Modern Surface Technology

Edited by
Friedrich-Wilhelm Bach, Andreas Laarmann, and Thomas Wenz

Translated from German by
C. Benjamin Nakhosteen
Modern Surface Technology

Edited by
Fr.-W. Bach, A. Laarmann,
T. Wenz
Related Titles

Watts, J. F., Wolstenholme, J.

An Introduction to Surface Analysis by XPS and AES
2003
ISBN 0-470-84712-3

Decher, G., Schlenoff, J. B. (eds.)

Multilayer Thin Films
Sequential Assembly of Nanocomposite Materials
New edition planned for 2007
ISBN 3-527-31648-5

Wicks, Z. W., Jones, F. N., Pappas, S. P.

Organic Coatings
Science and Technology
1999
ISBN 0-471-24507-0
Modern Surface Technology

Edited by
Friedrich-Wilhelm Bach, Andreas Laarmann,
and Thomas Wenz

Translated from German by
C. Benjamin Nakhosteen
Preface

Technological developments in aerospace and other high-technology fields give rise to constantly increasing demands on part surfaces. Generally, surfaces that, e.g., withstand tribological loads, or show special properties in thermal and electrical conductivity or optical behaviour, require utilisation of coating processes.

This book presents industrially implemented coating processes in the fields of build-up welding and brazing, plasma, arc, and flame spraying, sol-gel technology as well as the thin-film technologies, chemical vapour deposition and physical vapour deposition. Particular emphasis is placed on the combination of process and materials technology in terms of producing coatings that meet all necessary requirements.

Alongside industrially relevant coating processes, newly developed technologies on the verge of industrial implementation are presented. Examples are processes for diamond synthesis, cold gas spraying or the processing of nano-sized particles.

The aim of this book is to enable engineers and technicians working in development, design, and manufacturing to be able to estimate the potential of protective surface coatings and the associated processes in their fields of activity. The intention is that coating technologies serve as an integral part of development, design, and manufacturing.

The Editors
May 2006
Contents

Preface V

List of Contributors XVII

1 Selecting Surface-treatment Technologies 1
 W. Tillmann, E. Vogli
 1.1 Introduction 1
 1.2 Requirements on Part Surfaces 1
 1.3 Selecting Coating and Surface Technologies 4
 1.4 Processes for Surface Modification and Coating 5
 1.5 Economic Assessment of Surface-treatment Technologies 9
 1.6 Summary and Conclusions 9
 References 10

2 Stainless Austenitic Steel –
 Surface Hardening for Increased Wear Resistance 11
 M. Wägner
 2.1 Introduction 11
 2.2 Fundamentals 11
 2.2.1 Heat Treatment 11
 2.2.1.1 Surface-hardening Processes 12
 2.2.2 Stainless Steels 13
 2.2.2.1 Classification of Stainless Steels 14
 2.2.2.2 Stainless Austenitic Steels 15
 2.3 Technologies for Surface Hardening of Austenitic Stainless
 Steels 19
 2.3.1 Kolsterising 19
 2.3.1.1 Influence on Microstructure 20
 2.3.1.2 Influence on Chemical Composition 21
 2.3.1.3 Influence on Mechanical Properties 21
 2.3.1.4 Wear Resistance 21
 2.3.1.5 Influence on Corrosion Resistance 23
2.3.2 Kolsterising plus PVD Coating
2.3.2.1 Coating Adhesion
2.3.2.2 Wear Resistance
2.3.2.3 Fatigue Strength
2.4 Applications
2.4.1 Application Limitations
2.5 Outlook
References

