Handbook of Toxicogenomics

Strategies and Applications

Edited by
Jürgen Borlak
Handbook of Toxicogenomics

Edited by
Jürgen Borlak
Further Titles of Interest

Dev Kambhampati

Protein Microarray Technology

2003
ISBN 3-527-30597-1

Christoph W. Sensen

Essentials of Genomics and Bioinformatics

2002
ISBN 3-527-30541-1

Journal of Biochemical and Molecular Toxicology

6 Issues per year
ISSN 1095-6670
Handbook of Toxicogenomics

Strategies and Applications

Edited by
Jürgen Borlak
To the memory of my parents
Forewords

Genome research, combinatorial chemistry and high throughput screening methods yield a large number of target structures and potential pharmaceutical agents. Numerous substance candidates in the pharmaceutical industry, however, are doomed to fail during the preclinical or even clinical development phase because their toxicity is not recognized in time. Fast and economic tox screening tests which are nevertheless meaningful for humans are, therefore, urgently required, so that the substances with the most promising potential can be prioritized. Such prioritization should be accomplished as soon as possible, i.e. before entering into the costly development phase.

The German Federal State of Lower Saxony, therefore, supports the initiative of the Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM) to considerably enhance its focus on Pharmaco- and Toxicogenomics, which has been successfully operated for several years by now and has recently become a center of excellence. A genome-based understanding of drug and chemical toxicity is of paramount importance and required as to develop meaningful methods for predictive toxicity testing. One core technology is based on microarrays but methods to study the proteom are essential as well. These genomic platform technologies are highly costly. The Federal State of Lower Saxony supports and fosters the development of competence clusters, spin-offs as to enable the pharmaceutical industry to equally make use of these technologies. The German Federal State of Lower Saxony has therefore provided substantial funding to enable the Fraunhofer Institute of Toxicology and Experimental Medicine to develop novel methods for predictive toxicology and to become internationally competitive in chemical and drug safety testing. Therefore, Pharmaco- and Toxicogenomic research at the Fraunhofer Institute in Hanover has become a hallmark for the capital city of Lower Saxony. Further, the German Federal Government program “Gesundheitsforschung – Forschung für den Menschen”, an initiative to promote research for human health, places the emphasis on an integration of basic and applied research and on the exploitation of the results by the industry. This is way the Fraunhofer Institute of Toxicology and Experimental Medicine in Hanover is perfectly suited to fulfill this task.

Lutz Stratmann
Minister for Science and Culture, Lower Saxony
With the advent of sequence information for the entire genome of many species, it is now possible to analyse gene expression and genetic variability on a global scale. It is therefore feasible to study gene expression profiles in entire genomes and to use this information for a mechanism based risk assessment. In conjunction with an assessment of entire proteomes it is now possible to develop early diagnostics and preventive measure particularly in at-risk populations or individuals. The Fraunhofer Institute of Toxicology and Experimental Medicine is well suited to carry out basic and applied science as to foster an understanding of chemical and drug induced toxicity. Indeed, in depth collaboration between academia and industry is of major importance to reduce attrition rates in the search for and development of new drugs and the Fraunhofer-Gesellschaft with its institutes has been practicing this principle with much success for several decades already. The creation of vast amounts of genomics and toxicogenomics data has sparked the development of novel systems as to improve predictability of drug response at toxic dose levels and the Food and Drug Administration (FDA) has recently issued a draft “Guidance for Industry” Pharmacogenomics Data Submission (FDA 2003) to account for these developments in medical sciences. Specifically, many principles in this draft apply to toxicogenomics and the newly created tool for voluntary submission of genomics data will pave the way in advancing public health and drug development based on holistic information. The Fraunhofer Institute of Toxicology and Experimental Medicine is committed to provide leadership in this field of genomic science and to develop mechanism based understanding of toxicity for an improved risk assessment of human health.

Hans-Jörg Bullinger
President of the Fraunhofer-Gesellschaft
The pharmaceutical industry is continuously facing increasing costs for developing new drugs on one hand and a high incidence of pipeline dropouts due to unexpected toxicity on the other hand. Furthermore, rare but serious adverse drug reactions still occur when new drugs are being used without being detected during development by preclinical or clinical studies. Therefore, new technologies that can predict more precisely the liabilities of drugs in early and late development are considered highly valuable. There are currently various new technologies under evaluation or even already in routine use to improve the prediction of drug-related side effects. One of these technologies is toxicogenomics, a concept which is intensively described and explained in the new “Handbook of Toxicogenomics” edited by Prof. Dr. Jürgen Borlak. This handbook provides an impressive overview of the current knowledge on the various technological platforms in the field of toxicogenomics. The topic of bioinformatics, which plays a key role in this field, is also addressed in detail. In addition, various authors from both academia and industry provide the reader with an overview of the current practical applications of toxicogenomics in fields such as hepatotoxicity, nephrotoxicity and search for biomarkers. The “Handbook of Toxicogenomics” is therefore considered to provide a comprehensive insight into the basic concepts of a new technology with the potential to positively impact human safety assessment in the near future.

