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Preface

Organic electroluminescent devices have been one of the most attractive research
topics in Material Sciences during the last two decades. The attraction and fasci-
nation of this field stem mainly from the interdisciplinary nature of the approach
which includes synthetic and physical chemistry, device physics and electrical en-
gineering. Particularly appealing and inspiring is the palpable link between both
basic and applied science and an immense industrial and commercial interest in
its applications.
When surveying the progress of research and development in electrolumines-

cent devices, it becomes obvious that such emerging technologies always develop
by way of competition with existing technologies which are themselves under-
going continual optimization. One is thus “shooting at moving targets“. The
strong competition between the as yet progressing “conventional” semiconductor
technology and the “new” field of organic electronics applications forms the back-
drop for the development of organic electroluminescent devices. Moreover, the
competition is not only focused on scientific problems such as materials design
and optimization, device structure and performance (including power consump-
tion and lifetime/stability), but close to market also issues such as large scale pro-
duction, manufacturing costs and market prices become important. Despite all
these problems the commercialization of organic electroluminescent devices is
forging ahead with impressive speed and capacity. The process is driven globally
by numerous large multinational companies as well as small start-up companies.
Research into organic electronic materials was dominated until the 1980s by

the search for “synthetic metals” with a high electrical conductivity. In this endea-
vor, oxidatively or reductively doped organic materials were most favored. There-
after the electronic and emissive properties of neutral, undoped organic semicon-
ductors also became focal points of major scientific activities. The spearhead of
the organic electroluminescence research was achieved by Ching Tang’s group
at Kodak in the late 1980s. Their impressive contributions to organic electrolumi-
nescent and photovoltaic devices paved the way for all the subsequent progress.
Some years later Richard Friend’s group in Cambridge performed pioneering
work which introduced light-emitting semiconducting polymers as an additional
class of promising emissive organic materials for electroluminescent devices.
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New technology requires new or improved materials. For example, the pioneer-
ing OLED work of the Friend group published in 1990 used low quality, so-called
“precursor poly(phenylene vinylene)” (PPV) as the emissive material. Their initi-
al, very promising findings then stimulated a wealth of synthetic work. After 15
years of materials improvement soluble PPV-type materials with high purity,
structural regularity and excellent OLED performance are now commercially
available. No doubt, the synthetic protocols employed to generate these polymers
are crucial for achieving reasonably high molecular weights and structural perfec-
tion, as the presence of defects has major and usually deleterious effects upon the
performance of OLED devices.
However, the competition between different concepts is not limited to the

chemical structure and molecular weight of the organic materials. Also the tech-
niques for their processing are a key factor. While low molecular weight organic
materials are commonly processed by well-established ultra-high vacuum tech-
niques (MBD, PVD, and CVD) as widely used in the production of inorganic
semiconductor devices, wet processing is an alternate procedure for the deposi-
tion of semiconducting oligomers and polymers, e. g. by spin casting, doctor blad-
ing, and screen or inkjet printing. Solution based processing techniques seem pi-
votal to the search for low cost fabrication alternatives. The wet processing of
semiconducting materials for OLED devices, however, is by no ways a trivial
task, so that the solubility behavior of the solution-processed components as-
sumes particular attention. Since multilayer devices are the mostly favored
OLED design, either a strict orthogonality in the solubility of different materials
or a subsequent cross-linking of previously solution-deposited layers is required.
The complexity of the competition, however, does not end with this example.