3 Fundamentals of Thin-film Technology
M. Nicolaus, M. Schäpers
3.1 Introduction
3.2 Classification of Thin-film Coating Processes
3.3 General Aspects of Gas-phase Coating Processes
3.3.1 PVD – Physical Vapour Deposition
3.3.1.1 Evaporation
3.3.1.2 Sputtering
3.3.1.3 Ion Plating
3.3.2 CVD – Chemical Vapour Deposition
3.4 Plasma Properties
3.4.1 Low-pressure Plasma
3.5 Coating Configuration
3.6 Electrodeposition and Electroless Plating Processes
3.6.1 Introduction
3.6.2 Fundamental Terms
3.6.2.1 Electrolyte
3.6.2.2 Electrodes, Electrode Reactions, Electrode Potential
3.6.2.3 Electrolysis and Faraday’s Laws
3.6.2.4 Overpotential
3.6.3 Electroless Plating
3.6.4 Electrodeposition of Metal
3.6.5 Electrodeposition of Metal from Non-aqueous Solvents
3.6.6 Summary and Outlook
References

4 Innovations in PVD Technology for High-performance Applications
K. Bobzin, E. Lugscheider, M. Maes, P. Immich
4.1 Introduction
4.2 Market Situation
4.3 Application Examples
4.3.1 Tool Coatings for Cutting
4.3.2 Tool Coatings for Forming
4.3.3 Coatings for Plastic Parts
4.3.4 Coatings for Machine Elements 58
4.3.5 Part Coating for High-temperature Applications 60
4.4 Summary 61
References 62

5 Development and Status Quo
of Thermal CVD Hard-material Coating 65
A. Szabo
5.1 Introduction 65
5.2 Early CVD Hard-material Coating 66
5.3 Fundamentals of Deposition Processes 66
5.3.1 Chemical Mechanism 66
5.3.2 Interdisciplinary Fundamentals 67
5.3.3 CVD System and Reaction-chamber Techniques 67
5.4 Combination Coatings 70
5.5 Material and Coating Properties 73
5.5.1 Physical Properties of Coating Materials 74
5.5.2 Comparison of Coating Combinations 74
5.5.2.1 Classic TiC-TiN 74
5.5.2.2 Balanced TiN-TiC 74
5.5.3 Effects of Thermal Expansion 75
5.5.4 Effects of Hardness 77
5.6 Performance of Hard-material Coatings – Applications 77
5.6.1 Wear Resistance 79
5.6.2 Heat Treatment and Dimensional Accuracy 79
5.7 CVD Coating at Lower Temperatures 80
5.7.1 Moderate-temperature CVD, MTCVD 80
5.7.2 Plasma-activated CVD, PACVD 82
5.8 Summary and Conclusions 82
References 83

6 Hot-filament CVD Diamond Thin Films 87
O. Lemmer, R. Cremer, D. Breidt, M. Frank, J. Müller
6.1 Introduction 87
6.2 Differences of Diamond Tools 88
6.3 Substrate Pre-treatment 88
6.4 Production of CVD Diamond 89
6.5 Hot-filament Process 90
6.6 Controlling CVD Diamond Properties 92
6.7 Industrial Deposition of CVD Diamond 93
6.8 Post-treatment of CVD Diamond 93
6.9 Applications for Diamond-coated Tools 94
6.10 Summary and Conclusions 99
References 100
An Introduction to Electrodeposition and Electroless Plating Processes

W. Olberding

1. **Introduction** 101
2. **Fundamentals of Electrodeposition**
 - (Considering Nickel Deposition as Example) 101
3. **Structure of Electroplated Nickel Coatings** 104
4. **Deposition Mechanism** 105
5. **Current-density Distribution** 106
6. **Electroless Plating of Nickel** 107
7. **Overview of System Technologies** 109
8. **Barrel Plating** 109
9. **Rack Plating** 111
10. **Continuous Plating** 112
11. **Brush Plating** 114
12. **Tank Plating** 114
13. **Overview of Individual Process Steps in Electroplating** 114
14. **Degreasing** 114
15. **Activating or Pickling** 115
16. **Carryover** 115
17. **Coating Passivating Materials such as Stainless Steel and Aluminium** 116
18. **Summary of Pre-treatment** 116
19. **Microstructuring and Electroforming** 116
20. **Summary** 117
21. **References** 118

