Ian Manners

Synthetic Metal-Containing Polymers
Ian Manners

Synthetic Metal-Containing Polymers
Related Titles from WILEY-VCH

S. Farikov (Ed.)

Handbook of Thermoplastic Polyesters

2000
ISBN 3-527-30113-5

S. Farikov (Ed.)

Transreactions in Condensation Polymers

1999
ISBN 3-527-29790-1

H.-G. Elias

An Introduction to Polymer Science

1997
ISBN 3-527-28790-6

G. Hadziioannou, P. F. Van Hutten (Eds.)

Semiconducting Polymers

1999
ISBN 3-527-29507-0

E. S. Wilks (Ed.)

Industrial Polymers Handbook

2001
ISBN 3-527-30260-3
Ian Manners

Synthetic Metal-Containing Polymers
This book was carefully produced. Nevertheless, author and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany
Printed on acid-free paper

Composition K+V Fotosatz GmbH, Beerfelden
Printing strauss offsetdruck GmbH, Mürrenbach
Bookbinding Litges & Döpf Buchbinderei GmbH, Heppenheim

ISBN 3-527-29463-5
Preface

Polymer science has developed rapidly over the last few decades of the 20th century into an exciting area of high-tech materials research. A major contribution to this transformation has been provided by the infusion of creative ideas from synthetic organic chemists. Until recently, the impact of inorganic chemistry on polymer science has been much more limited in scope and has been primarily restricted to the discovery of highly active olefin polymerization catalysts. This is mainly a result of the challenging synthetic problems concerning the formation of long polymer chains containing elements other than carbon. These hurdles are now being overcome and the tantalizing possibility of exploiting the rich diversity of structures, properties, and function provided by inorganic elements in the development of new macromolecular and supramolecular polymeric materials is being productively realized. The new hybrid materials being created represent a welcome addition to the materials science toolbox, and impressively complement those now accessible using organic chemistry.

This book focuses on the area of metal-containing polymers which, based on the unique properties of transition elements and main group metals, exhibit particular promise. The work is organized to provide interested researchers in Universities and Industry with a critical review of the state of the art, and to help stimulate fundamental and applied research in the future. An overview of key concepts in polymer science and background to the challenges and motivations for the development of metal-containing polymers is provided in the introductory Chapter 1. Chapters 2–8 cover the different structural types of metallopolymers currently available with an emphasis on well-characterized materials, properties, and applications. Chapter 2 focuses on polymers with metals in the side group structure. Chapters 3–7 discuss the various classes of metallopolymers with transition or main group metals in the main chain. Dendritic and hyperbranched metallopolymers are described in Chapter 8. The structural diversity of the materials now available is impressive, as is the range of function. The extensive list of uses includes applications as catalysts, electrode mediators, sensors, and as stimuli responsive gels; as photonic, conductive, photo-conductive, and luminescent materials; as precursors to magnetic ceramics and nanopatterned surfaces; and as bioactive materials and metalloenzyme models.

The creation of this book has been accomplished with the help of many other individuals. I would like to express my deep appreciation to a number of my grad-
uate students and postdocs who generously volunteered their talents and help with various aspects of this work. I would like to thank in particular Sara C. Bourke who provided exceptional help and valuable critique throughout the various stages of putting the manuscript together. I also wish to acknowledge the efforts of Katie Porter, Dr. Paul Cyr, Alex Bartole-Scott, Dr. Zhuo Wang, Dr. Xiaosong Wang, Sebastien Fournier, Keith Huynh and Fabio di Lena who helped with the correction and proof-reading of the various chapters. I would also like to thank my wife Deborah O’Hanlon-Manners for helpful comments, proof-reading, and very useful advice.

Finally, I would like to dedicate this book to the people from my personal life whose encouragement over the years has always been essential – my wife Deborah and children Hayley and Chris, my mother Jean D. Manners and late father Derek S. Manners, and my late grandmother Daisy M. Manners.

Ian Manners
Toronto, November 2003
Contents

Preface V
Abbreviations XI

1 Introduction 1
1.1 Metal-containing Polymers 1
1.2 Fundamental Characteristics of Polymeric Materials 3
1.2.1 Polymer Molecular Weights 3
1.2.2 Amorphous, Crystalline, and Liquid-crystalline Polymers: Thermal Transitions 5
1.2.3 Polymers versus Oligomers: Why are High Molecular Weights Desirable? 9
1.2.4 Polymer Solubility 10
1.2.5 Block Copolymers 11
1.2.6 Dendrimers and Hyperbranched Polymers 14
1.2.7 Electrically Conducting Polymers 14
1.3 Motivations for the Incorporation of Metals into Polymer Structures 16
1.3.1 Conformational, Mechanical, and Morphological Characteristics 18
1.3.2 Precursors to Ceramics 18
1.3.3 Magnetic, Redox, Electronic, and Optical Properties 19
1.3.4 Catalysis and Bioactivity 20
1.3.5 Supramolecular Chemistry and the Development of Hierarchical Structures 21
1.4 Historical Development of Metal-based Polymer Science 22
1.5 Synthetic Routes to Metal-containing Polymers 25
1.5.1 The Synthesis of Side-chain Metal-containing Polymers 25
1.5.2 Main-chain Metal-containing Polymers 27
1.5.2.1 Why are Transition Metals in the Polymer Main Chain Desirable? 27
1.5.2.2 The Synthesis of Main-chain Metal-containing Polymers 28
1.5.2.2.1 Addition Polymerization 28
1.5.2.2.2 Polycondensations 29
1.5.2.2.3 Ring-opening Polymerization (ROP) 33
1.6 References 34
2 Side-Chain Metal-Containing Polymers 39
 2.1 Introduction 39
 2.2 Side-chain Polymetalloocene Homopolymers and Block Copolymers 39
 2.2.1 Organic Polymers with Metallocene Side Groups 9
 2.2.1.1 Poly(vinylferrocene) 39
 2.2.1.2 Other Organic Polymers with Metallocene-containing Side Groups 43
 2.2.2 Inorganic Polymers with Metallocene Side Groups 49
 2.2.2.1 Polyphosphazenes with Ferrocene- or Ruthenocene-containing Side Groups 49
 2.2.2.2 Polysilanes, Polysiloxanes, and Polycarbosilanes with Metalloocene Side Groups 50
 2.3 Other Side-chain Metallopolymers 54
 2.3.1 Polymers with π-Coordinated Metals 54
 2.3.2 Polymers with Pendant Polypyridyl Complexes 55
 2.3.3 Polymers with Other Pendant Metal-containing Units, Including the Area of Polymer-supported Catalysts 60
 2.3.4 Block Copolymers with Pendant Metal-containing Groups 62
 2.3.4.1 Approaches using Ring-opening Metathesis Polymerization (ROMP) 63
 2.3.4.2 Coordination to Pyridyl Substituents in Preformed Blocks 64
 2.3.4.3 Coordination to Other Substituents in Preformed Blocks 66
 2.4 References 67