Andreas Barner
Chairman of the Verband der Forschenden Arzneimittelhersteller, e.V.
Research and development in the fields of toxicology and pharmacology are currently undergoing drastic changes. New findings in the areas of molecular pharmacology/toxicology, molecular genetics, functional genomics, molecular immunology and cell biology open up new possibilities in the search for and development of pharmaceutical agents. In this context, the interdisciplinary development of pharmaceuticals has become particularly important, and the integration of the areas of genomics, molecular biology, surface technology, optics, robotics and combinatorial synthesis plays an important part in the creation of miniaturized and automated screening methods. The development of HTS (high throughput) systems, for instance, allows for millions of drug substance candidates to be evaluated within a single year in an almost completely automated laboratory. A toxicological assessment of drug substance candidates at an early stage is, however, a mandatory condition for the HTS strategy to be successful. Therefore a close interplay between academic and industrial research is of pivotal importance since for the pharmaceutical companies it is becoming increasingly impossible to cover the whole range of technologies and competences by themselves. Further, the high attrition rate in the R&D process and post launching drug failures due to adverse drug reactions requires an in-depth understanding of the mechanism of toxicity.

The Fraunhofer Institute of Toxicology and Experimental Medicine with more than 20 year experience of drug and chemical safety testing has now become a center for Pharmaco- and Toxicogenomic Research as well and the center has developed an international network of strong collaboration with academic and industrial collaborators including the National Institute of Health in the US and Japan. Undoubtedly, toxicogenomics is on the path to evolve into an independent genomic science as to enable prediction of toxicity based on a systems biology approach.

Uwe Heinrich
Chairman of the Fraunhofer Life Sciences Alliance
Preface

Toxicogenomics is a rapidly growing field of genomic science and holds promise for the identification and development of new founded knowledge in human and animal health. Basically, all major genomic platform technologies are being applied to toxicogenomic research and this includes transcriptome and proteome analysis as well as hyphenated LC-MS-NMR technology used to obtain metabolic fingerprints during intoxication and disease. Therefore, this book captures expert knowledge and provides in depth information on an application of toxicogenomics for the prediction of adverse drug reaction and for an improved understanding of the molecular basis of drug induced toxicity. There is also vision of how toxicogenomics will develop in the future and for communicating the challenges for its application in risk assessment and to obtain regulatory acceptance. The book is divided into four major sections and starts with in-depth information on the various genomic platforms applied to toxicogenomic research. This is followed by a thorough discussion on bioinformatic tools, novel genetic algorithms and the architecture of various databases. It includes a description of the Chemical Effects and Biological Safety database of the National Institute of Environmental Health Sciences (NIEHS of the US) and an appreciation of the various software applications used to analyse toxicogenomic data. Because of its considerable importance a systems biology approach to toxicogenomics is described as well. In the third section the reader will be informed on fine examples of toxicogenomic research and this includes, amongst others, the prediction of hepato-, cardiovascular-, nephro- and haematotoxicity as well as endocrine disruption. One contribution focuses specifically on the application of toxicogenomics to teratogenicity studies and therefore this section highlights successful applications of toxicogenomics to predict drug induced toxicity. The fourth section gives an account of various national toxicogenomic programs and a perspective of an ICH harmonised guideline for inclusion of toxicogenomic data into the drug registration process.

In conclusion, the vast amounts of genomics and toxicogenomics data has provided novel insight into the molecular basis of drug induced toxicity. Inevitably, this knowledge will impact chemical- and drug safety testing and has initiated a fundamental shift of paradigm with the consequence of developing novel and above all better approaches for the prediction of drug induced toxicity.
I very much hope this book will become a stimulating resource for investigative toxicology with the aim to continuously improve strategies for predictions of unwanted drug effects and drug induced toxicities.

Jürgen Borlak
Hanover, January 2005

Acknowledgement

I wish to thank Susanne Steinmann for her diligence in communicating with the authors and for her help in the many editorial tasks. I further wish to thank my co-workers and colleagues at the Fraunhofer Institute of Toxicology and Experimental Medicine and particularly Uwe Heinrich for his continuous support and encouragement. Many thanks also to my colleagues at the National Centre of Toxicogenomics (NCT) of the National Institute of Environmental Health Sciences (NIEHS) US and the National Institute of Health Sciences of Japan as well as my colleagues at the Centre of Pharmacology and Toxicology of the Medical School of Hanover for the good and stimulating discussions. I am particular indebted to Christian Börger and Hans Schröder of the Ministry of Culture and Science of Lower Saxony, Germany, for their invaluable support and I wish to thank the Alexander von Humboldt foundation who supported Paul Nettesheim of the National Institute of Environmental Health Science of the US during his research sabbatical at this Institute. Indeed, this support greatly facilitated scientific exchange across the ocean and enabled joint research programs between both institutions.
Contents