Much of the industrial interest in organic electroluminescent materials sprang
from the hope that a future display technology would be mainly based on organic
light emitting diodes (OLED) and was derived from envisaged advantages as high
brightness, wide viewing angles and low cost. But meanwhile also liquid crystal-
based displays (LCD) were tremendously improved. It is by no means clear which
technology will finally win the contest and whether electroluminescence of organ-
ic materials will be used primarily in OLED displays or for solid-state lighting ap-
plications.
Research into OLEDs has generated important scientific problems, such as how

to control not only the emission wavelength so as to obtain full color red/green/
blue (RGB) OLED devices, but also the migration of excitations within or between
individual molecules, the balancing of the concentrations of charge carriers, the
design of optimized interfaces between organic layers and electrodes, etc. Impor-
tant criteria, hereby, are a maximum power efficiency and lifetime/stability of the
resulting OLED devices. The introduction of transition metal-based electropho-
sphorescent emitters defined a further milestone towards technologically relevant
device efficiencies. The enormous progress made in the application of triplet
emitters has initiated a new round of OLED research. Again, the device optimiza-
tion (performance-lifetime-stability) is the key challenge, e. g., a combination of a
maximum device performance with sufficient lifetimes.
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As a next step, technological problems resulting from large scale fabrication of
devices are at the focus of efforts towards a commercialization of OLED devices. It
is important to note that LCD and OLED display panels are designed upon simi-
lar principles since behind the active organic layers, both require driving electro-
nics based on thin-film transistors. This similarity suggests that the commercia-
lization of OLED devices is not only guided by the device performance, but to a
great extent by fabrication technology and production costs.
The concept of “Organic Electroluminescent Devices” follows the above out-

lined landscape. The logical place to begin is by first covering the background
against which all research into OLEDs occurs – the existing but still evolving tech-
nology of inorganic LEDs, which is the immediate competitor against which
OLEDs must seek to establish themselves. We therefore start with an introductory
chapter by Fred Schubert on inorganic semiconductors for LEDs.
Obviously before one can hope to optimize OLEDs one needs to understand the

scientific fundamentals behind their operation. So we then proceed with contribu-
tions from two of the world’s leading experts on the photophysics of organic semi-
conductors into the fundamental issues involved in emission from organic mate-
rials. Heinz B�ssler provides an overview of the photophysics of emissive organic
materials, while Richard Friend presents a discussion of his recent work into one
of the key topics in the physics of OLEDs: the electronic processes at polymer het-
erojunctions. This leads logically on to considering how one goes about optimiz-
ing OLEDs, which is covered by two contributions which between them illustrate
many of the methods being used to achieve this vital goal. Alan Heeger describes
the various research approaches being investigated at Santa Barbara, while Shuit-
Tong Lee presents some of the recent work from his group at Hong Kong.
Having established the fundamentals of OLEDs and their development, we next

turn to consider the materials that are to go into them and their processing. One
needs to know not only what types of materials have been or could be used in
OLEDs, but also how their properties can be controlled by synthetic design.
Here we have overviews of the synthesis of two of the main components in
OLEDs. Andrew Grimsdale describes the main classes of electroluminescent poly-
mers, with an emphasis on how their properties and device performance can be
optimised by synthetic design, while Yasuhiko Shirota reviews materials for use
as charge-transporting and hole-blocking layers in multilayer devices. Dendrimers
are a class of material which are generating increasing interest in all areas of ma-
terials science and John Lupton provides us with a review of their use in OLEDs.
Finally Klaus Meerholz describes some of his exciting work which beautifully de-
monstrates how the intended processing of materials must be an integral feature
of their design.
Finally, novel directions are continually opening up in OLED research and de-

velopment, and so we end with accounts of three of the most exciting of those that
have appeared in recent years. An optimal material for an LED would combine
the advantages of inorganic and organic materials, and so Andrey Rogach pro-
vides an account of work into inorganic/organic hybrid materials, which seek
to achieve this. A major limit on the performance of OLEDs has always been
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that the energy of the majority of excited states, the triplets, was wasted. Dieter
Neher describes how electrophosphorescent devices based on triplet emitters
are being developed which utilize this resource and so offer the prospect of
much higher device efficiencies. Finally, the ultimate development of OLED tech-
nology would be to make an electrically pumped organic laser diode and so we
conclude with a contribution from Uli Lemmer on the work being done on organ-
ic semiconductor lasers which aims to cross that final frontier.
We would like to express our gratitude to Martin Ottmar at Wiley-VCH for in-

viting us to bring this exciting field of research to a wider audience, to all our
distinguished contributors for their efforts, and especially to Andrew Grimsdale
for his assistance in coordinating the project.

