Handbook of Paper and Board

Edited by
Herbert Holik
Also of Interest:

Sixta, H. (Ed.)
Handbook of Pulp
2006
ISBN 3-527-30999-3
Handbook of Paper and Board

Edited by

Herbert Holik
This book was carefully produced. Nevertheless, editor, authors and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Deutsche Bibliothek Cataloguing-in-Publication Data:

© 2006 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim
(Federal Republic of Germany)

Printed on acid-free paper.
All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Typesetting Typomedia GmbH, Ostfildern
Printing Druckhaus Diesbach GmbH, Weinheim
Binding: J. Schäffer GmbH, Grünstadt
Cover Design: Grafik-Design Schulz,
Fußgönheim

Printed in the Federal Republic of Germany.

ISBN-10: 3-527-30997-7
Table of Contents

1 Introduction 1

1.1 Paper and Board Today 1
Herbert Holik

1.2 Overview of the Manufacturing Process for Paper and Board 3

1.3 Historical Background and General Aspects 6
Peter F. Tschudin

1.3.1 Introduction 6

1.3.2 Precursors of Paper 7

1.3.2.1 Tapa (Bark-cloth) 7

1.3.2.2 Felt 7

1.3.2.3 Papyrus 7

1.3.3 Paper 8

1.3.3.1 Invention of Paper 8

1.3.3.2 Chinese Paper 8

1.3.3.3 The Eastern Spread of Papermaking 8

1.3.3.4 The Spread of Papermaking into Central and Southern Asia 9

1.3.3.5 Arab Paper 9

1.3.3.6 Medieval European Paper 9

1.3.3.7 Mechanization and Industrialization 10

1.3.3.8 Paper Machines 10

1.3.3.9 Pulping and Sizing 11

1.3.3.10 From Industrialization to Automation and Globalization: Technical and Economic Trends of the 19th and 20th Centuries 12

1.4 Economic Aspects 13
Gert-Heinz Rentrop

References 18

2 Raw Materials for Paper and Board Manufacture 20

2.1 Fibrous Materials 20

2.1.1 Overview 20
Jürgen Blechschmidt

2.1.2 Chemical Pulp 21
Sabine Heinemann
2.1.3 Mechanical Pulp 22
2.1.4 Recovered Paper, Recycled Fibers 24

Hans-Joachim Putz

2.1.4.1 Role of Recovered Paper in the Paper and Board Industry 24
2.1.4.2 Main Definitions for Statistics 25
2.1.4.3 Utilization Rates for Different Paper Grades 27
2.1.4.4 Resources of Recovered Paper 29
2.1.4.5 Lists for Recovered Paper Grades 31
2.1.4.6 Use of Recovered Paper Grades 32
2.2 Non-fiber Raw Material 33

2.2.1 Pigments as Fillers 33

Maximilian Laufmann

2.2.1.1 Why Use Fillers? 33
2.2.1.2 Choice of Fillers 35
2.2.1.3 Characterization of Fillers 35
2.2.1.4 Main Mineral Fillers 44
2.2.1.5 Specialty Filler Pigments 52
2.2.1.6 Outlook 54