Fundamentals of Thermal Spraying, Flame and Arc Spraying

Z. Babiak, T. Wenz, L. Engl

1. **Introduction** 119
2. **Fundamentals of Thermal Spraying**
 - (Structure of Thermal Spray Coatings) 121
 - Adhesion of Thermal Spray Coatings 122
3. **Flame Spraying** 123
4. **Flame Spraying Process** 123
5. **Materials and Applications** 125
6. **Arc Spraying** 127
7. **Arc Spraying Process** 127
8. **Special Arc Spraying Processes** 131
9. **Materials and Applications** 131
10. **Summary and Conclusions** 134
11. **References** 134
12 System Technology, Gas Supply, and Potential Applications for Cold Gas Spraying

W. Krömmer, P. Heinrich

12.1 Introduction 179
12.2 System Design 179
12.2.1 Pressure Tank and Nozzle 179
12.2.2 Control Unit 180
12.2.3 Touch Screen 181
12.2.3.1 Main Mask Parameters 182
12.2.4 Gas Heater LINSPRAY® 183
12.2.5 Gas Supply for Cold Gas Spraying 184
12.2.6 Helium Recovery 185
12.3 Applications 186
12.4 Summary 188

References 189

13 Diagnostics in Thermal Spraying Processes

J. Prehm, K. Hartz

13.1 Introduction 191
13.2 Classification of Diagnostic Methods 191
13.3 Methods for Particle Diagnostics 191
13.3.1 Laser Doppler Anemometry (LDA) 191
13.3.2 Phase Doppler Anemometry (PDA) 194
13.3.3 Laser Two-focus Method (L2F) 195
13.3.4 Particle Image Velocimetry (PIV) 195
13.3.5 In-flight Particle Diagnostics 197
13.4 Methods for Plasma and Hot Gas Diagnostics 198
13.4.1 Enthalpy Probe Diagnostics 198
13.5 Methods for Online Process Control 199
13.5.1 Particle-flux Imaging (PFI) 200
13.6 Summary and Conclusions 202

References 202

14 Sol-gel Coating Processes

M. Kursawe, V. Hilarius, G. Pfaff, R. Anselmann

14.1 Introduction 205
14.1.1 Background and Origin of Sol-gel Chemistry 205
14.1.2 Material Fabrication by Means of Sol-gel Techniques 206
14.2 Sol-gel Coating Formation for SiO₂ 207
14.2.1 Coatings with SiO₂ Sol from Salts of Silicic Acid 207
14.2.2 Coatings with SiO₂ Sol from Si Alkoxides 208
14.3 Application Examples 210
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3.1</td>
<td>Translating an Idea into a Product: Development of an Anti-reflection Coating for Glass</td>
<td>210</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Application of Wet Chemical Coating Techniques for a Common Product Type: Pearlescent Pigments</td>
<td>214</td>
</tr>
<tr>
<td>14.3.2.1</td>
<td>Gloss and Colour</td>
<td>214</td>
</tr>
<tr>
<td>14.3.2.2</td>