Mainz and Wuppertal
November 2005 Klaus M�llen and Ullrich Scherf
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1
Inorganic Semiconductors for Light-emitting Diodes
E. Fred Schubert, Thomas Gessmann, and Jong Kyu Kim

1.1
Introduction

During the past 40 years, light-emitting diodes (LEDs) have undergone a signifi-
cant development. The first LEDs emitting in the visible wavelength region were
based on GaAsP compound semiconductors with external efficiencies of only
0.2%. Today, the external efficiencies of red LEDs based on AlGaInP exceed
50%. AlGaInP semiconductors are also capable of emitting at orange, amber,
and yellow wavelengths, albeit with lower efficiency. Semiconductors based on
AlGaInN compounds can emit efficiently in the UV, violet, blue, cyan, and
green wavelength range. Thus, all colors of the visible spectrum are now covered
by materials with reasonably high efficiencies. This opens the possibility to use
LEDs in areas beyond conventional signage and indicator applications. In partic-
ular, LEDs can now be used in high-power applications thereby enabling the re-
placement of incandescent and fluorescent sources. LED lifetimes exceeding
i 105 h compare favorably with incandescent sources (Z 500 h) and fluorescent
sources (Z 5000 h), thereby contributing to the attractiveness of LEDs.
Inorganic LEDs are generally based on p-n junctions. However, in order to

achieve high internal quantum efficiencies, free carriers need to be spatially con-
fined. This requirement has led to the development of heterojunction LEDs con-
sisting of different semiconductor alloys and multiple quantum wells embedded
in the light-emitting active region. The light-extraction efficiency, which measures
the fraction of photons leaving the semiconductor chip, is strongly affected by the
device shape and surface structure. For high internal-efficiency active regions, the
maximization of the light-extraction efficiency has proven to be the key to high-
power LEDs.
This chapter reviews important aspects of inorganic LED structures. Section 1.2

introduces the basic concepts of optical emission. Band diagrams of direct and
indirect semiconductors and the spectral shape of spontaneous emission will
be discussed along with radiative and nonradiative recombination processes.
Spontaneous emission can be controlled by placing the active region in an optical

1



cavity resulting in a substantial modification of the LED emission characteristics.
Theory and experimental results of such resonant-cavity LEDs (RCLEDs) are dis-
cussed in Section 1.3. The electrical characteristics of LEDs, to be discussed in
Section 1.4, include parasitic voltage drops and current crowding phenomena
that result in nonuniform light emission and shortened device lifetimes. Due
to total internal reflection at the surfaces of an LED chip, the light-extraction ef-
ficiency in standard devices is well below 100%. Section 1.5 discusses techniques
such as chip shaping utilized to increase the extraction efficiency. A particular
challenge in achieving efficient LEDs is the minimization of optical absorption
processes inside the semiconductor. This can be achieved by covering absorbing
regions, such as lower-bandgap substrates, with highly reflective mirrors. Such
mirrors should have omnidirectional reflection characteristics and a high angle-
integrated, TE-TM averaged reflectivity. A novel electrically conductive omnidirec-
tional reflector is discussed in Section 1.6. Section 1.7 reviews the current state of
the art in LED packaging including packages with low thermal resistance.