2.2.2 Coating Pigments 55

Werner Kogler†, Thoralf Gliese, and Werner J. Auhorn

2.2.2.1 General Overview 55
2.2.2.2 Main Coating Pigments 57
2.2.2.3 Special Pigments 58
2.2.2.4 Additional Pigments 60

References 60

3 Chemical Additives 62

Werner J. Auhorn

3.1 Introduction 62
3.2 Basic Chemicals 64
3.3 Bleaching Chemicals 65
3.3.1 Bleaching Substances 66
3.3.2 Bleaching Auxiliaries 68
3.4 Starch 68
3.4.1 Products and Market Figures 68
3.4.2 Chemistry, Modification and Conversion Technologies, Properties 70
3.4.3 Starch Application 72
3.5 Aluminum Compounds 73
3.6 Functional Chemicals 73
3.6.1 Coloring Materials (Dyes) 74
3.6.1.1 General 74
3.6.1.2 Classes of Coloring Material 74
3.6.1.3 Dyeing Processes 78
3.6.1.4 Requirements of Colored Paper and Board 80
3.6.2 Optical Brightening Agents (OBA) – Fluorescent Whitening Agents (FWA) 81
3.6.3 Chelating Agents – Complexing Agents 82
3.6.4 Sizing Agents 83
3.6.4.1 Fundamental Aspects of Paper Sizing 83
3.6.4.2 Product Classes 83
3.6.4.3 Application Advice 86
3.6.4.4 Requirements and Measurements of Sized Papers 88
3.6.5 Dry-Strength Resins (DSR) 89
3.6.6 Wet Strength Resins (WSR) 91
3.6.6.1 Melamine-Formaldehyde Resins 92
3.6.6.2 Urea-Formaldehyde Resins 92
3.6.6.3 Epoxidised Polyamide Resins 92
3.6.6.4 Glyoxalated Polyacrylamide Resins 93
3.6.6.5 Other Wet-Strength Resins 94
3.6.7 Additives for Recovered Fiber Processing 94
3.6.7.1 Additives for Repulping 94
3.6.7.2 Additives for Deinking 95
3.6.8 Additives for Specialty Papers 96
3.6.8.1 Photographic Base Paper 96
3.6.8.2 Banknote Papers 97
3.6.8.3 Laminate Papers: Décor Paper, Pre-impregnated Foils 97
3.6.8.4 Filter Papers 97
3.6.8.5 Imitation Parchment (Food Packaging) 98
3.6.8.6 Aquarelle Board 98
3.6.8.7 Carbonless Copying Paper 98
3.6.8.8 Ink-jet Papers 98
3.6.8.9 Fire-resistant Papers 99
3.6.8.10 Anticorrosion Papers 99
3.6.8.11 Abrasive Base Papers 99
3.6.8.12 Papers with Barrier Properties 100
3.6.9 Additives for Paper and Board Coating 101
3.6.9.1 General Aspects 101
3.6.9.2 Market Situation and Future Trends 102
3.6.9.3 Components of Coating Colors 104
3.6.9.4 Color Formulations 126
3.7 Process Chemicals 127
3.7.1 Retention and Drainage Aids (RDA) 127
3.7.1.1 Retention Aids 128
3.7.1.2 Drainage Aids 129
3.7.2 Fixing Agents 130
3.7.3 Additives for Pitch and Deposit Control 132
3.7.4 Slimicides and Biocides 135
3.7.5 Defoamers and Deaerators 137
3.7.6 Cleaning Agents 140
3.7.7 Flocculants and Coagulants for Clarification of Different Water Sources 142
3.7.7.1 Fresh or Raw Water 142
3.7.7.2 Recycled Process Water 143
3.7.7.3 Effluents 143
3.8 General Remarks on the Application of Chemical Additives 144
References 149

4 Stock Preparation 150
4.1 Overview 150
Herbert Holik
4.2 Main Unit Processes and Equipment 153
4.2.1 Fiber Materials Feeding 153
4.2.2 Disintegration 155
4.2.2.1 Repulping/Slushing 155
4.2.2.2 Deflaking 160
4.2.3 Screening and Fractionation 162
4.2.3.1 Screening 162
4.2.3.2 Fractionation 167
4.2.4 Centrifugal Cleaning 168
4.2.4.1 High Consistency (HC) Cleaners and Systems 170
4.2.4.2 Medium Consistency (MC) Cleaners 170
4.2.4.3 Low Consistency (LC) Cleaners and Systems 171
4.2.5 Refining 173
4.2.6 Flotation 176
4.2.6.1 Selective Flotation 176
4.2.6.2 Nonselective Flotation (Dissolved Air Flotation DAF) 180
4.2.7 Bleaching of Secondary fibers 183
4.2.8 Washing 185
4.2.9 Dewatering 186
4.2.9.1 Drum Thickeners 187
4.2.9.2 Belt Filters, Twin Wire Presses 187
4.2.9.3 Disk Thickener 188
4.2.9.4 Disk Filters 188
4.2.9.5 Screw Presses 189
4.2.10 Dispersion 190
4.2.11 Mixing and Storing 193
4.3 Systems for Fiber Stock Preparation 194
Andrea Stetter
4.3.1 Systems for Primary Fiber Preparation 195
4.3.2 Systems for Secondary Fiber Preparation 196
4.3.2.1 Systems for Graphic Paper Grades 196
4.3.2.2 Systems for Packaging Paper and Board Grades 202
4.3.3 Systems for Broke Treatment 204
6.3.2 Press Felts
Matthias W. Schmitt

6.3.2.1 Requirements
248
6.3.2.2 Press Felt Design and History
249
6.3.2.3 Manufacturing
250
6.3.2.4 Transfer Belts
251
6.3.3 Dryer Fabrics
Antony Morton

6.3.3.1 Requirements
252
6.3.3.2 Fabric Design and History
253
6.3.3.3 Dryer Fabric Manufacture
253
6.4 Forming Section
Herbert Holik

6.4.1 Approach Flow System
Andrea Stetter

6.4.1.1 Metering/Proportioning and Mixing
255
6.4.1.2 Final Cleaning and Screening
257
6.4.1.3 Deaeration
258
6.4.1.4 Engineering
259
6.4.1.5 Automation
259
6.4.2 Headbox
Herbert Holik