Preface V

1 Introduction 1
Jürgen Borlak

1.1 A Shift in Paradigm 1
1.2 Enabling Technologies Lead to New Founded Knowledge in Genomic Science 3
1.3 Translating RNAs Into Proteins 4
1.4 Toxicogenomics – A Perspective 5

Technology Platforms in Toxicogenomics

2 Expression Profiling using SAGE and cDNA Arrays 9
Andreas Bosio

2.1 Introduction 9
2.2 SAGE Technology 10
2.2.1 Principles of SAGE Technology 10
2.2.2 Generation of SAGE Libraries 11
2.2.3 SAGE Bioinformatics 12
2.2.4 SAGE Applications 13
2.3 cDNA Arrays 14
2.3.1 Principles of PIQOR Technology 14
2.3.2 Selection and Annotation of Suitable cDNA Fragments 16
2.3.3 Production of Microarrays 17
2.3.4 Application of Microarrays 19
2.3.5 Array Data: Acquisition, Analysis, and Mining 20
2.4 Integrated Approaches using Microarrays 23
2.5 Combination of Microarrays and SAGE 24
References 25
6 Covalent Protein Modification Analysis by Electrospray Tandem Mass Spectrometry 115

Wolf D. Lehmann

6.1 Introduction 115
6.2 Electrospray Ionization 117
6.3 Tandem Mass Spectrometry 117
6.4 Q–TOF and Q–FT–ICR Systems 119
6.4.1 Resolution 119
6.4.2 Mass Accuracy 120
6.5 Peptide Sequencing by Electrospray Tandem Mass Spectrometry 121
6.6 Protein Modifications and their MS/MS Reactions 122
6.7 Detection of Protein Modifications by MS and MS/MS 124
6.7.1 Phosphorylation 126
6.7.2 Tyrosine Sulfation 132
6.7.3 Redox-related Modifications 132
6.7.4 Myristoylation 132
6.7.5 Acetylation 133
6.7.6 Methylation 135
6.7.7 Glycosylation 135
6.7.8 Ubiquitination 135
6.7.9 Isoaspartate Formation 136
6.8 Summary and Outlook 136

References 137

7 Chromatin Immunoprecipitation-based Identification of Gene Regulatory Networks 143

Monika Niehof and Jürgen Borlak

7.1 Introduction 143
7.1.1 Importance of Identifying Transcriptional Regulatory Networks in Toxicogenomics 143
7.1.2 Chromatin Immunoprecipitation to Analyze Target Genes 144
7.2 Description of Methods 144
7.2.1 Crosslinking Applications 144
7.2.2 Chromatin Fragmentation 146
7.2.3 Immunoprecipitation of Proteins 147
7.2.4 DNA Isolation and PCR Analyses 148
7.2.5 Cloning Strategies 148
7.2.6 Target Validation 150
7.3 Successfully Reported ChIP Cloning for New Target Identification 151
7.4 Problems and Potential Strategies 153
7.4.1 Elimination of Nonspecific DNA and Protein–Protein Crosslinking 153
7.4.2 Enrichment of Target Promoters and High-throughput Screening 153
7.5 Challenges for the Future 155

References 157
8 NMR Spectroscopy as a Versatile Analytical Platform for Toxicology Research

Olivia Corcoran

8.1 A Role for NMR in Toxicogenomics 163
8.2 Evolution of NMR Technologies in Toxicology Research 164
8.2.1 Conventional NMR Spectroscopy 165
8.2.2 Flow NMR Methods 168
8.2.3 HRMAS NMR of Tissues 170
8.3 Metabolite Profiling by NMR 170
8.3.1 Inborn Errors of Metabolism 171
8.3.2 Reactive Metabolites 172
8.3.3 Animal Models of Toxicity 173
8.4 Biomarkers of Toxicity 173
8.4.1 Organ Toxicity 174
8.4.2 Forensic and Chemical Warfare Toxicology 175
8.4.3 Environmental Toxicity 176
8.5 Improvements in NMR Technology 177
8.5.1 Sensitivity and Throughput 177
8.5.2 Integrated NMR Chemical Analyzer 178
8.5.3 Metabolic and Genetic Profiling 179
8.6 Conclusions 179