3 Main-Chain Polymetallocenes with Short Spacer Groups 71
 3.1 Introduction 71
 3.2 Polymetallooceneylenes and Polymetalloccenes with Short Spacers Obtained by Condensation Routes 73
 3.2.1 Polymetallooceneylenes 73
 3.2.2 Other Polymetalloccenes with Short Spacers Obtained by Polycondensation Routes 78
 3.3 Ring-opening Polymerization (ROP) of Strained Metallocenophanes 82
 3.3.1 Thermal ROP of Silicon-bridged [1]Ferrocenophanes 82
 3.3.2 Thermal ROP of Other Strained Metallocenophanes 84
 3.3.3 Living Anionic ROP of Strained Metallocenophanes 87
 3.3.4 Transition Metal-catalyzed ROP of Strained Metallocenophanes 89
 3.3.5 Other ROP Methods for Strained Metallocenophanes 91
 3.3.6 Properties of Polyferrocenylsilanes 91
 3.3.6.1 Polyferrocenylsilanes in Solution 92
 3.3.6.2 Polyferrocenylsilanes in the Solid State: Thermal Transition Behavior, Morphology, and Conformational Properties 93
 3.3.6.3 Electrochemistry, Metal-Metal Interactions, Charge-transport, and Magnetic Properties of Oxidized Materials 96
 3.3.6.4 Redox-Active Polyferrocenylsilane Gels 100
3.3.6.5 Thermal Stability and Conversion to Nanostructured Magnetic Ceramics 101
3.3.6.6 Charge-tunable and Preceramic Microspheres 103
3.3.6.7 Water-Soluble Polyferrocnensilanes: Layer-by-layer Assembly Applications 105
3.3.6.8 Applications as Variable Refractive Index Sensors and as Nonlinear Optical Materials 106
3.3.7 Properties of Other Ring-opened Polymetallocenes and Related Materials 106
3.3.8 Polyferrocnensilane Block Copolymers 108
3.3.8.1 Synthetic Scope 108
3.3.8.2 Self-assembly in Block-selective Solvents 109
3.3.8.3 Self-assembly in the Solid State 112
3.3.9 Polyferrocnensilphosphine Block Copolymers 115
3.4 Transition Metal-catalyzed Ring-opening Metathesis Polymerization (ROMP) of Metallocenophanes 116
3.5 Atom Abstraction-induced Ring-opening Polymerization of Chalcogenido-bridged Metallocenophanes 117
3.6 Face-to-face and Multidecker Polymetallocenes Obtained by Condensation Routes 118
3.7 References 122

4 Main-Chain Metallopolymers Containing \(\pi\)-Coordinated Metals and Long Spacer Groups 129
4.1 Introduction 129
4.2 Polymetallocenes with Long Insulating Spacer Groups 129
4.2.1 Organic Spacers 129
4.2.2 Organosilicon Spacers 135
4.2.3 Siloxane Spacers 137
4.3 Polymetallocenes with Long Conjugated Spacer Groups 138
4.4 Other Metal-containing Polymers with \(\pi\)-Coordinated Metals and Long Spacer Groups 142
4.4.1 \(\pi\)-Cyclobutadiene Ligands 142
4.4.2 \(\pi\)-Cyclopentadienyl Ligands 146
4.4.3 \(\pi\)-Arene Ligands 147
4.4.4 \(\pi\)-Alkyne Ligands 149
4.5 References 150

5 Metallopolymers with Metal-Carbon \(\sigma\)-Bonds in the Main Chain 153
5.1 Introduction 153
5.2 Rigid-rod Transition Metal Acetylide Polymers 154
5.2.1 Polymer Synthesis 154
5.2.2 Structural and Theoretical Studies of Polymers and Model Oligomers 162
5.2.3 Polymer Properties 164
Contents

5.2.3.1 Thermal and Environmental Stability 165
5.2.3.2 Solution Properties 165
5.2.3.3 Optical Properties 167
5.2.3.4 Nonlinear Optical Properties 170
5.2.3.5 Electrical and Photoconductive Properties 171
5.3 Polymers with Skeletal Metallocyclopentadiene Units 172
5.4 Other Polymers with M–C σ-Bonds in the Main Chain 174
5.5 References 176