6.4.3 Wire Section
267
6.4.3.1 The Fourdrinier Wire Section
273
6.4.3.2 Cylinder Former
274
6.4.3.3 Inclined Wire
274
6.4.3.4 Hybrid Former
274
6.4.3.5 Gap Former
274
6.5 Press Section
275
6.6 Dryer Section
280
6.6.1 Overview
280
6.6.2 Drying Principles
281
6.6.2.1 Contact Drying by Steam Heated Cylinders
281
6.6.2.2 Air Impingement Drying
283
6.6.2.3 Through Air Drying
283
6.6.2.4 Infrared Drying
283
6.6.2.5 Press Drying
283
6.6.2.6 Impulse Drying
283
6.6.3 Dryer Sections
284
6.6.3.1 Multi-cylinder Dryer Section
284
6.6.3.2 Tissue Dryer Section
287
6.7 Surface Sizing
Martin Tietz

6.8 On-line Coating
292
Table of Contents

Table of Contents

7 Coating of Paper and Board 332
Werner Kogler and Werner J. Auhorn

7.1 Objectives of Coating 332
7.2 Requirements of Coated Papers for the Printing Process 334
7.2.1 Printing Methods and Printing Ink Properties 334
7.2.2 Properties of Coating Layer Surface versus Printing Method 338
7.3 Requirements of Base Papers/Board for Coating 340
7.3.1 General Aspects 340
7.3.2 Specific Base Paper Properties Affecting Coating 342
7.4 Principles of Coating Techniques for Paper and Board 343
7.5 Components and Properties of Coating Colors 345
7.5.1 Pigments 345
7.5.2 Binders 346
7.5.3 Other Coating Additives 346
7.5.3.1 Production Additives 347
7.5.3.2 Product Additives 348
7.6 Coating Color Formulations 350
7.7 Coating Color Preparation 354
7.7.1 General Aspects of Coating Kitchen Set-up 354
7.7.2 Dispersing of Pigments 355
7.7.3 Processing of Binders 357
7.7.3.1 Latexes 357
7.7.3.2 Starch 358
7.7.3.3 Other Binders 360
7.7.4 Additives 360
7.7.5 Tanks 361
7.7.6 Screens and Filters 361
7.7.7 Batch Preparation of Coating Colors 363
7.7.8 Continuous Coating Color Preparation 364
7.7.9 Coating Color Supply Systems for Coaters 365
7.8 Measurements of Coating Colors 366
7.8.1 Viscosity 366
7.8.2 Viscoelasticity 367
7.8.3 Water Retention 368
7.8.4 Solids Content 368
7.8.5 pH 368
7.8.6 Screening Residue 369
7.8.7 Bacteria Level 369
7.9 Measurements of Coated Surface 369
7.9.1 Coat Weight 369
7.9.2 Smoothness 370
7.9.3 Gloss 370
7.9.4 Ink Absorption 370
7.9.5 Surface Strength 370
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.9.6</td>
<td>Dusting or Linting</td>
<td>371</td>
</tr>
<tr>
<td>7.9.7</td>
<td>Piling</td>
<td>371</td>
</tr>
<tr>
<td>7.9.8</td>
<td>Visual Defects</td>
<td>371</td>
</tr>
<tr>
<td>7.9.9</td>
<td>Brightness and Whiteness</td>
<td>372</td>
</tr>
<tr>
<td>7.9.10</td>
<td>Opacity</td>
<td>372</td>
</tr>
<tr>
<td>7.9.11</td>
<td>Mottling</td>
<td>373</td>
</tr>
<tr>
<td>7.9.12</td>
<td>Print Unevenness</td>
<td>373</td>
</tr>
<tr>
<td>7.9.13</td>
<td>Taste and Odor</td>
<td>373</td>
</tr>
<tr>
<td>7.10</td>
<td>Coating Machines</td>
<td>374</td>
</tr>
<tr>
<td></td>
<td>Martin Tietz</td>
<td></td>
</tr>
<tr>
<td>7.10.1</td>
<td>Overview</td>
<td>374</td>
</tr>
<tr>
<td>7.10.2</td>
<td>Applicators</td>
<td>374</td>
</tr>
<tr>
<td>7.10.2.1</td>
<td>Direct Coating</td>
<td>375</td>
</tr>
<tr>
<td>7.10.2.2</td>
<td>Indirect Coating</td>
<td>376</td>
</tr>
<tr>
<td>7.10.2.3</td>
<td>Curtain Coating</td>
<td>377</td>
</tr>
<tr>
<td>7.10.3</td>
<td>Application Concepts</td>
<td>378</td>
</tr>
<tr>
<td>7.10.4</td>
<td>Drying</td>
<td>379</td>
</tr>
<tr>
<td>7.11</td>
<td>Coated Paper and Board Grades</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>Werner Auhorn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>382</td>
</tr>
</tbody>
</table>