References 180

Bioinformatic Tools in Toxicogenomics

9 Generation and Validation of a Reference System for Toxicogenomics DNA Microarray Experiments

Jürgen Cox, Hans Gmünder, Andreas Hohn, and Hubert Rehrauer

9.1 Genomics and DNA Microarrays 187
9.2 Toxicogenomics 188
9.2.1 Challenges of Conventional Toxicology Approaches 188
9.2.2 Opportunities for Genomics 188
9.3 Processes and Methods for Toxicogenomics 188
9.3.1 Experimental Design 188
9.3.2 Data Quality Assessment 189
9.3.3 Reference Compendium Generation 190
9.3.4 Classification 191
9.4 Diagnosis of Microarray Data Quality 191
9.4.1 Sample Preparation 191
9.4.2 Dye Incorporation 192
9.4.3 Distortion 192
9.4.4 Impurities 193
9.4.5 Scanner Settings 193
9.4.6 Automation of Data Quality Control 193
9.4.7 Preprocessing of Microarray Data 193
9.5 Generating a Reference Compendium of Compounds 194
9.5.1 Cross Validation 195
9.6 Mechanism of Action 198
9.6.1 Alternative Structuring of Profiling Data 198
9.6.2 Promoter Analysis 199
9.6.3 Pathways 199
9.6.4 Mapping Gene Expression Profiles onto Genomes 199
9.6.5 In silico Comparative Genomics 199
9.7 Outlook 200
References 200

10 The Chemical Effects in Biological Systems (CEBS) Knowledge Base 201

10.1 Overview 201
10.2 NCT Intramural Research 204
10.3 Toxicogenomics Research Partnerships 206
10.4 Microarray Analysis 207
10.5 Implementation of a CEBS Prototype 208
10.6 Systems Toxicology: Bioinformatics and Interpretive Challenges 210
10.7 Understanding Functions of Biomarkers 211
10.7.1 Microarray Expression Profile Analysis 211
10.7.2 Coevolutional Profile Analysis 212
10.7.3 Domain Fusion Analysis 213
10.7.4 Structural Analysis 213
10.7.5 Text Mining in MEDLINE Based on Literature Profile Comparison 213
10.7.6 Integrative Analysis 214
10.8 Phased Development of the CEBS Knowledge Base 214
10.8.1 CEBS Phase I: Microarray/Gene Expression Data, Toxicology/Pathology Data and Associated Analysis Tools 214
10.8.2 CEBS Phase II: Protein Expression Database and Metabolomics Datasets 219
10.8.3 CEBS Phase III: Integrate Microarray/Gene Expression and Protein Expression Databases using a Gene/Protein Group Strategy 220
10.8.4 CEBS Phase IV: Knowledge Technology 221
10.9 Conclusions 226
References 229
13 Systems Biology Applied to Toxicogenomics 291
Klaus Prank, Matthias Höchsmann, Björn Olesen, Thomas Schmidt, Leila Taher, and Dion Whitehead

13.1 Introduction to Systems Biology 291
13.1.1 System-level Understanding of Biological Systems 294
13.1.2 Measurement Technology and Experimental Approaches 301
13.2 Data Mining and Reverse Engineering of Regulatory Networks 305
13.2.1 Data Mining Techniques 305
13.2.2 Inferring Gene Regulatory Networks from Gene Expression Data 307
13.2.3 Reverse Engineering of Metabolic and Signal-transduction Pathways 308
13.3 Modelling and Simulation Software 310
13.3.1 Automated Model Generation 310
13.3.2 Parser 311
13.3.3 Systems Biology Workbench and Markup Languages 313
13.3.4 Parameter Estimation 317
13.3.5 Simulators 318
13.3.6 Visualization 320
13.4 Toward Predictive in silico Toxicogenomics 320
13.4.1 A Systems Biology Approach to ab initio Hepatotoxicity Testing 320
13.4.2 In silico Toxicogenomics for Personalized Medicine 321
13.4.3 Future of Predictive in silico Toxicity Testing in the R&D Process 321

References 322

Application of Toxicogenomic: Case Studies

14 Regulatory Networks of Liver-enriched Transcription Factors in Liver Biology and Disease 327
Jürgen Borlak, Jürgen Klempnauer, and Harald Schrem

14.1 Introduction 327
14.2 The HNF-1/HNF-4 Network for Liver-specific Gene Expression 328
14.2.1 HNF-1 Regulates HNF-4alpha Expression 329
14.2.2 HNF-1alpha and HNF-4 Regulate HNF-1alpha Expression 329
14.2.3 Dimerization Cofactor of HNF-1alpha and Liver-specific Gene Expression 331
14.2.4 Agonistic and Antagonistic Ligands for the Orphan Nuclear Receptor HNF-4alpha 331
14.2.5 Coactivators for HNF-1 and HNF-4 and Their Network Effects in Liver Biology 334
14.2.6 The Relevance of HNF-4alpha Splice Variants in Differential Transcriptional Regulation 336
14.2.7 Activation and Repression by Homo- and Heterodimerization of HNF-4alpha Proteins 336
14.2.8 Posttranscriptional Modification of HNF-4 Function by Phosphorylation and Acetylation

