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Foreword

Epoxides have fascinated me since my days as an undergraduate at the Massachu-
setts Institute of Technology. I vividly remember taking a course in organic chem-
istry, watching an inspiring (if unconventional) professor, Barry Sharpless, per-
form a demonstration in which a cage that contained a collection of gypsy moths
was opened, allowing them to respond to the presence of a nearby sample of
(+)-disparlure (an epoxide-containing sex pheromone for the gypsy moth). The
result was memorable, and it was in fact this class that led to my decision to
pursue a career in organic chemistry.

Of course, (+)-disparlure is only one of the many natural products that contain
either an epoxide or an aziridine. Important and intriguing biologically active com-
pounds such as the mitomycins, azinomycins, and epothilones also bear these
functional groups.

Interest in epoxides and aziridines has been amplified because, not only are they
significant synthetic endpoints, but they are also tremendously useful synthetic
intermediates. Due to the strain associated with the three-membered ring, they are
“spring-loaded” for reactions with nucleophiles, allowing a wide array of powerful
functionalizations to be achieved. Thus, ring-openings of aziridines and epoxides
have been applied industrially to produce a variety of bulk chemicals, including
polyethylenimine, ethylene glycol, and epoxy resins. Furthermore, aziridines and
epoxides serve as versatile intermediates in natural product and pharmaceutical
synthesis. Reactions with a broad range of nucleophiles proceed cleanly with ex-
cellent regioselectivity and/or stereoselectivity, furnishing products that bear use-
ful amino and hydroxyl groups.

Discovering effective new methods for the synthesis of aziridines and epoxides,
as well as developing novel transformations of these heterocycles, has been an
extremely active area of research in recent years. The publication of this book,
Aziridines and Epoxides in Organic Synthesis, is therefore timely, since there have
been no monographs on this topic in quite some time. Prof. Andre Yudin has
brought together a set of insightful reviews by leading researchers that nicely illus-
trate a rich diversity of chemistry. The twelve chapters cover a broad spectrum,
including methods for the synthesis of aziridines and epoxides, functionalization
reactions, applications in natural product synthesis, and biosynthesis studies. I
anticipate that this highly readable book will be the “go to” resource for those

VII



interested in learning about the state-of-the-art in this important field. Equally
significantly, the monograph will no doubt inspire further exciting developments
in this area.

Gregory C. Fu, Cambridge, MA
October 2005
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Preface

Aziridines and epoxides are among the most versatile intermediates in organic
synthesis. In addition, a number of biologically significant molecules contain these
strained three-membered rings within their structures. The synthetic community
has been fascinated with prospects of selective synthesis and transformations of
aziridines and epoxides. Recent years have witnessed a number of important ad-
vances in this area and I felt that a book that summarizes these achievements
would be a valuable addition to the chemistry literature. I was very glad to receive
enthusiastic support from my colleagues from around the World. Roughly divided
into equal number of chapters dedicated to epoxides and aziridines, this volume
will serve as a useful resource. The synthesis part covers additions to aldehydes
and imines, olefin transformations, cyclizations, and metal catalysis. The applica-
tions encompass chemistry of vinyl aziridines and epoxides, aziridinecarboxylates
and phosphonates, metalated epoxides and aziridines, asymmetric ring opening
chemistry, complex target-oriented synthesis, and click chemistry. Another im-
portant area discussed in this book is the biosynthesis of aziridines and epox-
ides.

This project has turned into a wonderful compilation of outstanding manu-
scripts and I am very grateful to the authors who contributed to it. Last, but not
least, I want to express my gratitude to Dr. Evgenii Blyumin, Iain Watson, and Lily
Yu for their valuable editorial comments at the revision stages.

Andrei K. Yudin
Toronto, November 2005
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1
Asymmetric Synthesis of Epoxides and Aziridines from
Aldehydes and Imines
Varinder K. Aggarwal, D. Michael Badine, and Vijayalakshmi A. Moorthie

1.1
Introduction

Epoxides and aziridines are strained three-membered heterocycles. Their synthetic
utility lies in the fact that they can be ring-opened with a broad range of nucleo-
philes with high or often complete stereoselectivity and regioselectivity and that
1,2-difunctional ring-opened products represent common motifs in many organic
molecules of interest. As a result of their importance in synthesis, the preparation
of epoxides and aziridines has been of considerable interest and many methods
have been developed to date. Most use alkenes as precursors, these subsequently
being oxidized. An alternative and complementary approach utilizes aldehydes
and imines. Advantages with this approach are: i) that potentially hazardous oxi-
dizing agents are not required, and ii) that both C–X and C–C bonds are formed,
rather than just C–X bonds (Scheme 1.1).