8 Finishing

Herbert Holik

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Reel-Slitting</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>Rüdiger Feldmann</td>
<td></td>
</tr>
<tr>
<td>8.1.1</td>
<td>Objective and General Description of Reel-slitting</td>
<td>383</td>
</tr>
<tr>
<td>8.1.2</td>
<td>The Different Winder Types and Their Suitability for the Various Paper Grades</td>
<td>386</td>
</tr>
<tr>
<td>8.1.2.1</td>
<td>Classical Two-drum Winders</td>
<td>386</td>
</tr>
<tr>
<td>8.1.2.2</td>
<td>Modified Two-drum Winders</td>
<td>387</td>
</tr>
<tr>
<td>8.1.2.3</td>
<td>Single-drum Winders</td>
<td>390</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Automatic Functions</td>
<td>391</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Automation/Operation</td>
<td>392</td>
</tr>
<tr>
<td>8.2</td>
<td>Roll Handling</td>
<td>392</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Objective and General Description of Roll Handling</td>
<td>392</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Roll Wrapping</td>
<td>392</td>
</tr>
<tr>
<td>8.2.2.1</td>
<td>Wrapping Material</td>
<td>392</td>
</tr>
<tr>
<td>8.2.2.2</td>
<td>The Different Types of Wrapping Machines</td>
<td>393</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Roll Conveying</td>
<td>396</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Automation</td>
<td>400</td>
</tr>
</tbody>
</table>

9 Control Systems for Paper Machines

Rudolf Münch

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Objective and General Terms of PM Control Systems</td>
<td>401</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Objective</td>
<td>401</td>
</tr>
</tbody>
</table>
9.1.2 Explanation of Terms 401
9.2 Quality Control System (QCS) 406
9.2.1 Quality Measurements 406
9.2.1.1 Scanning Measurement 406
9.2.1.2 Fixed Point Measurement 407
9.2.1.3 Basis Weight 407
9.2.1.4 Moisture 408
9.2.1.5 Fillers 408
9.2.1.6 Caliper 409
9.2.1.7 Coat Weight 410
9.2.1.8 Color 410
9.2.1.9 Gloss 410
9.2.1.10 Others 411
9.2.2 Quality Control 411
9.2.2.1 Machine Direction Control 411
9.2.2.2 Cross Direction Control 414
9.3 Information Systems 418
9.3.1 Importance of Information Systems 418
9.3.2 Process Analysis using Information Systems 420

10 Environmental Aspects 422
Udo Hamm
10.1 Wastewater 422
10.1.1 Characterization of Untreated Wastewater 422
10.1.2 Wastewater Treatment 423
10.1.2.1 Suspended Solids Removal 423
10.1.2.2 Biological Treatment 424
10.1.3 Characterization of Treated Wastewater 426
10.1.4 Closed Water Circuit 426
10.2 Solid Waste 427
10.2.1 Solid Waste Composition and Characteristics 429
10.2.1.1 Rejects 430
10.2.1.2 Deinking Sludges 431
10.2.2 In-mill Waste Handling 434
10.2.2.1 Dewatering 435
10.2.2.2 Drying 437
10.2.3 Utilization and Final Disposal of Solid Waste 437
10.2.3.1 Energy Recovery 439
10.2.3.2 Composting and Agricultural Utilization 442
10.2.3.3 Use in Other Industries 443
10.2.3.4 Landfilling 443
10.2.3.5 New Developments 444
References 444
11 Paper and Board Grades and Their Properties 446

Otmar Tillmann

11.1 The Material Paper: a Survey 446
11.1.1 Introduction 446
11.1.2 Material Properties 447
11.1.3 Summary 450
11.2 Types of Paper, Board and Cardboard 451
11.2.1 Graphic Papers 451
11.2.1.1 Printing and Press Papers 452
11.2.1.2 Office and Administration Papers 454
11.2.2 Packaging Paper and Board Grades 457
11.2.2.1 Overview 457
11.2.2.2 Packaging Papers 457
11.2.2.3 Board and Cardboard 459
11.2.3 Hygienic Papers 461
11.2.3.1 Cellulose Wadding 461
11.2.3.2 Tissue 461
11.2.3.3 Crepe Paper 462
11.2.4 Paper and Board for Technical and Specialty Uses 462

References 465

12 Testing of Paper and Board 467

Otmar Tillmann

12.1 General Aspects 467
12.2 Basic Properties 467
12.3 Composition and Chemical Paper Testing 468
12.4 Strength Properties 469
12.5 Load-Deformation Properties 471
12.6 Surface Properties 471
12.7 Optical Properties 472
12.8 Printing Properties 473
12.9 Behavior towards Liquids 473
12.10 Exclusion of Gases and Vapors 474

References 474

13 Book and Paper Preservation 475

Manfred Anders

13.1 Introduction 475
13.2 Mechanisms of Paper Deterioration 476
13.2.1 Paper Deterioration by Aging 476
13.2.2 Oxidative Deterioration Processes 478
13.2.3 Alterations due to Paper Aging 480
13.2.3.1 Yellowing 480
13.2.3.2 Embrittlement of Paper 480
13.3 Development of Mass Deacidification Processes 481
Table of Contents