14.2.9 Cooperation and Competition between COUP-TF and HNF-4

14.3 HNF-6 and HNF-3beta in Liver-specific Transcription Factor Networks

14.3.1 HNF-6, OC-2, HNF-3beta, and C/EBPs Regulate HNF-3beta Expression

14.3.2 Competition and Cooperation between HNF-3alpha and HNF-3beta

14.4 The Role of C/EBPs in Diverse Physiological Functions

14.4.1 C/EBP-alpha in Energy Metabolism and Detoxification

14.4.2 C/EBP-beta in Energy Metabolism

14.4.3 C/EBPs in the Acute-phase Response

14.4.4 Protein–Protein Interactions of C/EBP-beta during the Acute-phase Response

14.4.5 C/EBPs in Liver Regeneration

14.4.6 C/EBPs and Apoptosis

14.4.7 C/EBPs in Liver Development

14.4.8 The Role of C/EBPs in CYP Monoxygenase Expression during Development

14.4.9 C/EBPs and Their Role in Liver Tumour Biology

14.5 Involvement of C/EBP-alpha and C/EBP-beta in Regulation of Cell Cycle Control

14.5.1 C/EBP-alpha Expression and Growth Arrest

14.5.2 Glucocorticoid-induced G1 Cell Cycle Arrest Is Mediated by C/EBP-alpha

14.5.3 Protein–Protein Interactions between p21, cdk2, cdk4, and C/EBP-alpha

14.5.4 C/EBP-alpha and p107 Protein–Protein Interaction Disrupts E2F Complexes

14.5.5 C/EBP-beta Arrests the Cell Cycle before the G1/S Boundary

14.6 DBP Circadian Gene Regulation in the Liver

14.7 Conclusions and Outlook

14.8 Involvement of C/EBP-alpha and C/EBP-beta in Regulation of Cell Cycle Control

14.8.1 C/EBP-alpha Expression and Growth Arrest

14.8.2 Glucocorticoid-induced G1 Cell Cycle Arrest Is Mediated by C/EBP-alpha

14.8.3 Protein–Protein Interactions between p21, cdk2, cdk4, and C/EBP-alpha

14.8.4 C/EBP-alpha and p107 Protein–Protein Interaction Disrupts E2F Complexes

14.8.5 C/EBP-beta Arrests the Cell Cycle before the G1/S Boundary

14.9 DBP Circadian Gene Regulation in the Liver

14.10 Conclusions and Outlook

References

15 Toxicogenomics Applied to Understanding Cholestasis and Steatosis in the Liver

Timothy W. Gant, Peter Greaves, Andrew G. Smith, and Andreas Gescher

15.1 Introduction

15.2 Models of Cholestasis and Steatosis

15.2.1 The *Fech* Mouse

15.2.2 Griseofulvin

15.2.3 ET743

15.2.4 Alpha-naphthylisothiocyanate (ANIT)
15.3 Pathological and Biochemical Characterization of the Models 372
15.3.1 Pathological Characterization 372
15.3.2 Protoporphyrin IX levels in Models of Ferrochelatase Inhibition 374
15.4 Microarray and Bioinformatics Methodology 375
15.5 Liver Gene Expression Altered Directly as a Response to Griseofulvin 377
15.5.1 Genes of the Heme Synthesis and Catabolism Pathways 377
15.5.2 Monoxygenases 380
15.6 Gene Expression Changes Associated with Pathological Changes 381
15.6.1 Gene Expression Associated with Inflammation 381
15.6.2 CD24a 383
15.6.3 Annexins and Liver Damage or Maybe Cholestasis? 383
15.6.4 Fibrosis and Mallory Body Formation 383
15.7 Gleaning New Information on Pathological Changes from Gene Expression Data 387
15.8 Conclusions 389
References 392

16 Toxicogenomics Applied to Cardiovascular Toxicity 395
Thomas Thum and Jürgen Borlak
16.1 Introduction 395
16.2 Toxicogenomics Applied to Cardiovascular Toxicity 395
16.2.1 Drug-induced Cardiac Arrhythmias 395
16.2.2 Drug-induced Myocardial Apoptosis and Necrosis 396
16.2.3 Drug-induced Cardiomyopathy and Myocardial Remodelling 398
16.2.4 Drug-induced Myocarditis and Inflammation 399
16.2.5 Drug-induced Effects on Cardiac Contractility 399
16.2.6 Drug-induced Cardiac Hypertrophy 399
16.2.7 Drug-induced Vascular Injury 400
16.3 Environmental Pollution and Cardiotoxicity: Effect of Halogenated Aromatic Hydrocarbons 401
16.4 Importance of Single Nucleotide Polymorphisms (SNPs) and Tissue-specific Drug Metabolism in Cardiovascular Drug Therapy 402
16.4.1 Single Nucleotide Polymorphisms and Drug Treatment of Cardiovascular Diseases 402
16.4.2 Tissue-specific Metabolism in Cardiovascular Tissues 405
16.5 Conclusions 405
References 406