<td>Production of Pearlescent Pigments with Interference Colours</td>
<td>215</td>
</tr>
<tr>
<td>14.3.3</td>
<td>Effect Pigments on SiO₂ Flakes</td>
<td>217</td>
</tr>
<tr>
<td>14.3.4</td>
<td>Coating of SiO₂ Spheres for Cosmetic Formulations</td>
<td>219</td>
</tr>
<tr>
<td>14.4</td>
<td>Conclusions</td>
<td>219</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>15</td>
<td>Hot-dip Coating</td>
<td>221</td>
</tr>
<tr>
<td>15.1</td>
<td>Mechanisms of Corrosion Protection</td>
<td>221</td>
</tr>
<tr>
<td>15.2</td>
<td>Phase Diagrams Fe-Zn, Fe-Al, Al-Zn, and Fe-Al-Zn</td>
<td>224</td>
</tr>
<tr>
<td>15.3</td>
<td>Metal Coatings</td>
<td>227</td>
</tr>
<tr>
<td>15.4</td>
<td>Systems Technology</td>
<td>229</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Design of Hot-dip-coating Systems</td>
<td>229</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Reacting Agents in Molten Zinc</td>
<td>231</td>
</tr>
<tr>
<td>15.4.3</td>
<td>Surface Post-treatment</td>
<td>233</td>
</tr>
<tr>
<td>15.5</td>
<td>Quality Control</td>
<td>234</td>
</tr>
<tr>
<td>15.5.1</td>
<td>Testing Mechanical Properties</td>
<td>234</td>
</tr>
<tr>
<td>15.5.2</td>
<td>Testing Corrosion Properties</td>
<td>234</td>
</tr>
<tr>
<td>15.6</td>
<td>Summary and Conclusions</td>
<td>236</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>16</td>
<td>Build-up Brazed Wear-protection Coatings</td>
<td>239</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>239</td>
</tr>
<tr>
<td>16.2</td>
<td>Brazing and Soldering</td>
<td>239</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Fundamentals</td>
<td>239</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Repair Brazing</td>
<td>241</td>
</tr>
<tr>
<td>16.2.3</td>
<td>Coating by Build-up Brazing of Sintered Hard Metals</td>
<td>242</td>
</tr>
<tr>
<td>16.2.4</td>
<td>Brazing of Ceramics</td>
<td>244</td>
</tr>
<tr>
<td>16.2.5</td>
<td>Brazing of Hard-material Particles</td>
<td>246</td>
</tr>
<tr>
<td>16.3</td>
<td>BrazeCoat Technology</td>
<td>248</td>
</tr>
<tr>
<td>16.3.1</td>
<td>Coating with Mats of Filler Metal and Hard Material (BrazeCoat M)</td>
<td>248</td>
</tr>
<tr>
<td>16.3.2</td>
<td>Coating with Suspensions of Filler Metal and Hard Material (BrazeCoat S)</td>
<td>250</td>
</tr>
<tr>
<td>16.4</td>
<td>Summary</td>
<td>252</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>252</td>
</tr>
</tbody>
</table>
List of Contributors

