino acids [40].
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