17 Toxicogenomics Applied to Endocrine Disruption 413
Damian G. Deavall, Jonathan G. Moggs, and George Orphanides
17.1 Introduction 413
17.1.1 Introduction to Endocrine Disruption 413
17.1.2 Therapeutic Endocrine Modulators 415
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2</td>
<td>Molecular Mechanisms of Estrogen Signalling</td>
<td>416</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Introduction to Estrogen Receptor Action</td>
<td>417</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Extracellular Action of Estrogen Receptors Signalling Through Kinase</td>
<td>417</td>
</tr>
<tr>
<td></td>
<td>Cascades to Pleiotropic Transcriptional Effects</td>
<td></td>
</tr>
<tr>
<td>17.3</td>
<td>Current Methods for Assessing Endocrine-disrupting Potential</td>
<td>418</td>
</tr>
<tr>
<td>17.3.1</td>
<td>Nuclear Receptor Binding Assays and Yeast Transactivation Assays</td>
<td>418</td>
</tr>
<tr>
<td>17.3.2</td>
<td>End-point In-vivo Assays for Potential Endocrine Disruptors</td>
<td>419</td>
</tr>
<tr>
<td>17.4</td>
<td>Value of Toxicogenomic Platforms to ED Toxicology</td>
<td>420</td>
</tr>
<tr>
<td>17.4.1</td>
<td>Genome-scale Microarray Experiments Facilitate a Global View of Gene Expression</td>
<td>420</td>
</tr>
<tr>
<td>17.4.2</td>
<td>Experimental Design</td>
<td>424</td>
</tr>
<tr>
<td>17.5</td>
<td>Data Interpretation</td>
<td>425</td>
</tr>
<tr>
<td>17.5.1</td>
<td>The Use of Hierarchical Gene Clustering to Fingerprint ED Modes of Action Will Allow Mechanistic Determination</td>
<td>425</td>
</tr>
<tr>
<td>17.5.2</td>
<td>Pathway Analysis of ED Action</td>
<td>426</td>
</tr>
<tr>
<td>17.5.3</td>
<td>Predictive Testing of ED Potential Based on Transcript Profiling</td>
<td>428</td>
</tr>
<tr>
<td>17.6</td>
<td>Summary</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>430</td>
</tr>
</tbody>
</table>

18 Toxicogenomics Applied to Teratogenicity Studies 435

Philip G. Hewitt, Peter-J. Kramer, and Jürgen Borlak

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>435</td>
</tr>
<tr>
<td>18.1.1</td>
<td>Current Testing Strategies: Established Procedures</td>
<td>438</td>
</tr>
<tr>
<td>18.1.2</td>
<td>Calcium Signalling and Foetal Development</td>
<td>439</td>
</tr>
<tr>
<td>18.1.3</td>
<td>Effect of Dose on Embryo Development</td>
<td>440</td>
</tr>
<tr>
<td>18.1.4</td>
<td>Effect of Time on Embryo Development</td>
<td>441</td>
</tr>
<tr>
<td>18.1.5</td>
<td>Issues Linked to the Placenta as a Barrier</td>
<td>441</td>
</tr>
<tr>
<td>18.1.6</td>
<td>Effect of Xenobiotic and Endogenous Metabolism</td>
<td>442</td>
</tr>
<tr>
<td>18.1.7</td>
<td>Mechanisms of Teratogenicity</td>
<td>443</td>
</tr>
<tr>
<td>18.2</td>
<td>Alternative Methods</td>
<td>443</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Embryonic Stem Cells</td>
<td>443</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Micromasses and Other Cell Culture Systems</td>
<td>444</td>
</tr>
<tr>
<td>18.2.3</td>
<td>Whole-embryo Culture</td>
<td>444</td>
</tr>
<tr>
<td>18.2.4</td>
<td>Gene Expression Profiling</td>
<td>445</td>
</tr>
<tr>
<td>18.2.5</td>
<td>In Silico Studies</td>
<td>445</td>
</tr>
<tr>
<td>18.3</td>
<td>Molecular Aspects of Teratogenicity</td>
<td>445</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Genes Responsible for Causing Birth Defects</td>
<td>445</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Specific Genes Involved in Birth Defects</td>
<td>447</td>
</tr>
<tr>
<td>18.4</td>
<td>Case Study: Elucidation of Mechanisms of Teratogenic Toxicity of the Developmental Drug EMD 82571</td>
<td>448</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Properties of EMD 57033 and EMD 82571</td>
<td>448</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Hypothesis-driven Gene Expression Array</td>
<td>450</td>
</tr>
<tr>
<td>18.4.3</td>
<td>Global Expression Array (Affymetrix)</td>
<td>453</td>
</tr>
<tr>
<td>18.4.4</td>
<td>Results and Discussion</td>
<td>454</td>
</tr>
</tbody>
</table>
21 Genetic Variability: Implications for Toxicogenomic Research 507
Gilbert Schönfelder, Dieter Schwarz, Thomas Gerloff, Martin Paul, and Ivar Roots
21.1 Introduction 507
21.2 Toxicity Due to Genetic Variability of Xenobiotic-metabolizing Enzymes 508
21.2.1 Genetic Variability in Carcinogen Activation by CYP450 Enzymes 509
21.2.2 Toxicity by Variants of Thiopurine Methyltransferase (TPMT) 517
21.2.3 Dihydropyrimidine Dehydrogenase 518
21.2.4 UDP-glucuronosyl Transferase Enzymes 520
21.3 Involvement of Xenobiotic Transporter Systems in Toxicogenomics 521
21.3.1 MDR1 (ABCB1) 522
21.3.2 Multidrug Resistance-related Proteins (MRPs, ABCC) 525
References 527

