Naminosuke Kubota

Propellants and Explosives

Thermochemical Aspects of Combustion

Second, Completely Revised and Extended Edition

WILEY-VCH Verlag GmbH & Co. KGaA
Naminosuke Kubota
Propellants and Explosives
1807–2007 Knowledge for Generations

Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Pesce
President and Chief Executive Officer

Peter Booth Wiley
Chairman of the Board
Naminosuke Kubota

Propellants and Explosives
Thermochemical Aspects of Combustion

Second, Completely Revised and Extended Edition
Table of Contents

Preface XVII

Preface to the Second Edition XIX

1 Foundations of Pyrodynamics 1
1.1 Heat and Pressure 1
1.1.1 First Law of Thermodynamics 1
1.1.2 Specific Heat 2
1.1.3 Entropy Change 4
1.2 Thermodynamics in a Flow Field 5
1.2.1 One-Dimensional Steady-State Flow 5
1.2.1.1 Sonic Velocity and Mach Number 5
1.2.1.2 Conservation Equations in a Flow Field 6
1.2.1.3 Stagnation Point 6
1.2.2 Formation of Shock Waves 7
1.2.3 Supersonic Nozzle Flow 10
1.3 Formation of Propulsive Forces 12
1.3.1 Momentum Change and Thrust 12
1.3.2 Rocket Propulsion 13
1.3.2.1 Thrust Coefficient 14
1.3.2.2 Characteristic Velocity 15
1.3.2.3 Specific Impulse 16
1.3.3 Gun Propulsion 16
1.3.3.1 Thermochemical Process of Gun Propulsion 16
1.3.3.2 Internal Ballistics 18
1.4 Formation of Destructive Forces 20
1.4.1 Pressure and Shock Wave 20
1.4.2 Shock Wave Propagation and Reflection in Solid Materials 20

2 Thermochemistry of Combustion 23
2.1 Generation of Heat Energy 23
2.1.1 Chemical Bond Chemical Bond Energy 23
2.1.2 Heat of Formation and Heat of Explosion 24
2.1.3 Thermal Equilibrium 25
2.2 Adiabatic Flame Temperature 27
2.3 Chemical Reaction 31
2.3.1 Thermal Dissociation 31
2.3.2 Reaction Rate 31
2.4 Evaluation of Chemical Energy 32
2.4.1 Heats of Formation of Reactants and Products 33
2.4.2 Oxygen Balance 36
2.4.3 Thermodynamic Energy 36

3 Combustion Wave Propagation 41
3.1 Combustion Reactions 41
3.1.1 Ignition and Combustion 41
3.1.2 Premixed and Diffusion Flames 42
3.1.3 Laminar and Turbulent Flames 42
3.2 Combustion Wave of a Premixed Gas 43
3.2.1 Governing Equations for the Combustion Wave 43
3.2.2 Rankine–Hugoniot Relationships 44
3.2.3 Chapman–Jouguet Points 46
3.3 Structures of Combustion Waves 49
3.3.1 Detonation Wave 49
3.3.2 Deflagration Wave 51
3.4 Ignition Reactions 53
3.4.1 The Ignition Process 53
3.4.2 Thermal Theory of Ignition 53
3.4.3 Flammability Limit 54
3.5 Combustion Waves of Energetic Materials 55
3.5.1 Thermal Theory of Burning Rate 55
3.5.1.1 Thermal Model of Combustion Wave Structure 55
3.5.1.2 Thermal Structure in the Condensed Phase 57
3.5.1.3 Thermal Structure in the Gas Phase 59
3.5.1.4 Burning Rate Model 61
3.5.2 Flame Stand-Off Distance 63
3.5.3 Burning Rate Characteristics of Energetic Materials 64
3.5.3.1 Pressure Exponent of Burning Rate 64
3.5.3.2 Temperature Sensitivity of Burning Rate 64
3.5.4 Analysis of Temperature Sensitivity of Burning Rate 65

4 Energetics of Propellants and Explosives 69
4.1 Crystalline Materials 69
4.1.1 Physicochemical Properties of Crystalline Materials 69
4.1.2 Perchlorates 70
4.1.2.1 Ammonium Perchlorate 71
4.1.2.2 Nitronium Perchlorate 72
4.1.2.3 Potassium Perchlorate 72
4.1.3 Nitrates 73
Table of Contents