Ralf Anselmann
Degussa AG
Creavis Technologies & Innovation
Paul-Baumann-Strasse 1
45764 Marl
Germany

Wolfgang Bleck
RWTH Aachen University
Department of Ferrous Metallurgy
Intzestrasse 1
52072 Aachen
Germany

Zenon Babiak
formerly:
University of Hannover
Institute for Materials Science
Schönebecker Allee 2
30823 Garbsen
Germany

Kirsten Bobzin
RWTH Aachen University
Surface Engineering Institute
Augustinerbach 4–22
52062 Aachen
Germany

Joachim Beczkowiak
H.C. Starck GmbH
Ceramics and Surface Technology
Am Kraftwerkweg 3
79725 Laufenburg
Germany

Belkacem Bouaifi
CeWOTec gGmbH
Lassallestrasse 14
09117 Chemnitz
Germany

Dipl.-Ing. Daniel Beste
RWTH Aachen University
Department of Ferrous Metallurgy
Intzestrasse 1
52072 Aachen
Germany

Oliver Brandt
Becon Technologies GmbH
Feuerwerkerstrasse 39
3602 Thun
Switzerland

Dirk Breidt
CemeCon AG
Research & Development
Adenauerstrasse 20 B 1
52146 Würselen
Germany
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Address</th>
<th>City</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainer Cremer</td>
<td>CemeCon AG</td>
<td>Research & Development Adenauerstrasse 20 B 1</td>
<td>Würselen</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52146 Würselen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainer Duhm</td>
<td>University of Hannover</td>
<td>Institute for Materials Science Schönebecker Allee 2</td>
<td>Garbsen</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30823 Garbsen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lars Engl</td>
<td>University of Hannover</td>
<td>Institute for Materials Science Schönebecker Allee 2</td>
<td>Garbsen</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30823 Garbsen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martin Frank</td>
<td>CemeCon AG</td>
<td>Research & Development Adenauerstrasse 20 B 1</td>
<td>Würselen</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52146 Würselen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andreas Gebert</td>
<td>CeWOTec gGmbH</td>
<td>Lassallestrasse 14</td>
<td>Chemnitz</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>09117 Chemnitz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karsten Hartz</td>
<td>University of Hannover</td>
<td>Institute for Materials Science Schönebecker Allee 2</td>
<td>Garbsen</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30823 Garbsen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peter Heinrich</td>
<td>Linde AG</td>
<td>Business Segment Linde Gas Carl-von-Linde-Strasse 25</td>
<td>Unterschleissheim</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85716 Unterschleissheim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volker Hilarius</td>
<td>Merck KgaA</td>
<td>Pigments R&D</td>
<td>Darmstadt</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frankfurter Strasse 250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hans-Michael Höhle</td>
<td>Sulzer Metco Europe GmbH</td>
<td>Am Eisernen Steg 18</td>
<td>Hattersheim</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65795 Hattersheim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulrich Holländer</td>
<td>University of Hannover</td>
<td>Institute for Materials Science Schönebecker Allee 2</td>
<td>Garbsen</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30823 Garbsen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philipp Immich</td>
<td>RWTH Aachen University</td>
<td>Surface Engineering Institute Augustinerbach 4–22</td>
<td>Aachen</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52062 Aachen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harald Krappitz</td>
<td>Innobraze GmbH</td>
<td>Fritz-Müller-Strasse 97</td>
<td>Esslingen</td>
<td>Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73730 Esslingen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Werner Krömmer
Linde AG
Business Segment Linde Gas
Carl-von-Linde-Strasse 25
85716 Unterschleissheim
Germany

Monika Kursawe
Merck KgaA
Business Development Chemicals/Advanced Materials
Frankfurter Strasse 250
64293 Darmstadt
Germany

Andreas Laarmann
formerly:
University of Hannover
Institute for Materials Science
Schönebecker Allee 2
30823 Garbsen
Germany

Oliver Lemmer
CemeCon AG
Research & Development
Adenauerstrasse 20 B 1
52146 Würselen
Germany

Erich Lugscheider
RWTH Aachen University
Surface Engineering Institute
Augustinirbach 4–22
52062 Aachen
Germany

Michel Maes
RWTH Aachen University
Surface Engineering Institute
Augustinirbach 4–22
52062 Aachen
Germany

Kai Möhwald
University of Hannover
Institute for Materials Science
Schönebecker Allee 2
30823 Garbsen
Germany

Jürgen Müller
CemeCon AG
Research & Development
Adenauerstrasse 20 B 1
52146 Würselen
Germany

Martin Nicolaus
University of Hannover
Institute for Materials Science
Schönebecker Allee 2
30823 Garbsen
Germany

Werner Olberding
IGOS Institut für Galvano- und Oberflächentechnik GmbH
Grünewalder Strasse 29–31
42657 Solingen
Germany

Gerhard Pfaff
Merck KgaA
Pigments PD
Frankfurter Strasse 250
64293 Darmstadt
Germany

Jens Prehm
formerly:
University of Hannover
Institute for Materials Science
Schönebecker Allee 2
30823 Garbsen
Germany
Wilfried Reimche
University of Hannover
Institute for Materials Science
Non-destructive Testing
Lise-Meitner-Strasse 1
30823 Garbsen
Germany

Melanie Schäpers
Draeger Medical AG & Co. KG
Moislinger Allee 53–55
23542 Lübeck
Germany

Andreas Szabo
Best-Surface
Simanowizstrasse 12
71640 Ludwigsburg
Germany

Wolfgang Tillmann
University of Dortmund
Chair of Materials Technology
Leonhard-Euler-Strasse 2
44227 Dortmund
Germany

Evelina Vogli
University of Dortmund
Chair of Materials Technology
Leonhard-Euler-Strasse 2
44227 Dortmund
Germany

Martina Wägner
Bodycote Hardiff BV
Paramariboweg 45
7333 PA Apeldoorn
The Netherlands

Thomas Wenz
formerly:
University of Hannover
Institute for Materials Science
Schönebecker Allee 2
30823 Garbsen
Germany