22 Profiling of Peripheral Blood Gene Expression to Search for Biomarkers 535
Arno Kalkuhl and Mario Beilmann
22.1 Introduction 535
22.2 Objective 536
22.3 Methods 537
22.3.1 Animal Study 537
22.3.2 RNA Isolation 538
22.3.3 Differential Gene Expression Analysis and Statistics 539
22.4 Results and Discussion 540
22.4.1 Comparison of Analyzing Two Different Blood Cell Populations 540
22.4.2 Hemogram/Histopathology in the Animal Study 542
22.4.3 Analysis of the Number of Significantly Deregulated Genes 542
22.4.4 Analysis of Deregulated Genes in Blood after Cyclosporin A Administration 545
22.4.5 Analysis of Genes Deregulated in Blood and Target Organ 551
22.5 Summary 556
References 556

23 How Things Could Be Done Better Using Toxicogenomics: A Retrospective Analysis 561
Laura Suter and Rodolfo Gasser
23.1 Introduction 561
23.2 Case Example: Two 5-HT\textsubscript{6} Receptor Antagonists Displaying Similar Pharmacological Activity and Different Toxicity Profiles 562
23.2.1 Pharmacological Characteristics of the Compounds 562
23.2.2 Toxicological Findings in Rats and Dogs 563
23.3 The use of Toxicogenomics (Retrospectively) to Evaluate Hepatic Liability 564
23.4 Classification of Compounds with the Use of a Reference Gene Expression Database 566
23.4.1 Differentiation of Two Pharmacologically Closely Related Compounds 567
23.4.2 Use of Gene Expression for Mechanistic Hypothesis Generation 569
23.4.3 Corroboration of the Mechanistic Hypothesis I: Validation of the Technology 573
23.4.4 Corroboration of the Mechanistic Hypothesis II: in vitro Studies 575
23.5 Conclusions and Outlook 578
References 581

24 Toxicogenomics Applied to Hematotoxicology 583
Yoko Hirabayashi and Tohru Inoue

24.1 Introduction: Forward and Reverse Genomics 583
24.2 Hematopoietic Stem/Progenitor Cells in Hematotoxicology 585
24.3 Molecular Signature of Stemness of Hematopoietic Stem/Progenies 588
24.4 Radiation Hematotoxicity and Leukemogenesis 591
24.4.1 Radiation Effects on Hematopoietic Stem/Progenitor Cells 591
24.4.2 Radiation Exposure and Gene Expression Microarray 593
24.5 Benzene-induced Hematotoxicity and Leukemogenesis 594
24.5.1 Benzene Exposure and Cell Cycle in Hematopoietic Stem/Progenitor Cells 594
24.5.2 Gene-expression Profile after Benzene Exposure in WT Mice 596
24.5.3 Cell-cycle–related Genes in p53 KO and WT Mice 598
24.5.4 Apoptosis-related Genes in p53 KO and WT Mice 601
24.5.5 DNA-repair–related Genes in the p53 Gene Network 601
24.6 Summary 602
References 604

The National Toxicogenomic Program/Initiatives

25 The National Toxicogenomics Program 611
James K. Selkirk, Michael D. Waters, and Raymond W. Tennant

25.1 Introduction: The National Center for Toxicogenomics 611
25.2 Risk Assessment 613
25.3 The NCT Strategy 614
25.4 Toxicogenomics Broadly Defined 615
25.5 The Chemical Effects in Biological Systems (CEBS) Knowledge Base 617
25.6 Conclusions 618
References 619
26 **Toxicogenomics: Japanese Initiative** 623
Tetsuro Urushidani and Taku Nagao

26.1 The Present State of Drug Development Genome Science 623
26.2 The Necessity of Toxicogenomics 625
26.3 Toxicogenomics Project 2002–2007 626
26.3.1 Planning Process and the Present Organization 626
26.3.2 Contents of the Project 627
26.3.3 Advantage and Originality of the Project 629
26.4 Future Perspectives and Conclusions 630