6 Polymers with Metal-Metal Bonds in the Main Chain 181
6.1 Introduction 181
6.2 Polystannanes 182
6.2.1 Oligostannanes 182
6.2.2 Polystannane High Polymers 184
6.3 Polymers Containing Main-chain Metal-Metal Bonds that Involve Transition Elements 189
6.4 Polymers that Contain Metal Clusters in the Main Chain 196
6.5 Supramolecular Polymers that Contain Metal-Metal Interactions 199
6.6 References 201

7 Main-Chain Coordination Polymers 203
7.1 Introduction 203
7.2 Polypyridyl Coordination Polymers 204
7.2.1 Homopolymers with Octahedral Metals 204
7.2.2 Homopolymers with Tetrahedral Metals 213
7.2.3 Stars and Block Copolymers 216
7.3 Coordination Polymers Based on Schiff-base Ligands 221
7.4 Coordination Polymers Based on Phthalocyanine Ligands and Related Macrocycles 226
7.5 Miscellaneous Coordination Polymers Based on Electropolymerized Thiophene Ligands 228
7.6 Coordination Polymers Based on DNA 229
7.7 Coordination Polymers Based on Other Lewis Acid/Lewis Base Interactions 231
7.8 References 233

8 Metalloendrimers 237
8.1 Introduction 237
8.2 Metalloendrimers with Metals in the Core 238
8.3 Metalloendrimers with Metals at the Surface 243
8.4 Metalloendrimers with Metals at Interior Sites 256
8.5 References 267

Subject Index 271
Abbreviations

A-b-B diblock copolymer
A-r-B random copolymer
Ac acetyl group
ADIMET acyclic diyne metathesis
ADMET acyclic diene metathesis
AFM atomic force microscopy
AIBN azobisisobutyronitrile
Ar aryl group
bipy or bpy 2,2'-bipyridine
cod cyclooctadiene
Cp cyclopentadienyl
DCC dicyclohexylcarbodiimide
depe bis(diethylphosphino)ethane
DMA dynamic mechanical analysis
DME 1,2-dimethoxyethane
DMF dimethylformamide
dmpe bis(dimethylphosphino)ethane
DMSO dimethylsulfoxide
D_P_n number-average degree of polymerization
D_P_w weight-average degree of polymerization
dppe bis(diphenylphosphino)ethane
dppm bis(diphenylphosphino)methane
DSC differential scanning calorimetry
E_g band gap energy
$\Delta E_{1/2}$ redox coupling
ESR electron spin resonance
Fc ferrocenyl group -(η⁵-C₅H₅)Fe(η⁵-C₅H₅)
fc ferrocenylene group -(η⁵-C₅H₅)Fe(η⁵-C₅H₅)
FESEM field emission scanning electron microscopy
GPC gel permeation chromatography
$[\eta]$ intrinsic viscosity
η_{sp} specific viscosity
ΔH_{cryst} lattice enthalpy
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex</td>
<td>hexyl group</td>
</tr>
<tr>
<td>HOCO</td>
<td>highest occupied crystal orbital</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>ITO</td>
<td>indium tin oxide</td>
</tr>
<tr>
<td>IVCT</td>
<td>intervalence charge transfer</td>
</tr>
<tr>
<td>IVET</td>
<td>intervalence electron transfer</td>
</tr>
<tr>
<td>K_c</td>
<td>comproportionation constant</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength</td>
</tr>
<tr>
<td>L</td>
<td>neutral 2-electron donor ligand</td>
</tr>
<tr>
<td>LED</td>
<td>light emitting diode</td>
</tr>
<tr>
<td>LMCT</td>
<td>ligand to metal charge transfer</td>
</tr>
<tr>
<td>LU CO</td>
<td>lowest unoccupied crystal orbital</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>matrix-assisted laser desorption ionization – time of flight</td>
</tr>
<tr>
<td>M_n</td>
<td>number-average molecular weight</td>
</tr>
<tr>
<td>M_w</td>
<td>weight-average molecular weight</td>
</tr>
<tr>
<td>Mes</td>
<td>mesityl (2,4,6-trimethylphenyl) group</td>
</tr>
<tr>
<td>MLCT</td>
<td>metal to ligand charge transfer</td>
</tr>
<tr>
<td>NBE</td>
<td>norbornene</td>
</tr>
<tr>
<td>NIR</td>
<td>near infrared</td>
</tr>
<tr>
<td>NLO</td>
<td>non-linear optical</td>
</tr>
<tr>
<td>NMP</td>
<td>N-methylpyrrolidin-2-one</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>OBDD</td>
<td>ordered bicontinuous double-diamond</td>
</tr>
<tr>
<td>Oct</td>
<td>octyl group</td>
</tr>
<tr>
<td>OTf</td>
<td>triflate (trifluoromethylsulfonate) group</td>
</tr>
<tr>
<td>OTTLE</td>
<td>optically transparent thin-layer electrochemistry</td>
</tr>
<tr>
<td>PB</td>
<td>polybutadiene</td>
</tr>
<tr>
<td>PDI</td>
<td>polydispersity index</td>
</tr>
<tr>
<td>PDMS</td>
<td>poly(dimethylsiloxane)</td>
</tr>
<tr>
<td>Pen</td>
<td>pentyl group</td>
</tr>
<tr>
<td>PEO</td>
<td>poly(ethylene oxide)</td>
</tr>
<tr>
<td>PFP</td>
<td>polyferrocenylphosphine</td>
</tr>
<tr>
<td>PFS</td>
<td>polyferrocenylsilane</td>
</tr>
<tr>
<td>phen</td>
<td>1,10-phenanthroline</td>
</tr>
<tr>
<td>PI</td>
<td>polyisoprene</td>
</tr>
<tr>
<td>PMMA</td>
<td>poly(methylmethacrylate)</td>
</tr>
<tr>
<td>PPV</td>
<td>poly(phenylenevinylene)</td>
</tr>
<tr>
<td>PS</td>
<td>polystyrene</td>
</tr>
<tr>
<td>PSS</td>
<td>poly(styrene sulfonate)</td>
</tr>
<tr>
<td>PVFc</td>
<td>poly(vinylferrocene)</td>
</tr>
<tr>
<td>PVP</td>
<td>poly(vinylpyridine)</td>
</tr>
<tr>
<td>P2VP</td>
<td>poly(2-vinylpyridine)</td>
</tr>
<tr>
<td>P4VP</td>
<td>poly(4-vinylpyridine)</td>
</tr>
</tbody>
</table>
PV TPP poly(vinyltriphenylphosphine)
PXRD powder X-ray diffraction
py or pyr pyridine
RIE reactive ion etching
ROMP ring-opening metathesis polymerization
ROP ring-opening polymerization
\(\sigma \) (in Scm\(^{-1}\)) electrical conductivity
\(\Delta S_{\text{diss}} \) entropy of dissolution
SAXS small-angle X-ray scattering
SBP soybean peroxidase
SEC size exclusion chromatography
SEM scanning electron microscopy
SHG second harmonic generation
SPM scanning probe microscopy
STM scanning tunnelling microscopy
\(T_c \) crystallization temperature
\(T_{cl} \) clearing temperature
\(T_g \) glass transition temperature
\(T_{lc} \) melting temperature to give a mesophase
\(T_m \) melting temperature
TCNE tetracyanoethylene
TCNQ 7,7,8,8-tetracyanoquinodimethane
TEM transmission electron microscopy
terpy terpyridyl
TGA thermogravimetric analysis
THF tetrahydrofuran
TMEDA \(N,N,N',N' \)-tetramethylethylenediamine
TMS trimethylsilyl group
Tol toluene
tppz tetrapyridylphenazine
UPS ultraviolet photoelectron spectroscopy
UV ultraviolet
VFc vinylferrocene
vis visible
VPO vapour pressure osmometry
WAXS wide angle X-ray scattering
XPS X-ray photoelectron spectroscopy
\(Z_{c,w} \) weight-average critical entanglement chain length
1