13.3.1 Overview 481
13.3.2 History of Commercial Mass Deacidification 482
13.3.2.1 BPA Process 483
13.3.2.2 The DEZ Process 483
13.3.2.3 The Wei T'o Process 484
13.3.2.4 The British Library Process 485
13.3.2.5 The Lithco Process 486

13.4 Current Commercial Processes 486
13.4.1 Papersave Process® 486
13.4.2 The Bookkeeper Process 488
13.4.3 Magnesium Oxide Dust 489
13.4.4 Aqueous Processes 489
13.4.4.1 Bückeburger Process 489
13.4.4.2 The Austrian National Library Process 489

13.5 Strengthening Old and Brittle Paper 490
13.5.1 Overview 490
13.5.2 Preservation of Originals by (Mechanical) Paper Splitting (Leipzig Paper Splitting Technique) 490

13.6 Commercial Prospects 491
References 492

Index 495
Preface

“Paper is out”... and “paper flood increases”...
Is paper now dead or alive?

Paper is reality in our life. This book informs on the technical, economic and social importance of paper and board. The authors give a concise description of the fascinating art and technology of paper making, providing laymen, students, politicians and others with most recent information and on the state-of-the-art technology. It shows the relevance of paper and board today as well as the historical background and economic aspects. The chapter on raw materials for paper and board manufacture contains an overview and summary of what is described in Volume 1 on fibrous material, followed by more detailed description of pigments as fillers and for coating. Paper chemistry has found an adequate scope covering this important area by basics and practical application. The process of stock preparation first describes the unit processes which are then combined to systems for primary and secondary fiber preparation. Water circuits with loop designs and circuit closure follow. The chapter on paper and board manufacture covers the different sections in the paper machine as well as fabrics, rolls and roll covers, and describes the different types of machines producing the various paper and board grades. The high technical standard of the control, information and analysing systems in the paper industry is described in the chapter of control systems. Coating is dealt with in a separate chapter covering color formulation and preparation as well as the actual coating application. Paper finishing gives an insight in what happens at roll slitting and handling. The chapter on environmental aspects includes waste water treatment as well as handling, utilization and disposal of solid waste. The following chapters describe the main paper and board grades and their properties, followed by testing of paper and board. The paper and book preservation chapter points at an area of burning interest of mankind. The appendix includes latest papers on state-of-the-art as well as earlier ones giving basics in certain areas.

This wide knowledge field of paper and board – the big elephant – could only be eaten by cutting it into smaller pieces. This was successfully done by the readiness of more than 20 authors, all professionals with detailed knowledge in their areas, to contribute to this project. The variety of their points of view are certainly one of
the advantages of this book. My thanks go to my colleagues for their cooperation, to the individual companies for providing the pictures, to BASF, OMYA and Voith for enabling the handbook to be printed in colors and to Ullmann for the support during the preparation of this book.
List of Contributors

Dr. Manfred Anders, Zentrum für Bucherhaltung, Leipzig, Germany
Dipl.-Ing. Werner J. Auhorn, formerly BASF, Senior Consultant, Frankenthal, Germany
Prof. Dr.-Ing. habil. Jürgen Blechschmidt, formerly Papiertechnische Stiftung PTS, Dresden, Germany
Dipl.-Ing. Rüdiger Feldmann, Voith Paper Finishing, Krefeld, Germany
Dipl.-Ing. Dr. Norbert Gamsjäger, Voith Paper Rolls, Wimpassing, Austria
Dr. Thoralf Gliese, OMYA Development, Oftringen, Switzerland
Dr. Udo Hamm, PMV TU Darmstadt, Darmstadt, Germany
Dr.-Ing. Sabine Heinemann, Oy Keskuslaboratorio, Espoo, Finland
Dipl.-Ing. Herbert Holik, Voith Paper, Ravensburg, Germany
Dipl.-Ing. Werner Kogler†, OMYA, Oftringen, Switzerland
Dipl.-Ing. Maximilian Laufmann, OMYA International, Oftringen, Switzerland
Dipl.-Ing. Peter Mirsberger, Voith Paper, Ravensburg, Germany
Dr. Antony Morton, Voith Paper Fabrics, Blackburn, UK
Dipl.-Ing. Rudolf Münch, Voith Paper Automation, Heidenheim, Germany
Dr.-Ing. Hans-Joachim Putz, PMV TU Darmstadt, Darmstadt, Germany
Dipl.-Kfm. Gert-Heinz Rentrop, Verband Deutscher Papierfabriken e.V., Bonn, Germany
Dr. Matthias Schmitt, Voith Paper Fabrics, Pfullingen, Germany
Dipl.-Ing. Andrea Stetter, Voith Paper Fiber Systems, Ravensburg, Germany
Dr.-Ing. Martin Tietz, Voith Paper, Heidenheim, Germany
Dr. Otmar Tillmann, PMV TU Darmstadt, Darmstadt, Germany
Dr. phil. Peter F. Tschudin, Basler Papiermühle, Basel, Switzerland
Dipl.-Ing. Arved H. Westerkamp, Voith Paper Fabrics, Pfullingen, Germany
Dipl.-Ing. Matthias Wohlfahrt, Voith Paper, Heidenheim, Germany
1