References 631

Point of View from Regulatory Authorities and Ethical Aspects

27 **Toxicogenomics in Need of an ICH Guideline?**
Experiences from the Past 635
Frauke Meyer and Gerd Bode

27.1 Introduction 635
27.2 Application Options for Toxicogenomics 636
27.2.1 Comparative/Predictive Toxicogenomics 636
27.2.2 Mechanistic Studies (Mode of Action) 637
27.2.3 Risk Assessment 637
27.2.4 Dose-dependent Toxicity 638
27.2.5 Interspecies Extrapolation 638
27.2.6 Human Biomarkers of Exposure 638
27.2.7 Regulatory Acceptance: Current Status 639
27.3 ICH Process for Harmonization of Guidelines: Experience from the Past 640
27.3.1 Overview 640
27.3.2 ICH Carcinogenicity Guidelines as a Case Study: Experience with the Implementation of Alternative Models in Cancer Risk Assessment 641
27.4 Incorporation of Toxicogenomics into Drug Development, Evaluation, and Regulation: Benefits versus Risks 645
27.4.1 General Criteria for Successful Exploitation 645
27.4.2 Evaluation Process: Current Status 651
27.5 Summary and Outlook 653

References 655

Subject Index 657
List of Contributors

M. Beilmann
Boehringer Ingelheim Pharma GmbH & Co. KG
Department of Non-Clinical Drug Safety
Molecular and Cell Toxicology
Birkendorfer Strasse 65
88397 Biberach
Germany

Gerd Bode
Altana Pharma AG
Institut für Pathologie und Toxikologie
Friedrich-Ebert-Damm 101
22047 Hamburg
Germany

Gary Boorman
(address see Michael D. Waters)

Jürgen Borlak
Fraunhofer Institute of Toxicology and Experimental Medicine
Drug Research and Medical Biotechnology
Nikolai-Fuchs-Strasse 1
30625 Hannover
Germany

and

Medical School of Hannover
Centre Pharmacology and Toxicology
Carl-Neuberg-Strasse 1
30625 Hannover
Germany

Andreas Bosio
Memorec Biotec GmbH
Stöckheimer Weg 1
50829 Köln
Germany

Pierre Bushel
(address see Michael D. Waters)

Katrin Buss
Memorec Biotec GmbH
Stöckheimer Weg 1
50829 Köln
Germany

Olivia Corcoran
King's College London
Department of Pharmacy
Frank Wilkins Building
150 Stamford Street
London SE1 9NH
United Kingdom

Jürgen Cox
Genedata GmbH
Lena-Christ-Strasse 50
82152 Martinsried
Germany

Michael Cunningham
(address see Michael D. Waters)
List of Contributors

Damian G. Deavall
AstraZeneca
R&D Alderly Park
Safety Assessment UK
Mereside, Alderly Park
Macclesfield, Cheshire SK10 4TG
United Kingdom

David Finkelstein
Hartwell Center for Bioinformatics and Biotechnology
332, N. Lauderdale Street
Mail Stop 312
Memphis, TN 38015–2794
USA

Andreas Freier
Faculty of Technology
Bioinformatics Department
Bielefeld University
PO Box 100131
33501 Bielefeld
Germany

Timothy W. Gant
Medical Research Council Toxicology Unit
University of Leicester
PO Box 138
Lancaster Road
Leicester, LE1 9HN
United Kingdom

Rodolfo Gasser
Hoffmann-La Roche Ltd.
Non-Clinical Drug Safety
Grenzacherstrasse, B69/146
4070 Basel
Switzerland

Thomas Gerloff
Institute of Clinical Pharmacology
Campus Charité Mitte
Charité – Universitätsmedizin Berlin
Schumannstrasse 20/21
10117 Berlin
Germany

Andreas Gescher
Medical Research Council Toxicology Unit
University of Leicester
PO Box 138
Lancaster Road
Leicester, LE1 9HN
United Kingdom

Hans Gmünder
Genedata AG
Scientific Consulting
Maulbeerstrasse 46
4016 Basel
Switzerland

Peter Greaves
Medical Research Council Toxicology Unit
University of Leicester
PO Box 138
Lancaster Road
Leicester, LE1 9HN
United Kingdom

Philip G. Hewitt
Merck KGaA
Institute of Toxicology
Frankfurter Strasse 250
64293 Darmstadt
Germany

Heinz Hildebrand
Bayer Health Care AG
Genetic and Molecular Toxicology
Aprather Weg 18a
42096 Wuppertal
Germany

Yoko Hirabayashi
National Institute of Health Sciences
Cellular and Molecular Toxicology Division
Kamiyoga, 1-18-1 Setagayaku
158-8501 Tokyo
Japan