This review summarizes the best asymmetric methods for preparing epoxides
and aziridines from aldehydes (or ketones) and imines.

1.2
Asymmetric Epoxidation of Carbonyl Compounds

There have been two general approaches to the direct asymmetric epoxidation of
carbonyl-containing compounds (Scheme 1.2): ylide-mediated epoxidation for the
construction of aryl and vinyl epoxides, and a-halo enolate epoxidation (Darzens
reaction) for the construction of epoxy esters, acids, amides, and sulfones.

Scheme 1.1
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1.2.1
Aryl, Vinyl, and Alkyl Epoxides

1.2.1.1 Stoichiometric Ylide-mediated Epoxidation
Solladié-Cavallo’s group used Eliel’s oxathiane 1 (derived from pulegone) in asym-
metric epoxidation (Scheme 1.3) [1]. This sulfide was initially benzylated to form a
single diastereomer of the sulfonium salt 2. Epoxidation was then carried out at
low temperature with the aid of sodium hydride to furnish diaryl epoxides 3 with
high enantioselectivities, and with recovery of the chiral sulfide 1.

Using a phosphazene (EtP2) base, they also synthesized aryl-vinyl epoxides 6a-c
(Table 1.1) [2]. The use of this base resulted in rapid ylide formation and efficient
epoxidation reactions, although it is an expensive reagent. There is potential for
cyclopropanation of the alkene when sulfur ylides are treated with a,b-unsaturated
aldehydes, but the major products were the epoxides, and high selectivities could
be achieved (Entries 1–4). Additionally, heteroaromatic aryl-epoxides could be pre-
pared with high selectivities by this procedure (Entries 5 and 6) [3]. Although high
selectivities have been achieved, it should be noted that only one of the two en-
antiomers of 1 is readily available.

The Aggarwal group has used chiral sulfide 7, derived from camphorsulfonyl
chloride, in asymmetric epoxidation [4]. Firstly, they preformed the salt 8 from
either the bromide or the alcohol, and then formed the ylide in the presence of a
range of carbonyl compounds. This process proved effective for the synthesis of
aryl-aryl, aryl-heteroaryl, aryl-alkyl, and aryl-vinyl epoxides (Table 1.2, Entries
1–5).

Scheme 1.2

Scheme 1.3
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Until this work, the reactions between the benzyl sulfonium ylide and ketones to
give trisubstituted epoxides had not previously been used in asymmetric sulfur
ylide-mediated epoxidation. It was found that good selectivities were obtained with
cyclic ketones (Entry 6), but lower diastereo- and enantioselectivities resulted with
acyclic ketones (Entries 7 and 8), which still remain challenging substrates for
sulfur ylide-mediated epoxidation. In addition they showed that aryl-vinyl epoxides
could also be synthesized with the aid of a,b-unsaturated sulfonium salts 10a-b
(Scheme 1.4).

1.2.1.2 Catalytic Ylide-mediated Epoxidation
The first attempt at a catalytic asymmetric sulfur ylide epoxidation was by Fur-
ukawa’s group [5]. The catalytic cycle was formed by initial alkylation of a sulfide
(14), followed by deprotonation of the sulfonium salt 15 to form an ylide 16 and

Table 1.1 Synthesis of aryl-vinyl epoxides by use of chiral
sulfide 1 a phosphazene base.

Entry R1 (ylide) R2CHO Epoxide:
epoxycyclop.:
cyclop.

Epoxide
trans: cis

Epoxide
ee trans (cis)
(%)

1 Ph 5a 77:11:12 100:0 97

2 p-MeOC6H4 5a 100:0:0 77:23 95 (98)

3 Ph 5b 100:0:0 97:3 100

4 Ph 5c 100:0:0 97:3 100

5 Ph 5d – 100:0 96.8

6 Ph 5e – 100:0 99.8

1.2 Asymmetric Epoxidation of Carbonyl Compounds 3



subsequent reaction with an aldehyde to furnish the epoxide with return of the
sulfide 12 (Scheme 1.5). However, only low yields and selectivities resulted when
the camphor-derived sulfide 12 was employed. Metzner improved the selectivity of
this process by using the C2 symmetric sulfide 13 [6].