Introduction

1.1

Paper and Board Today

Herbert Holik

The history of paper is also the history of human culture and civilization. The Egyptians, Greeks and Romans wrote on “papyrus”, a paper-like material. Today’s kind of paper was first developed and used in China. Paper was the most important carrier of information in the past. It was only with increasing paper production that the transfer of knowledge, education and information to a larger portion of society became possible. With paper emperors were able to administrate large empires more easily. In former times paper was a valuable product, and paper making an art – an art that was often kept secret because of the outstanding advantages of the product.

Today paper has changed from a rare artisan material to a commodity product, with a high practical value in communication, in educational, artistic, hygienic, sanitary, and technical applications. Nobody can imagine a world without paper. A large variety of paper grades are produced to suit the special requirements of each application: Graphic paper grades, packaging papers and board, hygienic papers, and speciality paper grades. Paper can be impregnated, coated, laminated, creped, molded etc. Paper products embellish our homes, and sanitary products made of paper ease our daily life. An easier life is also more likely with a sufficient number of banknotes in the briefcase. Packaging papers and board grades support supermarket logistics and product presentations. Computer print-outs and other graphic papers such as newspapers, magazines and books accompany us through our life. Even today in our digital world paper is a reliable means of long-time documentation and data preservation.

The worldwide consumption of paper is increasing steadily over the years. The paper consumption in individual countries is related to their gross national product and hence the further increase in paper and board consumption will be different in different countries depending on whether economic saturation, as e.g. in the United States and Central Europe, or fast increasing demand, as in China, is prevailing. The ratio of the worldwide consumption of the different paper and board grades has changed in the past and will change in the future according to
technical and social evolution and developments in the individual countries and in the world as a whole.

The components used in paper and board production worldwide are given in Fig. 1.1. Today recovered paper has become the main resource for paper and board production, followed by chemical pulp, mechanical pulp, pigments and fillers, and chemical additives. Paper is mainly based on fibers from cultured woods, and is a renewable and recyclable raw material. The special characteristic of this fiber material is that the paper strength results from the hydrogen bonding between the individual fibers. In certain cases it is enhanced by the addition of starch or wet strength additives. The hydrogen bonds are loosened by rewetting the paper which allows easy recycling.

Increased paper recycling and sustained foresting help to preserve the wood resources of the earth. The paper industry has steadily improved its standards in complying with environmental demands as related to water consumption and water effluents, energy consumption, and primary (and secondary) fiber consumption. These standards have to be maintained and even improved in the future because of further increasing paper and board consumption and limited resources. The paper and board market is global, and so is the paper industry where an evident consolidation has occurred over the last decades: In 1980 the 150 biggest companies contributed about 45% to the overall production, in 2000 this figure was about 70% in a market which had nearly doubled from about 170 million tons/year to about 320 million tons/year. It seems that this concentration process has not yet come to an end.

Papermaking has changed from an “art”, where all specific processes were kept secret, to an industry with high-tech production facilities and with a scientific approach. Great challenges are e.g. the huge production quantities per unit and the high quality demands placed on the paper and board properties and their uniformity. Only high quality products – at low price – satisfy the expectations of the customer and end user.

Since paper is a commodity, low cost production is mandatory. As the fiber raw material is the main cost factor in paper production recovered paper has become
the main fiber stock material worldwide and its proportion will increase further. Several grades, such as newsprint and many packaging and board grades, can be entirely based on recycled fibers. Today recovered fibers must be used in paper grades similar to the recovered paper grade, downgrading of recovered paper (high quality fibers for lower quality paper products) is no longer economic.

In former times, with mainly virgin fibers consumption, a paper mill was located close to the wood (and the water and energy resources). This is still true for regions of Portugal, Spain and Brazil with Eucalypt plantations used mainly for copy or similar paper grades. One result of the increased use of recovered paper is that certain new “green field” paper mills are established today in the vicinity of highly populated areas to have easier access to recovered paper resources and to be closer to the market.

The capital demand for a new mill is of the order of magnitude of 500 million €. In the last thirty years the investment costs (inflation-adjusted) related to the specific annual production (t/a) have been approximately halved. This drop is mainly due to increased machine speeds and machine widths as well as to improved runnability. On the other hand the investment costs related to annual turnover have remained constant or even increased.