Introduction

1.1 Metal-Containing Polymers

Carbon is not a particularly abundant terrestrial element, ranking 14th among those in the Earth's crust, oceans, and atmosphere. Nevertheless, carbon-based or organic macromolecules form the basis of life on our planet, and both natural and synthetic macromolecules based on carbon chains are ubiquitous in the world around us. Organic polymers are used as plastics, elastomers, films, and fibers in areas as diverse as clothing, food utensils, car tires, compact discs, packaging materials, and prostheses [1]. Moreover, with the additional impetus provided by the Nobel prize winning discovery of electrical conductivity in doped polyacetylene in the mid-1970s, exciting new applications in electroluminescent and integrated optical devices and sensors are also now under development [2–6]. The remarkable growth in the applications of organic polymeric materials in the latter half of the 20th century can mainly be attributed to their ease of preparation, and the useful mechanical properties and unique propensity for fabrication that are characteristic of long-chain macromolecules. Their ease of preparation is a consequence of the highly developed nature of organic synthesis, which, with its logical functional group chemistry and ready arsenal of metal-catalyzed reactions, allows a diverse range of carbon-based polymers to be prepared from what are currently plentifully available and cheap petroleum-derived monomers [7, 8]. In the late 20th century, organic polymer science has been further advanced by the creation of remarkable polymer architectures such as block copolymers, star polymers, and tree-like molecules or dendrimers, which are attracting intense attention.

In contrast to the situation in organic chemistry, the ability to chemically manipulate atoms of inorganic elements is generally at a much more primitive stage of development. Even seemingly simple small inorganic molecules can still be surprisingly elusive, and the formation of bonds between inorganic elements is still often limited to salt metathesis processes. Inorganic analogues of readily available multiply-bonded organic monomers such as olefins and acetylenes, for example, are generally rather difficult to prepare. The development of routes to polymer chains of substantial length constructed mainly or entirely from inorganic elements has therefore been a challenge. Indeed, apart from the cases of polysiloxanes (1.1) [9, 10], poly-
been significantly expanded since the 1980s and 1990s [8].

In the case of polymers based on non-metallic main group elements, the development of novel thermal, Lewis acid or base promoted, or transition metal-catalyzed polycondensation strategies that proceed with the elimination of small molecules such as Me₃SiOCH₂CF₃, Me₃SiCl, H₂, H₂O, and CH₄, as well as the discovery of ring-opening polymerization (ROP) and related processes, has permitted improved approaches to existing polymer systems (e.g. 1.2 and 1.3) [16–25] and access to new materials. Examples of the latter include polyoxothiazones (1.4) [26], polythionylphosphazenes (1.5 and 1.6) [27–29], polyphosphinoboranes (1.7) [30], polyborazlenes (1.8) [31], and other systems that contain boron-nitrogen rings such as polycyclodiborazanes (1.9) [32].

Many similar synthetic challenges exist in the area of polymers based on metallic elements. At the molecular level, metal chemistry is well developed. For example, the preparation of carefully designed, single-site transition metal catalysts has already had a dramatic impact on polymer science, particularly for the polymerization
of alkenes [33]. Inorganic solid-state materials chemistry has also now been developed to the extent that scientists are able to exploit the vast range of possibilities arising from the chemical diversity made available throughout the Periodic Table [34–36]. The creation of high-temperature ceramic superconductors, state-of-the-art magnetic, electrochromic, or electrooptical materials, and unprecedented catalysts with controlled porosity, are all consequences of chemists' now highly impressive ability to organize atoms of inorganic elements in two and three dimensions. In contrast, the elaboration of efficient synthetic routes to metal-containing polymers has been the real roadblock to the development of 1-D analogues of the well-established 2-D layered and 3-D metal-containing solid-state materials. This is particularly the case if the metal atoms are located directly in the main chain, where they are most likely to exhibit the most profound influence on the properties of the macromolecular material. Over the last decade of the 20th century, there have been clear indications that this synthetic problem is being productively tackled and a wide variety of intriguing new polymer systems have emerged. These developments are the subject of this book, which is written both to review the state-of-the-art and also to further help stimulate both fundamental and applied research in this exciting area that is ripe for exploitation and full of future potential.