Harald K. Zimmermann
Sulzer Metco AG (Switzerland)
Rigackerstrasse 16
5610 Wohlen
Switzerland
1
Selecting Surface-treatment Technologies

W. Tillmann, E. Vogli, Chair of Materials Technology, University of Dortmund, Germany

1.1
Introduction

Nowadays, modern production processes require inherent state-of-the-art surface technologies. Furthermore, rising standards of technical products are creating the perception that surface technologies are often the central impetus needed for meeting product specifications. Design engineers thus face two essential tasks: On the one hand, part specifications need to be transformed into properties of materials and surfaces. On the other hand, selected materials technologies have to be integrated in corresponding process chains. Apart from the required part specifications, production costs and ecological aspects are important issues.

Not only production standards but also economic conditions lead to increasing significance of surface technologies. Considering the two substantial domains of surface technology, tribology and corrosion, macroeconomics experts estimate that tribological damage causes a loss of approx. 1% of the German gross national product (GNP). The economic effect of corrosion damage is even higher, approaching approx. 3.5–4.2% of the GNP. Surface technologies therefore have to be considered as one of the key technology fields in production engineering.

Here, one possible method for selecting surface-treatment processes that satisfy existing requirements of specific parts is introduced. In addition, a variety of surface-treatment processes are compared with respect to possible fields of application and characteristics specific to the individual processes.

1.2
Requirements on Part Surfaces

Systematic selection of suitable surface treatments is always based on acquiring a complete set of requirements on the part surface with respect to intended operating conditions. According to Haefer [3], the surface is responsible for all me-
mechanical, thermal, chemical, and electrochemical interactions with the environment. This leads to the main functions that need to be fulfilled by technical surfaces:

- corrosion resistance
- wear resistance
- defined tribological behaviour
- optical behaviour
- decorative behaviour
- matched interface behaviour (e.g. for joining purposes).

In addition, especially highly specialised products may demand specific functions. Parts used in micro-technology for example can require special electromagnetic properties of surfaces.

Ultimately, requirements on part surfaces are determined by the particular load conditions under which the final product operates. Figure 1.1 illustrates the main kinds of load conditions subdivided into volume and surface loads.

Wear and corrosion are the main stresses that have to be controlled by surface technology in the realm of mechanical engineering. Incorrect materials selection as well as unsuitable or missing protective layers lead to manifold damages, some of which are shown in Figs. 1.2 and 1.3.

In many cases, appropriate surface treatment can either prevent or at least delay such damages. However, adjusting part surface characteristics carefully is essential in order to handle overall operating conditions.

Surface technology focuses on reacting adequately to the specific kinds of load and stress. For this, the materials properties of part surfaces are systematically modified or produced, particularly by means of:

![Fig. 1.1 Main volume and surface loads on parts.](image-url)
applying a protective coating to the workpiece
modifying the surface zone of the workpiece.

Typical coating processes are chemical vapour deposition (CVD), physical vapour deposition (PVD), thermal spraying, build-up brazing and welding, as well as cladding and dip coating. Surface modification processes, on the other hand,
include thermo-chemical diffusion processes, thermal surface hardening, implantation methods, and mechanical surface-hardening processes.

1.3 Selecting Coating and Surface Technologies

Designing a suitable surface treatment from a given combination of loads is challenging. Not only is it often difficult to precisely and thoroughly understand the operating conditions of a part, but very large variety of possible materials and materials technological processes have to be considered. Estimates indicate that the number of materials used in materials technology is in the range of 40 000–80 000. Moreover, including surface technologies, about 1000 different processes are used. In contrast, the mean vocabulary of a Central European spans approx. 5000 words. Quite obviously, the process of selecting an appropriate coating or surface treatment requires a systematic approach. The selection process needs to be implemented at an early stage of product development. It is necessary that developers already consider surface requirements during concept phases, directly after taking down customer and market demands. Based on the given operating conditions, four fundamental aspects should be clarified systematically [1, 6]. The following facets and questions need to be considered carefully:

1) Function:
 – What are the functional characteristics of the part surface?
 – What kind of requirements exist?