1.2 Overview of the Manufacturing Process for Paper and Board

Papermaking today includes, in principle, the same process steps as applied for centuries: preparation of the fiber material, sheet or web forming, pressing, drying, sizing and smoothing. However, in the last two centuries much of the detail has changed. Each process step has undergone – and still undergoes today – intensive research and development work to meet economic and ecological requirements. All links in the chain between fiber and end user contribute to this progress. The chain does not only include the paper producing industry itself and its suppliers such as the machine and chemical industry, but also the paper industry’s customers and related industries, e.g. printing-houses, printing ink and printing machine suppliers and the manufacturers of corrugated board.

R&D focus has been on economic and environmental aspects such as

- reduction in consumption of raw material, energy and water as well as noise reduction
- high machine runnability and long lifetime of machinery and its components
- improvement of paper and board quality with respect to improvement of converting quality

which has led to results of high practical value such as

- better understanding and consequent control of the whole process in a narrow band
- reduction in fiber consumption by reducing basis weight at the same quality level and practical value
• increased ratio of recycled fibers in graphic paper production, with up to 100% for newsprint and a growing ratio in high grades such as supercalendered (SC) and light weight coated (LWC) papers
• fillers and coatings replacing part of the expensive fiber material and improving quality
• new coating and calendering technologies
• higher safety in Yankee dryer and suction press roll operation
• new methods of material design for fighting wear of machine components
• minimum number of personnel involved in the paper and board production process.

R&D work is supported by modern tools and sciences e.g.
• process analysis using advanced measuring and analysis techniques
• process simulation and advanced control techniques
• morphological characterization of fibers for papermaking
• chemistry developing functional and process chemicals
• finite element method (FEM) and computational fluid dynamics (CFD)
• visualization techniques in the micro- or nano-ranges, video documentation and analysis
• material sciences including plasma ions implantation into the base material at low temperatures.

The papermaking process (Fig. 1.2) starts with the delivery of the raw material of the stock components. These are
• fibers such as
 – virgin pulps (chemical or mechanical) which are usually supplied in bales or, in special cases, as a suspension when both pulp and paper are manufactured at the same location (integrated processing)
 – recovered paper in bales or as loose material
• fillers and pigments
• chemical additives
• coating colors when coated paper is produced.

All these components have to be adequately prepared for optimum use in the papermaking process steps. The additives may be delivered ready for use or may have to be finally prepared according to the requirements in the mill. Fiber stock preparation includes several unit operations depending on the furnish and the purpose. Stock preparation of virgin fiber pulp needs less machinery and energy than the preparation of recovered paper which, however, is the cheaper raw material. Fiber stock preparation ends at the paper machine chest. Here stock of high consistency is preferred to minimize carry-over of chemicals and contaminants.

Stock preparation is followed by the approach flow system connecting stock preparation with the paper machine. Its main tasks are
• to dose exactly and mix uniformly all the different components of the final suspension to be delivered to the paper machine
to supply a continuous suspension flow of constant consistency, quality and flow rate at constant pressure to the headbox of the paper machine.

The approach flow system ends at the distributor of the headbox.

The task of the paper machine is to produce paper or board of the quality required by the end user – or by the intermediate process steps such as converting or printing. The paper and board properties have to be uniform in machine direction (MD) as well as in cross machine direction (CD). Further, the paper machine has to make the best use of the quality potential of the entering stock. The paper machine includes

- the headbox distributing the suspension across the machine width onto the wire
- the wire section where the suspension is formed into an endless web by dewatering
- the press section pressing water out of the web by mechanical means
- the dryer section where the residual water is evaporated
- often a sizing unit where starch, or pigments are transferred onto the web
- sometimes a coating section where coating color is applied to the web
- the calender to finally smooth the paper or board surface.

The paper manufacturing process ends with the paper web being reeled at the reeler at full width.

By tradition and technical feasibility, coating and supercalendering for surface quality improvement have been off-line processes. Today both are increasingly integrated into the paper machine. The final activities in paper and board production are slitting of the full width reels into smaller rolls at the winder followed by packaging the rolls for shipment.
Paper broken during the manufacturing process has to be recycled and fibers are recovered from the white water of the paper machine in a saveall. White water is fed back from the paper machine to the approach flow system and stock preparation. Fresh water is supplied to the paper machine.

Along the paper production line stock consistency varies according to the requirements of the unit operations. Unfortunately the terms low, medium and high consistency relate to different consistency numbers depending on the actual unit operation (Table 1.1). It is also important to note whether the number gives the overall consistency including fibers and fillers or just fibers.