1.2
Optical Emission Spectra

The physical mechanism by which semiconductor light-emitting diodes (LEDs)
emit light is spontaneous recombination of electron–hole pairs and simultaneous
emission of photons. The spontaneous emission process is fundamentally differ-
ent from the stimulated emission process occurring in semiconductor lasers and
superluminescent LEDs. The characteristics of spontaneous emission that deter-
mine the optical properties of LEDs will be discussed in this section.
The probability that electrons and holes recombine radiatively is proportional to

the electron and hole concentrations, that is, R t n p. The recombination rate per
unit time per unit volume can be written as

R = –
dn

dt
= –

dp

dt
= B n p (1.1)

where B is the bimolecular recombination coefficient, with a typical value of
10–10 cm3/s for direct-gap III–V semiconductors.
Electron–hole recombination is illustrated in Fig. 1.1. Electrons in the conduc-

tion band and holes in the valence band are assumed to have the parabolic disper-
sion relations

E = EC +
�h2 k2

2 m*
e

(for electrons) (1.2)

and

E = EV –
�h2 k2

2 m*
h

(for holes) (1.3)
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where me* and mh* are the electron and hole effective masses, �h is Planck’s con-
stant divided by 2p, k is the carrier wave number, and EV and EC are the valence
and conduction band-edge energies, respectively.
The requirement of energy and momentum conservation leads to further in-

sight into the radiative recombination mechanism. It follows from the Boltzmann
distribution that electrons and holes have an average kinetic energy of kT. Energy
conservation requires that the photon energy is given by the difference between
the electron energy, Ee, and the hole energy, Eh, i. e.

h n = Ee – EhzEg (1.4)

The photon energy is approximately equal to the bandgap energy, Eg, if the ther-
mal energy is small compared with the bandgap energy, that is, kT II Eg. Thus
the desired emission wavelength of an LED can be attained by choosing a semi-
conductor material with appropriate bandgap energy. For example, GaAs has a
bandgap energy of 1.42 eV at room temperature resulting in infrared emission
of 870 nm.
It is helpful to compare the average carrier momentum with the photon mo-

mentum. A carrier with kinetic energy kT and effective mass m* has the momen-
tum

p = m* n =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*

1

2
m* n2

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*kT

p
(1.5)

The momentum of a photon with energy Eg can be obtained from the de Broglie
relation

p = �h k = h n / c = Eg / c (1.6)

Calculation of the carrier momentum (using Eq. (1.5)) and the photon momen-
tum (using Eq. (1.6)) yields that the carrier momentum is orders of magnitude lar-
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Fig. 1.1 Parabolic
electron and hole
dispersion relations
showing “vertical”
electron–hole recom-
bination and photon
emission.



ger than the photon momentum. Therefore the electron momentum must not
change significantly during the transition. The transitions are therefore “vertical”
as shown in Fig. 1.1, i. e. electrons recombine with only those holes that have the
same momentum or k value.
Using the requirement that electron and hole momenta are the same, the

photon energy can be written as the joint dispersion relation

h n = EC +
�h2 k2

2m*
e

– EV +
�h2 k2

2m*
h

= Eg +
�h2 k2

2m*
r

(1.7)

where mr* is the reduced mass given by

1

m*
r

=
1

m*
e

+
1

m*
h

(1.8)

Using the joint dispersion relation, the joint density of states can be calculated
and one obtains

r Eð Þ = 1

2p2

2m*
r

�h2

� �3/2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E – Eg

q
(1.9)

The distribution of carriers in the allowed bands is given by the Boltzmann dis-
tribution, i. e.

f B Eð Þ = e–E/ kTð Þ (1.10)

The emission intensity as a function of energy is proportional to the product of
Eqs. (1.9) and (1.10),

I Eð Þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E – Eg

q
e–E/ kTð Þ (1.11)

The emission lineshape of an LED, as given by Eq. (1.11), is shown in Fig. 1.2.
The maximum emission intensity occurs at

E = Eg + 1
2 kT (1.12)

The full width at half maximum of the emission is given by

DE = 1.8 kT (1.13)