1.2 Fundamental Characteristics of Polymeric Materials

Polymers exhibit a range of architectures and unique properties, the study of which represents a major core area of polymer science. Although this book assumes that the reader is familiar with some of the basic concepts of polymer science, such as the structures of common macromolecular materials (polystyrene, polyisoprene, etc.), additional knowledge is certainly desirable for an appreciation of much of the research described and the challenges for the future. In this section, we briefly cover some key points for the benefit of readers unfamiliar with the areas that are relevant to the discussions in subsequent chapters. For detailed background material the reader is referred to the many excellent introductory and advanced books on polymer science and the recent literature cited in this section [7, 37–42].

1.2.1 Polymer Molecular Weights

Samples of synthetic polymers are generally formed by reactions where both the start and end of the growth of the macromolecular chain are uncontrolled and are relatively random events. Even chain-transfer reactions, where, for example, one polymer chain stops growing and in the process induces another to begin, are prevalent in many systems. Synthetic polymer samples, therefore, contain molecules with a variety of different chain lengths and are termed polydisperse. For this reason, the resulting molecular weight distribution is characterized by an average molec-
ular weight. The two most common are the weight-average molecular weight, M_w, and the number-average molecular weight, M_n. The quantity M_w/M_n is termed the polydispersity index (PDI), which measures the breadth of the molecular weight distribution and is ≥ 1. In the case where the polymer chains are of the same length $M_w = M_n$ (i.e. PDI = 1), the sample is termed monodisperse. Such situations are rare, except in the case of biological macromolecules, but essentially monodisperse systems also occur with synthetic polymers where the polymerization by which they are prepared is termed living. In such cases, initiation is rapid and no termination or chain-transfer reactions occur; under such conditions, the polymer chains initiate at the same instant and grow until the monomer is completely consumed, resulting in macromolecular chains of the same length [7]. In practice, living systems are not perfect; for example, very slow termination reactions generally occur. This leads to polymer samples which are of narrow polydispersity (1.0 < PDI < 1.2) rather than perfectly monodisperse (PDI = 1.0). Living systems are of particular interest because they allow the formation of controlled polymer architectures. For example, unterminated chains can be subsequently reacted with a different monomer to form block copolymers.

A variety of different experimental techniques exist for the measurement of M_w and M_n [38–41]. Some afford absolute values, while others give estimates that are relative to standard polymers, such as polystyrene, which are used as references. One of the simplest techniques for obtaining a measurement of the molecular weight of a polymer is Gel Permeation Chromatography (GPC) (also known as Size Exclusion Chromatography, SEC). This method affords information on the complete molecular weight distribution as well as values of M_w and M_n (and hence the PDI). Unfortunately, the molecular weights obtained are relative to that of the polymer standard used to calibrate the instrument unless special adaptations of the experiment are made or standard monodisperse samples of the polymer under study are also available as references. Light-scattering measurements are generally time consuming but permit absolute values of M_w to be obtained and also yield a wealth of other information concerning the effective radii of polymer coils in the solvent used, polymer-solvent interactions, and polymer diffusion coefficients. The introduction of light-scattering detectors for GPC instruments has now made it possible for both absolute molecular weights and molecular weight distributions to be determined routinely. It should also be noted that mass spectrometry techniques such as Matrix-Assisted Laser Desorption Ionization – Time of Flight (MALDI-TOF) have now been developed to the stage where they are extremely useful for analysis of the molecular weights of polymers and can give molecular ions for macromolecules with molecular weights substantially greater than 100,000.

Although most polymer samples possess a single molecular weight distribution by GPC and are termed monomodal, for some the molecular weight distribution actually consists of several individual, resolvable distributions. In such cases, the molecular weight distribution is referred to as multimodal. For example, if a high and a low molecular weight fraction can be distinguished then the distribution is termed bimodal (Fig. 1.1a). Examples of broad and narrow monomodal molecular weight distributions are shown in Fig. 1.1b and 1.1c, respectively.
1.2.2 Amorphous, Crystalline, and Liquid-Crystalline Polymers: Thermal Transitions

As polymer chains are usually long and flexible, they would be expected to pack randomly in the solid state to give an amorphous material. This is true for many polymers, particularly those with an irregular chemical structure. Examples are the stereoirregular materials atactic polystyrene (1.10) and atactic polypropylene (1.11), in which the Ph and the Me substituents, respectively, are randomly oriented.

However, polymer chains that have regular structures can pack together in an ordered manner to give crystallites. In general, perfect single crystals are not formed by long polymer chains for entropic reasons, and such materials are therefore often more correctly referred to as semicrystalline, as amorphous regions are...
also present [43]. At the edges of the crystallites, the macromolecular chains fold and re-enter the crystal. The manner in which this occurs has been a subject of much debate in the polymer science community, but a reasonable picture of the amorphous and crystalline regions of a semicrystalline polymer is shown in Fig. 1.2. Information on the morphology of polymers is revealed by techniques such as powder X-ray diffraction (PXRD), which is often called wide-angle X-ray scattering (WAXS) by polymer scientists, and small-angle X-ray scattering (SAXS). The crystallites exist in a polymer sample below the melting temperature (T_m), an order-disorder transition, above which a viscous melt is formed.