1.3
Historical Background and General Aspects [1]

Peter F. Tschudin

1.3.1
Introduction

Paper is defined internationally as a thin layer of mostly cellulosic plant fibers, produced on a screen by dewatering a slurry of fibers in water [2]. The slurry is called pulp. Despite recent developments (proteinic or synthetic fibers, chemical additives, coating, etc.) the “cellulosic plant fiber” will be the main, not exclusive, component of paper, and water will be used in preparing the pulp and in forming the paper web also in the future.
1.3.2 Precursors of Paper

1.3.2.1 Tapa (Bark-cloth)
Bark-cloth, made since prehistoric times, is found widely along the Equator belt in nearly all cultures, used mainly for decorating and clothing [3]. It is produced by beating or pressing the inner bark (liber, bast) of trees and shrubs like paper mulberry, lime-tree, fig or daphne, and is known by the generic term “tapa”, derived from the Polynesian language. Tapa is a felt-like material, similar to thick woven paper, showing in most cases traces of the beating mallets. Technically speaking, it is a kind of non-woven paper.

There are three different techniques to be observed in tapa-making. The most sophisticated method consists of three steps. In the first, small strips of bast are cut and cooked for several hours in suds of wood ash. This cooking is very similar to the basic operation of our alkaline pulping. Then the strips are rinsed, placed together on a wooden board and beaten with a mallet, thus forming a small sheet on the board. The third step consists of drying and smoothing.

1.3.2.2 Felt
Felting techniques go back into prehistory [4]. Plant fibers or animal hair are separated from their original linking as much as possible and spread in thick layers onto a cloth or mat. Then they are covered by another cloth and beaten by foot stamping or with heavy wooden sticks to entangle them and stick them together. In another way, the ground mat bearing the fibers is rolled and the roll is beaten. The mat is unrolled and rolled again several times. In wet felting, water is used to soak the fibers and help felting.

1.3.2.3 Papyrus
Papyrus, the most commonly used writing material of Ancient Egypt and Classical Antiquity, was made in Egypt from the beginning of the 3rd millennium BC. The triangulated stem of the papyrus plant is peeled and the pith cut into thin, small strips. A first layer of wet strips placed vertically side by side with a slight overlap is laid onto a board. Then, a similar layer of horizontally oriented stripes is laid above it. Beating with wooden sticks and pressing the still wet layers leads to a sheet of entangled fibers, most remaining in the original linking of the pith. After drying and smoothing several sheets are glued together to form a roll, ready to be written on. Gluing of several papyrus sheet fragments, usually recycled material, results in board or papier-mâché.

New papyrus rolls are very strong and flexible, an ideal writing material. They were exported in large quantities into the Mediterranean area until the 8th century AD. Parchment replaced the dwindling supply from Egypt. When paper was imported from the East, it was given the name of the Egyptian writing material because of its resemblance to papyrus.
1.3.3 Paper

1.3.3.1 Invention of Paper
The oldest papermaking technique, pouring pulp into a primitive mould, is still in use at a few locations in the Himalayas, in some remote spots of China and in Southeast Asia. It shows clearly the descent from tapa and felting techniques. From recent findings of the oldest papers in Chinese tombs or in refuse heaps of military posts it must be concluded that some kind of paper was produced in China since the final centuries BC. Nevertheless, the Chinese chronicles state that in 105 AD in Loyang, the court official Cai Lun invented papermaking from textile waste, i.e. from rags, and propagated paper as a writing material [5]. This was the birth of paper as we know it today.

1.3.3.2 Chinese Paper
Chinese papermakers improved the effectiveness of the production, replacing the pouring technique by dipping the bamboo screen into a vat filled with diluted pulp. After lifting the mold out of the vat and dewatering, the newly formed sheet of paper was immediately couched on a wooden board or a plastered wall to let it dry. The flexible bamboo screen was rolled off and could be reused with the vat. Thus, the handicap of waiting until a sheet dried on the mold, was surmounted. Because of rag and paper mulberry shortages, they chose bamboo as a further source of fiber [6] the pulping of which took several months.

China developed many kinds of specialty papers (sized, coated and dyed paper; anti-moth paper; waterproof paper); over-size sheets were made by couching the wet borders of smaller sheets together, and decoration watermarks were added by putting leather or board figures on the screen before pouring the pulp. Paper served for almost everything: writing, drawing, wrapping, clothing, protection from wind and rain, decoration, windows, even for making balloons and kites, and, last but not least, for making paper money or special currency to be burned in honor of the ancestors.

1.3.3.3 The Eastern Spread of Papermaking
Chinese papermaking techniques were introduced into Korea at an early date, and reached Japan in 610 AD. In both countries, fibers of the paper mulberry were mainly used. In Japan, splash dipping was developed, using a big mold suspended on a teetering twig [7]. Japanese papermakers were fond of art papers for decoration purposes. The ultimate in Japanese papermaking was the production of Shifu, paper yarn woven into heavy, beautiful fabric.