For example, the theoretical room-temperature linewidth of a GaAs LED emitting
at 870 nm is DE = 46 meV or Dl = 28 nm.
The spectral linewidth of LED emission is important in several respects. First,

the linewidth of an LED emitting in the visible range is relatively narrow com-
pared with the range of the entire visible spectrum. The LED emission is even
narrower than the spectral width of a single color as perceived by the human
eye. For example, red colors range from 625 to 730 nm, which is much wider
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than the typical emission spectrum of an LED. Therefore, LED emission is per-
ceived by the human eye as monochromatic.
Secondly, optical fibers are dispersive, which leads to a range of propagation ve-

locities for a light pulse comprising a range of wavelengths. The material disper-
sion in optical fibers limits the “bit rate q distance product” achievable with LEDs.
The spontaneous lifetime of carriers in LEDs in direct-gap semiconductors typi-
cally is of the order of 1–100 ns depending on the active region doping concen-
tration (or carrier concentrations) and the material quality. Thus, modulation
speeds up to 1 Gbit/s are attainable with LEDs.
A spectral width of 1.8kT is expected for the thermally broadened emission.

However, due to other broadening mechanisms, such as alloy broadening (i. e.
the statistical fluctuation of the active region alloy composition), the spectral
width at room temperature in III-V nitride LEDs can be broader, typically (3 to
8)kT. Experimental evidence shown in Fig. 1.3 supports the use of a Gaussian
function to describe the spectral power density function of an LED. Therefore,

P lð Þ = P
1

s
ffiffiffiffiffiffi
2p

p exp –
1

2

l – lpeak

s

� �2
" #

(1.14)

where P is the total optical power emitted by the LED. Inspection of Fig. 1.3 in-
deed reveals that the Gaussian curve is a very good match for the experimental
emission spectrum. Giving the line widths in terms of units of kT is very useful
as it allows for convenient comparison with the theoretical line width of 1.8kT.
The emission spectra of an AlGaInP red, a GaInN green, and a GaInN blue

LED are shown in Fig. 1.4. The LEDs shown in Fig. 1.4 have an active region com-
prised of a ternary or quaternary alloy, e. g. Ga1–xInxN. In this case, alloy broaden-
ing leads to spectral broadening that goes beyond 1.8kT. Alloy broadening due to
inhomogeneous distribution of In in the active region of green Ga1–xInxN LEDs

51.2 Optical Emission Spectra

Fig. 1.2 Theoretical emission spectrum of an LED. The full width at half maximum (FWHM) of
the emission line is 1.8 kT.



can cause linewidths as wide as 10kT at room temperature [1]. It should be noted,
however, that a recent study found inhomogeneous strain distribution in GaInN
quantum wells as a result of electron damage during TEM experiments [2]. It was
concluded that the damage might lead to a “false” detection of In-rich clusters in
a homogeneous quantum-well structure.
Efficient recombination occurs in direct-gap semiconductors. The recombina-

tion probability is much lower in indirect-gap semiconductors because a phonon
is required to satisfy momentum conservation. The radiative efficiency of indirect-
gap semiconductors can be increased by isoelectronic impurities, e. g. N in GaP.
Isoelectronic impurities can form an optically active deep level that is localized in
real space (small Dx) but, as a result of the uncertainty relation, delocalized in k
space (large Dk), so that recombination via the impurity satisfies momentum con-
servation.
During nonradiative recombination, the electron energy is converted to vibra-

tional energy of lattice atoms, i. e. phonons. There are several physical mechan-
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Fig. 1.3 Theoretical emis-
sion spectrum of a semi-
conductor exhibiting sub-
stantial alloy broadening.
The full width at half
maximum (FWHM) is
related to the standard
deviation (s) by the equa-
tion shown in the figure.

Fig. 1.4 Emission spectrumof AlGaInP/GaAs red, GaInN/GaN green, GaInN/GaNblue, GaInN/
GaN UV, and AlGaN/AlGaN deep UV LEDs at room temperature (adopted from refs. [3–5]).



isms by which nonradiative recombination can occur with the most common
ones being recombination at point defects (impurities, vacancies, interstitials,
antisite defects, and impurity complexes) and at spatially extended defects
(screw and edge dislocations, cluster defects). The defects act as efficient recom-
bination centers (Shockley–Read recombination centers) in particular, if the en-
ergy level is close to the middle of the gap.