The presence of crystallites can lead to profound changes in the properties of a polymeric material. For example, crystallites are often of the appropriate size to scatter visible light and thereby cause the material to appear opaque. They often lead to an increase in mechanical strength, but also to brittleness. Gas permeability generally decreases, as does solubility in organic solvents as an additional lattice energy term must be overcome for dissolution to occur. Examples of crystalline polymers are the stereoregular materials syndiotactic polystyrene (1.12), in which the orientation of the Ph groups alternates in a regular manner, and isotactic polypropylene (1.13), in which the Me groups have the same orientation. This structural regularity allows the polymer chains to pack together in a regular manner as crystallites.
In addition to the melting temperature \(T_m \), which arises from the order-disorder transition for crystallites in a polymer sample, amorphous regions of a polymer show a glass transition \(T_g \). This second-order thermodynamic transition is not characterized by an exotherm or endotherm, but rather by a change in heat capacity, and is related to the onset of large-scale conformational motions of the polymer main chain. Generally, stiff polymer chains and large, rigid side groups generate high \(T_g \) values. Below the \(T_g \) an amorphous polymer is a glassy material, whereas above the \(T_g \) it behaves like a viscous gum, because the polymer chains can move past one another. By linking the polymer chains together through cross-linking reactions, rubbery elastomers can be generated from low \(T_g \) polymers. Purely amorphous polymers such as atactic polystyrene show only a glass transition \(T_g \approx 100 \, ^\circ C \), whereas semicrystalline polymers show both a \(T_m \) and a \(T_g \). Semicrystalline polymeric materials are rigid plastics below the \(T_g \) and become more flexible above the \(T_g \). Above the \(T_m \), a viscous melt is formed.

It is noteworthy that the rate of polymer crystallization can be extremely slow and polymers that can potentially crystallize are often isolated in a kinetically stable, amorphous state. The polyester poly(ethylene terephthalate) (PET) provides a good example. This material has a \(T_g \) of 69 \, ^\circ C and a \(T_m \) of 270 \, ^\circ C, but crystallization only becomes rapid well above the \(T_g \). Rapid cooling from the melt yields an amorphous material, whereas slow cooling or annealing above the \(T_g \) can yield percentage crystallinities up to 55\% [38]. A potentially crystallizable polymer that is in an amorphous state can show an exothermic crystallization transition \(T_c \) at elevated temperatures. The thermal transitions of a polymer are commonly investigated by the technique of differential scanning calorimetry (DSC). A typical DSC trace showing a \(T_g \), a \(T_c \), and a \(T_m \) is shown in Fig. 1.3.

![Fig. 1.3](image-url)
Polymers can also exhibit liquid crystallinity, a fluid state in which some long-range positional or orientational order, or a mesophase, exists [43, 44]. This arises when significant shape anisotropy is present in the polymer main chain or side-group structure. Liquid crystallinity can exist in the bulk material, where the mesophase is formed over a certain temperature range (thermotropic), or as a consequence of a preferred arrangement of polymer molecules in solution above a certain concentration (lyotropic). Thermotropic liquid-crystalline materials show a mesophase between a melting temperature for the crystalline phase (T_{lc}) and the clearing temperature (T_{cl}), above which an isotropic melt is formed. The order present in liquid-crystalline polymers can be used to broadly classify the materials as nematic (order in only one dimension) or smectic (weakly layered), as illustrated for the case of a main-chain liquid-crystalline polymer that consists of rigid and flexible segments (Fig. 1.4a and b, respectively). Many permutations on this theme are possible, as illustrated in Fig. 1.4c to g [43, 44]. Liquid-crystalline polymers can be analyzed by polarizing optical microscopy, where the ability of mesophases to influence the plane of polarized light yields various textures, which are used to characterize the materials. Liquid-crystalline polymers are of considerable interest as high-performance materials and have potential uses in photonics and data storage.

Fig. 1.4 Nematic and smectic main-chain liquid-crystalline polymers: (a) main-chain nematic, (b) main-chain smectic A, (c) main-chain smectic C, (d) side-chain nematic, (e) side-chain smectic A, (f) main-chain cholesteric, (g) main-chain discotic (Reproduced from [43]).
Polymers versus Oligomers: Why are High Molecular Weights Desirable?

Two related questions that are often asked are the following: “How long does a molecule have to be in order for it to be called a polymer rather than an oligomer?” and “Why are high molecular weights desirable?” Indeed, the electronic and optical properties of extended conjugated molecular structures are often maximized at chain lengths of 30 chain atoms or so. So why are longer chains needed? The main reasons for the widespread use of polymers are their excellent mechanical properties such as strength, deformability, and elasticity. Simple considerations allow a rough estimation of the substantial chain lengths necessary to obtain these properties.

In crystalline polymers, the need is for polymer molecules that function as “tie molecules” which are long enough to connect individual crystallites (see Fig. 1.2). This leads to strong covalent bond connections both within the crystallites and also between them, and thereby enhances mechanical strength. Typically, chains must consist of at least 100 chain atoms for such connections to be possible. For a monomer of molecular weight 100, this corresponds to $M_n \approx 10,000$. In amorphous polymers, the chains need to be long enough for entanglement to take place (Fig. 1.5). Chain entanglements help the material to maintain structural integrity under stress. The onset of significant chain entanglement, the weight-average critical entanglement chain length $Z_{c,w}$, can be determined from melt viscosity measurements and generally corresponds to ca. 600 chain atoms. For poly(dimethylsiloxane), $Z_{c,w} = 630$, which corresponds to $M_w \approx 23,000$, whereas for polystyrene $Z_{c,w} = 600$, which corresponds to $M_w \approx 31,000$. These molecular weights therefore represent the low end for the useful mechanical properties of these polymers [39]. Clearly, the molecular weight required for useful mechanical properties depends on the particular polymer being considered.