2) Purpose:
 – What needs to be maximised?
 – What needs to be minimised?

3) Limitations:
 – Which constraints and boundary conditions have to be met? e.g.
 – from a technical point of view
 – from an economic point of view
 – considering design-to-cost concepts
 – considering design for environment concepts
 – considering life-cycle costs

4) Options:
 – What options exist?

This systematic approach basically represents the general framework of the requirement catalogue concluded from the set of loads and stresses. Subsequently, individual materials and surface technologies need to be analysed and assessed against this background. This search and evaluation should be performed in an equally systematic approach. Figure 1.4 illustrates an example of a systematic analysis sheet. Here, individual coating materials and processes can be rated with respect to selected properties, prerequisites, and restrictions. The listed se-
The collection of properties within the rating matrix as well as the corresponding prerequisites and restrictions originate from the formerly compiled catalogue of requirements.

The approach presented here describes a workable method of correlating a catalogue of requirements with appropriate surface technologies. Certainly, the quality of results is determined and limited by the requirement catalogue developed in phase one. Furthermore, this methodology requires comprehensive knowledge of available materials and processes, a frequently limiting factor due to the already mentioned manifold process varieties and materials.

1.4 Processes for Surface Modification and Coating

Giving a detailed overview of the different surface modification and coating processes would go far beyond the scope of this chapter. Therefore, a general summary of the most important process classes is presented, along with their individual properties and requirements.

Table 1.1: Rating Matrix Example

<table>
<thead>
<tr>
<th>material/process</th>
<th>prerequisites / restrictions</th>
<th>feasible</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>coating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wear properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hardness / strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corrosion resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>impact resistance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coating thickness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adhesion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cohesion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>porosity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>residual stresses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>structure / property correlations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shape of part</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimensions of part</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deposition rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coating process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strength reducing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>process characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>environmental issues</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1.4 Example of a rating matrix for evaluating coating materials and/or processes against the background of a desired property catalogue.
individual assets and drawbacks. Figure 1.5 shows the systematic classification of surface-modification processes.

Selected process technologies are presented in Table 1.1, including basic advantages and disadvantages [5].

Unlike surface-modification processes, coating involves covering the surface of a workpiece with a well-bonded layer of shapeless material. A possible classification of coating technologies is given in Fig. 1.6.

Bond strength to the substrate material primarily determines the quality of a coating. This macroscopic property is controlled by:
- materials combination
- type of interface zone
- microstructure and process conditions
- substrate type and pre-treatment.

A strong atomic bond in the contact zone is most favourable, provided that internal stresses within the coating are not too high and no long-term degradation occurs within the coating/substrate composite. Coating process and material combinations determine whether mechanical, chemical, or electrostatic bonds prevail, or whether diffusion occurs. Thus, preparation of the workpiece is a
Table 1.1 Selected process technologies for surface modification.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Process technologies</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ inexpensive</td>
<td>Hardening by means of induction flame laser, electron beam TIG (tungsten-inert gas)</td>
<td>– limited to steel, Co, 3–0.6% – distortion possible</td>
</tr>
<tr>
<td>+ selective treatment possible</td>
<td>Carburisation • diffusion of C (up to 0.8%) into surface including hardening • variety of different C-carriers</td>
<td>– distortion – cooling cracks</td>
</tr>
<tr>
<td>+ depth 1–10 mm</td>
<td>Carbonitriding • compare above, additional nitrogen • low-temperature process</td>
<td></td>
</tr>
<tr>
<td>+ applicable to many types of steel + well-controlled coating properties</td>
<td>Nitriding • N-diffusion, formation of surface nitrides</td>
<td>– slow process</td>
</tr>
<tr>
<td>+ less distortion of surface compared to hardening and carburisation</td>
<td>Nitrocarburising – cf. nitriding</td>
<td>– modifies thin surface zone</td>
</tr>
<tr>
<td>+ less distortion of surface + high elevated temperature hardness</td>
<td>Boronising • boron diffusion for boride formation • also applicable for Co-, N-, Ti-alloys</td>
<td>– distortion (high process temperatures) – brittle – low corrosion resistance</td>
</tr>
<tr>
<td>+ good resistance against adhesive wear + allows oxidising for corrosion protection</td>
<td>Sherardising • Zn-diffusion with subsequent chromatising</td>
<td>– no wear protection</td>
</tr>
<tr>
<td>+ high hardness</td>
<td>Shot peening for plastic deformation of workpiece surface</td>
<td>– modifies thin surface zone – low increase in hardness</td>
</tr>
<tr>
<td>+ inexpensive</td>
<td>Deep rolling comparable with shot peening</td>
<td>– expensive</td>
</tr>
<tr>
<td>+ good corrosion protection + less vibration fatigue + increased resistance against stress-corrosion cracking and corrosion fatigue see above</td>
<td>Plating, metallising (e.g. Cr, V, Nb, Si-containing diffusion coatings) large variety of processes</td>
<td>– high process temperatures (distortion)</td>
</tr>
</tbody>
</table>
crucial factor in obtaining good coating adhesion. Apart from removing contamination, pre-treatments activate the substrate surface and therefore substantially influence the bond between coating and substrate. Typical mechanisms of surface activating are:

- creating defects in the substrate
- increasing surface energy
- removing oxide layers.

Table 1.2 summarises different coating technologies in common use and includes important process characteristics [4, 6].

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Technologies</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ high hardness values</td>
<td>Electrochemical deposition (e.g. Cr) up to 0.5 mm coating thickness</td>
<td>– coating of complex geometries is difficult</td>
</tr>
<tr>
<td>+ good corrosion resistance</td>
<td></td>
<td>– danger of hydrogen embrittlement</td>
</tr>
<tr>
<td>+ reduces friction in contact with steel</td>
<td></td>
<td>– environmental problems</td>
</tr>
<tr>
<td>+ low-temperature process</td>
<td>Chemical (electroless) deposition from electrolyte solution (e.g. NiB, NiP)</td>
<td>– expensive</td>
</tr>
<tr>
<td>+ very high corrosion protection</td>
<td></td>
<td>– additional heat treatment necessary</td>
</tr>
<tr>
<td>+ suitable for most metal substrates and many non-conducting materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ uniform coating thickness even on complex geometries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ very high hardness values</td>
<td>CVD, chemical vapour deposition</td>
<td>– distortion</td>
</tr>
<tr>
<td>+ good adhesion</td>
<td>chemical vapour deposition at high temperatures</td>
<td>– coating of sharp-edged geometries is difficult</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– disposal of aggressive gaseous waste</td>
</tr>
<tr>
<td>+ dense coatings with high adhesion</td>
<td>PVD, physical vapour deposition</td>
<td>– low growth rate of coating</td>
</tr>
<tr>
<td>+ low coating process temperature</td>
<td>– evaporation</td>
<td>– expensive vacuum process</td>
</tr>
<tr>
<td>+ allows deposition of pure elements, compounds and alloys</td>
<td>– cathode sputtering</td>
<td>– restrictions in terms of part geometry</td>
</tr>
<tr>
<td>+ large variety of materials</td>
<td>Thermal spray processes</td>
<td>– residual porosity</td>
</tr>
<tr>
<td>+ good adhesion</td>
<td></td>
<td>– deposition efficiency of coating process (overspray)</td>
</tr>
<tr>
<td>+ properties well controllable by choice of materials and process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ very high adhesion</td>
<td>Build-up welding</td>
<td>– coating materials limited</td>
</tr>
<tr>
<td>+ large parts coatable</td>
<td></td>
<td>– impact on substrate material</td>
</tr>
<tr>
<td>+ inexpensive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ very high adhesion</td>
<td>Build-up brazing</td>
<td>– coating materials limited</td>
</tr>
<tr>
<td>+ coating of complex geometries</td>
<td>powdery hard material and brazing filler metal with binding agent protective gas process</td>
<td></td>
</tr>
</tbody>
</table>