Although reactions required 2 days to reach completion in the presence of stoi-
chiometric amounts of sulfide, they became impracticably long (28 days) when
10% sulfide was employed, due to the slow alkylation step. The alkylation step was

Table 1.2 Application of the chiral sulfide 7 in asymmetric
epoxidations.

Entry R1COR2 Method Yield
(%)

d. r.

trans : cis

ee trans
(%)

1 PhCOH A 75 98:2 98

2 2-PyrCOH B 88 98:2 99

3 C4H9COH C 87 90:10 >99

4 CH2=C(Me)COH B 52 >99:1 95

5 (E)-MeCH=CH2COH B 90 >99:1 95

6 cyclohexanone B 85 – 92

7 MeCOC6H4-p-NO2 B 73 >1:99 71

8 MeCOPh B 77 33:67 93 (50)

Scheme 1.4
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accelerated upon addition of iodide salts, however, and the reaction times were
reduced (Table 1.3). The yields and selectivities are lower than for the correspond-
ing stoichiometric reactions (compare Entry 1 with 2, Entry 4 with 5, and Entry 6
with 7). The use of iodide salts proved to be incompatible with allylic halides, and
so stoichiometric amounts of sulfide were required to achieve good yields with
these substrates [7].

Metzner et al. also prepared the selenium analogue 17 of their C2 symmetric
chiral sulfide and tested it in epoxidation reactions (Scheme 1.6) [8]. Although
good enantioselectivities were observed, and a catalytic reaction was possible with-
out the use of iodide salts, the low diastereoselectivities obtained prevent it from
being synthetically useful.

Scheme 1.5

Table 1.3 Catalytic ylide-mediated epoxidations.

Entry Ar in ArCHO Eq.
13

Time
(days)

Yield
(%)

d. r. ee
(%)

1 PhCHO 1[a] 1 92 93:7 88

2 PhCHO 0.1 4 82 93:7 85

3 p-ClC6H4 0.1 6 77 80 72

4 cinnamyl 1[a] 2 93 98:2 87

5 cinnamyl 0.1 6 60 89:11 69

6 2-thiophenyl 1[a] 4 90 91:9 89

7 2-thiophenyl 0.1 6 75 88:12 80

[a] Without n-Bu4NI.
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Aggarwal and co-workers have developed a catalytic cycle for asymmetric epox-
idation (Scheme 1.7) [9]. In this cycle, the sulfur ylide is generated through the
reaction between chiral sulfide 7 and a metallocarbene. The metallocarbene is
generated by the decomposition of a diazo compound 20, which can in turn be
generated in situ from the tosylhydrazone salt 19 by warming in the presence of
phase-transfer catalyst (to aid passage of the insoluble salt 19 into the liquid
phase). The tosylhydrazone salt can also be generated in situ from the correspond-
ing aldehyde 18 and tosylhydrazine in the presence of base.

This process thus enables the coupling of two different aldehydes together to
produce epoxides in high enantio- and diastereoselectivities. A range of aldehydes
have been used in this process with phenyl tosylhydrazone salt 19 (Table 1.4) [10].
Good selectivities were observed with aromatic and heteroaromatic aldehydes (En-
tries 1 and 2). Pyridyl aldehydes proved to be incompatible with this process, pre-
sumably due to the presence of a nucleophilic nitrogen atom, which can compete
with the sulfide for the metallocarbene to form a pyridinium ylide. Aliphatic alde-
hydes gave moderate yields and moderate to high diastereoselectivities (Entries 3
and 4). Hindered aliphatic aldehydes such as pivaldehyde were not successful sub-
strates and did not yield any epoxide. Although some a,b-unsaturated aldehydes
could be employed to give epoxides with high diastereo- and enantioselectivities,
cinnamaldehyde was the only substrate also to give high yields (Entry 5). Sulfide
loadings as low as 5 mol% could be used in many cases.

Benzaldehyde was also treated with a range of tosylhydrazone salts (Table 1.5).
Good selectivities were generally observed with electron-rich aromatic salts (En-
tries 1–3), except in the furyl case (Entry 7). Low yields of epoxide occurred when a
hindered substrate such as the mesityl tosylhydrazone salt was used.

Scheme 1.6

Scheme 1.7
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