The need for high molecular weights in order to obtain useful mechanical properties is neatly illustrated by a comparison of straight-chain hydrocarbons. It is easy to appreciate the difference between a birthday candle (a mixture of C$_{25}$–C$_{50}$ alkanes, i.e. $M_n \approx 500$), which is a brittle material and breaks easily, and a polyethylene wash bottle tip (chains of >1000 carbon atoms, i.e. $M_n > 15,000$), which can be repeatedly bent [39].

It is obvious, then, that high molecular weight polymers have major advantages over low molecular weight analogues for most applications. However, it is important to note that exceptions to this rule exist. For example, in applications as toner particles in laser printing and xerography, where low melting points are impor-

Fig. 1.5 (a) Oligomers, which do not entangle due to their short chains, and (b) chain entanglements in an amorphous high molecular weight polymer.
tant, low molecular weight materials are actually desirable. In addition, for certain electronics applications, well-defined monodisperse oligomers (e.g. the linear hexamer sexithiophene) can have better defined and more predictable electronic and optical properties. In such cases, the lower processability of the oligomer can be circumvented by the use of vacuum deposition to form high quality films. Relatively low molecular weight polymers are also useful as precursors to ceramic materials. For example, after fabrication into fibers, pyrolysis can yield a ceramic product in high yield. In such applications, sufficient viscosity for spinning into fibers and high ceramic yield are of great importance. Nevertheless, in the vast majority of cases, high molecular weights allow more desirable material properties. In this book, then, we will make a broad generalization and use the term “polymer” to refer to materials with $M_n > 10,000$, and will use the term oligomer to refer to materials of lower molecular weight.

1.2.4 Polymer Solubility

Films of polymeric materials are readily fabricated from solution by evaporation- or dip-casting and by spin-coating techniques. However, polymers generally show a lower tendency to dissolve in solvents compared to molecular compounds for thermodynamic reasons. This is a consequence of the fact that the entropy of dissolution, ΔS_{diss}, is substantially reduced for a macromolecular material relative to that for a small molecule compound. In solution, the additional disorder for a polymer chain compared to that present in an amorphous polymeric solid is very small, especially if the main chain is rigid (i.e. the T_g is high). The polymer segments in solution are still constrained to one dimension and so the amount of “disorder” is not vastly different from the situation in the solid state. By contrast, small molecules possess considerably more translational freedom in solution compared to the solid state, as motion in three different dimensions is possible. The thermodynamic polymer solubility problem becomes particularly acute if the polymer is crystalline, as an unfavorable lattice enthalpy term ΔH_{cryst} must also be overcome for dissolution to occur. Thus, the choice of a solvent that has favorable interactions with a polymer becomes critical when dissolution of the polymer is desired. The attachment of long flexible organic substituents (e.g. n-alkyl or n-alkoxy groups) to a polymer with a rigid backbone is a common and important strategy for generating solubility in organic solvents. In addition, the introduction of polar groups or ionic sites can allow dissolution in hydrophilic solvents and in water. Thus, by a consideration of these factors and logical synthetic manipulations of polymer structures, the dissolution of virtually all uncrosslinked polymeric materials can, in fact, be achieved. It should also be noted, however, that dissolution of polymers in solvents can still be slow for kinetic reasons, even when the process is thermodynamically favorable. When a solid sample of a polymer dissolves, permeation of solvent into the solid from the solid/solvent interface can be slow, as long polymer chains must be completely solvated before diffusion into the bulk solvent is possible. Such a process is generally much more rapid for molecular compounds with smaller dimensions. Finally, it
should be noted that crosslinked polymers swell but do not dissolve in solvents which otherwise dissolve the analogous uncrosslinked material. The degree of swelling is inversely dependent on the degree of crosslinking. This generates gels, which have a wide variety of uses. For example, hydrogels made from crosslinked hydrophilic polymers are used as contact lenses.

1.2.5 Block Copolymers

The polymers discussed in the previous section are derived from a single monomer, and are termed homopolymers. Physical mixtures of two or more polymers are termed blends, and these hybrid materials have useful combinations of properties derived from the constituent homopolymers. Generally, for reasons analogous to those leading to a low entropy of dissolution in solvents (Sect. 1.2.4), and in dramatic contrast to the situation for small molecule compounds, the entropy of mixing of two homopolymers \(\Delta S_{\text{mix}} \) is very small. As this is usually insufficient to overcome the unfavourable and positive value of the enthalpy of mixing \(\Delta H_{\text{mix}} \) the material will phase-separate into regions of immiscible homopolymers at the microscopic level [39]. It is difficult to overemphasize the tendency of two polymers to phase-separate even if the difference in chemical structure is small. For example, even high molecular weight polyethylene and deuterated polyethylene are not miscible in all proportions!

Copolymers contain repeat units derived from different monomers chemically bound in the main chain. Considering two different monomers A and B, it is possible to envisage random copolymer structures (e.g., ABBABAABA...), alternating structures (...ABABAB...), and many others such as graft structures, where, for example, side chains formed from B are attached to a main chain derived from A. Block copolymers (...AAAAAABBBBB..., or A-b-B) are a particularly interesting example of a copolymer architecture and these materials possess a range of remarkable and useful properties [45]. For example, diblock copolymers form colloidal dispersions in solvents that are selective for one of the blocks, where supramolecular micellar aggregates are formed, with the insoluble block forming the core and the soluble block forming the corona [45, 46]. These micelles are generally much more stable than those formed by small molecule surfactants and are usually spherical in nature (Fig. 1.6), although a range of remarkable architectures including cylinders, vesicles, and even onion-like structures have now been generated [47–49].