1.3
Resonant-cavity-enhanced Structures

Spontaneous emission implies the notion that the recombination process occurs
spontaneously, that is without a means to influence this process. In fact, sponta-
neous emission has long been believed to be uncontrollable. However, research
in microscopic optical resonators, where spatial dimensions are of the order of
the wavelength of light, showed the possibility of controlling the spontaneous
emission properties of a light-emitting medium. The changes of the emission
properties include the spontaneous emission rate, spectral purity, and emission
pattern. These changes can be employed to make more efficient, faster, and
brighter semiconductor devices. The changes in spontaneous emission character-
istics in resonant-cavity (RC) and photonic-crystal (PC) structures were reviewed
by Joannopoulos et al. [6].
Resonant-microcavity structures have been demonstrated with different active

media and different microcavity structures. The first resonant-cavity structure
was proposed by Purcell (1946) for emission frequencies in the radio frequency
(rf) regime [7]. Small metallic spheres were proposed as the resonator medium.
However, no experimental reports followed Purcell’s theoretical publication. In
the 1980s and 1990s, several resonant cavity structures have been realized with
different types of optically active media. The active media included organic
dyes [8, 9], semiconductors [10, 11], rare-earth atoms [12, 13], and organic poly-
mers [14, 15]. In these publications, clear changes in spontaneous emission
were demonstrated including changes in spectral, spatial, and temporal emission
characteristics.
The simplest form of an optical cavity consists of two coplanar mirrors sepa-

rated by a distance Lcav, as shown in Fig. 1.5. About one century ago, Fabry and
Perot were the first to build and analyze optical cavities with coplanar reflectors
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Fig. 1.5 Schematic illustration of a resonant
cavity consisting of two metal mirrors with
reflectivity R1 and R2. The active region has a
thickness Lactive and an absorption coefficient a.
Also shown is the standing optical wave.
The cavity length is Lcav is equal to l / 2.



[16]. These cavities had a large separation between the two reflectors, i. e. Lcav ii l.
However, if the distance between the two reflectors is of the order of the wave-
length, Lcav z l, new physical phenomena occur, including the enhancement of
the optical emission from an active material inside the cavity.
At the beginning of the 1990s, the resonant-cavity light-emitting diode (RCLED)

was demonstrated, initially in the GaAs material system [17], shown in Fig. 1.6,
and subsequently in organic light-emitting materials [14]. Both publications re-
ported an emission line narrowing due to the resonant cavities. RCLEDs have
many advantageous properties when compared with conventional LEDs, includ-
ing higher brightness, increased spectral purity, and higher efficiency. For exam-
ple, the RCLED spectral power density at the resonance wavelength was shown to
be enhanced by more than one order of magnitude [18, 19].
The enhancement of spontaneous emission can be calculated based on the

changes of the optical mode density in a one-dimensional (1D) resonator, i. e. a co-
planar Fabry–Perot cavity. We first discuss the basic physics causing the changes
of the spontaneous emission from an optically active medium located inside a mi-
crocavity and give analytical formulas for the spectral and integrated emission en-
hancement. The spontaneous radiative transition rate in an optically active, homo-
geneous medium is given by (see, for example, ref. [21])

Wspont = t – 1
spont =

Z 1

0
W ‘ð Þ

spont r n‘ð Þ dn‘ (1.15)
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Fig. 1.6 (a) Schematic structure of a substrate-emitting GaInAs/GaAs RCLED consisting of a
metal top reflector and a bottom distributed Bragg reflector (DBR). The RCLED emits at 930 nm.
The reflectors are an AlAs/GaAs DBR and a Ag top reflector. (b) Picture of the first RCLED
(after ref. [20]).



where Wspont
(‘) is the spontaneous transition rate into the optical mode l and r(n‘)

is the optical mode density. Assuming that the optical medium is homogeneous,
the spontaneous emission lifetime, tspont, is the inverse of the spontaneous emis-
sion rate. However, if the optical mode density in the device depends on the spa-
tial direction, as in the case of a cavity structure, then the emission rate given in
Eq. (1.15) depends on the direction. Equation (1.15) can be applied to some small
range of solid angle along a certain direction, for example the direction perpen-
dicular to the reflectors of a Fabry–Perot cavity. Thus, Eq. (1.15) can be used to
calculate the emission rate along a specific direction, in particular the optical
axis of a cavity.
The spontaneous emission rate into the optical mode ‘, Wspont

(‘), contains the
dipole matrix element of the two electronic states involved in the transition
[21]. Thus Wspont

(‘) will not be changed by placing the optically active medium in-
side an optical cavity. However, the optical mode density, r(n‘), is strongly modi-
fied by the cavity. Next, the changes in optical mode density will be used to calcu-
late the changes in spontaneous emission rate.
We first compare the optical mode density in free space with the optical mode

density in a cavity. For simplicity, we restrict our considerations to the one-dimen-
sional case, i.e. to the case of a coplanar Fabry–Perot cavity. Furthermore, we re-
strict our considerations to the emission along the optical axis of the cavity.
In a one-dimensional homogeneous medium, the density of optical modes per

unit length per unit frequency is given by

r1D nð Þ = 2 n

c
(1.16)

where n is the refractive index of the medium. Equation (1.16) can be derived
using a similar formalism commonly used for the derivation of the mode density
in free space. The constant optical mode density given by Eq. (1.16) is shown in
Fig. 1.7.
In planar cavities, the optical modes are discrete and the frequencies of these

modes are integer multiples of the fundamental mode frequency, as shown sche-
matically in Fig. 1.7. The fundamental and first excited mode occur at frequencies
of n0 and 2n0, respectively. For a cavity with two metallic reflectors (no distributed
Bragg reflectors) and a p phase shift of the optical wave upon reflection, the fun-
damental frequency is given by n0 = c / 2nLcav, where c is the velocity of light in
vacuum and Lcav is the length of the cavity. In a resonant cavity, the emission
frequency of an optically active medium located inside the cavity equals the
frequency of one of the cavity modes.
The optical mode density along the cavity axis can be derived using the relation

between the mode density in the cavity and the optical transmittance through the
cavity, T(n),

r nð Þ = K T nð Þ (1.17)
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where K is a constant. The value of K can be determined by a normalization con-
dition, i. e. by considering a single optical mode. The transmittance through a
Fabry–Perot cavity can be written as

T nð Þ = T1 T2

1 + R1 R2 – 2
ffiffiffiffiffiffiffiffiffiffiffiffi
R1 R2

p
cos 4p �nn Lcav n/cð Þ (1.18)

The transmittance has maxima at n = 0, n0, 2n0 …, and minima at n = n0/2, 3n0/2,
5n0/2 … .
The optical mode density of a one-dimensional cavity for emission along the

cavity axis is given by

r nð Þ = R1 R2ð Þ3/4
T1 T2

4 n

c
1 –

ffiffiffiffiffiffiffiffiffiffiffiffi
R1 R2

p� �
T nð Þ (1.19)

This equation allows one to calculate the density of optical modes at the maxima
and minima. At the maxima, the mode density is given by

rmax =
R1 R2ð Þ3/4

1 –
ffiffiffiffiffiffiffiffiffiffiffiffi
R1 R2

p 4 n

c
(1.20)

Because the emission rate at a given wavelength is directly proportional to the op-
tical mode density, the emission rate enhancement spectrum is given by the ratio of
the 1D cavity mode density to the 1D free-space mode density. The enhancement
factor at the resonance wavelength is thus given by the ratio of the optical mode
densities with and without a cavity, i. e.
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Fig. 1.7
(a) Optical mode
density of a one-
dimensional planar
microcavity (solid
line) and of homo-
geneous one-
dimensional space.
(b) Theoretical
shape of the lumi-
nescence spectrum
of bulk semicon-
ductors.