Micellar structures can be visualized after solvent evaporation by techniques such as transmission electron microscopy (TEM) or atomic force microscopy (AFM). The micellar aggregates can be studied in solution by static and dynamic light-scattering, which can give micelle sizes and aggregation numbers as well as information on the shape of the micelles formed. Crosslinking of either the core or corona has been studied as a means of making the micellar structures permanent in the sense that they do not dissociate into individual block copolymer molecules in the presence of a good solvent for both blocks [50–55].

In the solid state, phase-separation of immiscible blocks generally occurs to give nanodomains that can be ordered. For example, the diblock copolymer polysty-
1 Introduction

Fig. 1.6 Formation of spherical micelles from a block copolymer in a block-selective solvent.

Fig. 1.7 Polystyrene-b-polyisoprene (PS-b-PI) solid-state morphologies as a function of increasing volume fraction of the polystyrene block (Adapted from [56]).
rene-\textit{b}-polyisoprene (PS-\textit{b}-PI) has been particularly well-studied, and ordered arrays of spheres, cylinders, bicontinuous double-diamonds (OBDD), and lamellae are formed as the relative block lengths (and hence block volume fractions) are altered from highly asymmetric through to a similar value (Fig. 1.7) [45, 56]. More complex structures, such as gyroids, are formed within a relatively restricted range of block lengths. The structures can be imaged by techniques such as TEM and AFM, and further information on the order present in such systems can be revealed by techniques such as SAXS [43, 56].

The micellar structures and phase-separated domains have dimensions on the nanometer scale and are of considerable interest for a wide range of applications. These include uses as micellar drug delivery agents and catalysts, as nanoscopic etching resists for creating patterned surfaces in nanolithography, and for the generation of structures with periodic changes in refractive index for applications in photonics [45, 46, 57–61].

An elegant example that illustrates the enormous potential of this area is that provided by the use of the hydrophilic polyether domains of phase-separated polyisoprene-\textit{b}-poly(ethylene oxide) (PI-\textit{b}-PEO) as a reaction medium for the sol-gel hydrolysis of silicon and aluminum alkoxides [62]. The resulting structures can, for example, be subsequently dispersed in a solvent and consist of crosslinked silica/alumina/PEO nano-objects solubilized by the polyisoprene chains (Fig. 1.8).

![Nano-objects with controlled shape and size from block copolymer mesophases](image)

\textbf{Fig. 1.8} Nano-objects with controlled shape and size from block copolymer mesophases: At the top left, phase-separated PI-\textit{b}-PEO is shown, where the spheres consist of the PEO block. Subsequent dispersion and sol-gel hydrolysis of silicon and aluminum alkoxides in the PEO block leads to swelling of this block and, if desired, morphological transitions. Dissolution of the PI block in a selective solvent leads to “hairy” nano-objects consisting of crosslinked silica/alumina/PEO (Adapted from [62]).
Important commercial uses of block copolymers depend on phase separation in the solid state. For example, triblock copolymers PS-b-PB-b-PS (PB = polybutadiene) that contain a long PB block form glassy domains of PS ($T_g = 100^\circ\text{C}$) within a matrix of low T_g PB ($T_g \approx -100^\circ\text{C}$). The glassy PS domains function as physical crosslinks, which prevent the PB chains from slipping past one another under deformation. This generates elastomeric properties but, unlike normal elastomers which are permanently chemically crosslinked, heating above the T_g of the PS block allows the material to be reprocessed. This reversibility has led to the term thermoplastic elastomer for these materials, which are known as Kratons and are sold commercially [39].

1.2.6 Dendrimers and Hyperbranched Polymers

The area of tree-like polymer architectures was pioneered by the Tomalia, Newkome, and Vögtle groups in the late 1970s and 1980s [63–66]. The original syntheses of dendritic structures involved a divergent approach, where the structures were assembled by starting at a core and working outwards. Additional impetus to the area was subsequently provided by the demonstration of a new conceptual approach to dendrimers, which involved convergent synthesis, as reported almost simultaneously by the groups of Neenan and Miller, and by Hawker and Fréchet in 1990 [67, 68]. Here, the dendrimer was synthetically assembled by the reaction of a series of arms at a core. These two different methods are illustrated in Fig. 1.9.

The general area of dendritic and hyperbranched polymers has received remarkable attention over the past decade. New properties not available with linear polymers have been demonstrated. For example, evidence has been provided that supports the existence of considerable space for the encapsulation of small molecules, and this has led to the idea of a “dendritic box” [69]. A severe problem with dendrimers is their time-consuming synthesis and, recently, facile synthetic methods that form hyperbranched materials that may exhibit many of the advantageous properties of dendritic macromolecules have been receiving significant attention [70].

1.2.7 Electrically Conducting Polymers

Most polymers (typified by polystyrene and polyethylene) are electrically insulating and have conductivities $\sigma < 10^{-14}$ S cm$^{-1}$. The observation that polyacetylene could be oxidatively doped with iodine to become electrically conducting (values have now been reported up to $\sigma > 10^5$ S cm$^{-1}$) represented a pivotal discovery in polymer science that ultimately resulted in the award of the Nobel Prize for Chemistry in 2000 [4]. The study of electrically conducting polymers is now well advanced and two extremes in the continuum of transport mechanisms exist. If the charge carriers are present in delocalized orbitals that form a band structure along the polymer backbone, they conduct by a delocalization mechanism. In contrast, isolated groups in a polymer can function as acceptors or donors of electrons and can permit