5 Combustion of Crystalline and Polymeric Materials 113
5.1 Combustion of Crystalline Materials 113
5.1.1 Ammonium Perchlorate (AP) 113
5.1.1.1 Thermal Decomposition 113
5.1.1.2 Burning Rate 114
5.1.1.3 Combustion Wave Structure 115
5.1.2 Ammonium Nitrate (AN) 115
5.1.2.1 Thermal Decomposition 115
5.1.3 HMX 116
5.1.3.1 Thermal Decomposition 116
5.1.3.2 Burning Rate 116
5.1.3.3 Gas-Phase Reaction 117
5.1.3.4 Combustion Wave Structure and Heat Transfer 118
5.1.4 Triaminoguanidine Nitrate (TAGN) 119
5.1.4.1 Thermal Decomposition 119
5.1.4.2 Burning Rate 123
5.1.4.3 Combustion Wave Structure and Heat Transfer 123
5.1.5 ADN (Ammonium Dinitramide) 125
5.1.6 HNF (Hydrazinium Nitroformate) 126
5.2 Combustion of Polymeric Materials 127
5.2.1 Nitrate Esters 127
5.2.1.1 Decomposition of Methyl Nitrate 128
5.2.1.2 Decomposition of Ethyl Nitrate 128
5.2.1.3 Overall Decomposition Process of Nitrate Esters 129
5.2.1.4 Gas-Phase Reactions of NO₂ and NO 129
5.2.2 Glycidyl Azide Polymer (GAP) 131
5.2.2.1 Thermal Decomposition and Burning Rate 131
5.2.2.2 Combustion Wave Structure 133
5.2.3 Bis-azide methyl oxetane (BAMO) 134
5.2.3.1 Thermal Decomposition and Burning Rate 134
5.2.3.2 Combustion Wave Structure and Heat Transfer 137

6 Combustion of Double-Base Propellants 143
6.1 Combustion of NC-NG Propellants 143
6.1.1 Burning Rate Characteristics 143
6.1.2 Combustion Wave Structure 144
6.1.3 Burning Rate Model 148
6.1.3.1 Model for Heat Feedback from the Gas Phase to the Condensed Phase 148
6.1.3.2 Burning Rate Calculated by a Simplified Gas-Phase Model 149
6.1.4 Energetics of the Gas Phase and Burning Rate 150
6.1.5 Temperature Sensitivity of Burning Rate 156
6.2 Combustion of NC-TMETN Propellants 158
6.2.1 Burning Rate Characteristics 158
6.2.2 Combustion Wave Structure 160
6.3 Combustion of Nitro-Azide Propellants 160
Combustion of Composite Propellants

7 AP Composite Propellants

7.1 Combustion Wave Structure

7.1.1 Premixed Flame of AP Particles and Diffusion Flame

7.1.2 Combustion Wave Structure of Oxidizer-Rich AP Propellants

7.2 Nitramine Composite Propellants

7.2.1 Burning Rate Characteristics

7.2.2 Combustion Wave Structure

7.2.3 HMX-GAP Propellants

7.2.4 Catalyzed Nitramine Composite Propellants

7.2.4.1 Super-Rate Burning of HMX Composite Propellants

7.2.4.2 Super-Rate Burning of HMX-GAP Propellants

7.2.4.3 LiF Catalysts for Super-Rate Burning

7.2.4.4 Catalyst Action of LiF on Combustion Wave

8 AP-Nitramine Composite Propellants

8.1 Theoretical Performance

8.2 Burning Rate

8.2.1 Effects of AP/RDX Mixture Ratio and Particle Size

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.1 Burning Rate Characteristics</td>
<td>160</td>
</tr>
<tr>
<td>6.3.2 Combustion Wave Structure</td>
<td>160</td>
</tr>
<tr>
<td>6.4 Catalyzed Double-Base Propellants</td>
<td>162</td>
</tr>
<tr>
<td>6.4.1 Super-Rate, Plateau, and Mesa Burning</td>
<td>162</td>
</tr>
<tr>
<td>6.4.2 Effects of Lead Catalysts</td>
<td>164</td>
</tr>
<tr>
<td>6.4.2.1 Burning Rate Behavior of Catalyzed Liquid Nitrate Esters</td>
<td>164</td>
</tr>
<tr>
<td>6.4.2.2 Effect of Lead Compounds on Gas-Phase Reactions</td>
<td>164</td>
</tr>
<tr>
<td>6.4.3 Combustion of Catalyzed Double-Base Propellants</td>
<td>165</td>
</tr>
<tr>
<td>6.4.3.1 Burning Rate Characteristics</td>
<td>165</td>
</tr>
<tr>
<td>6.4.3.2 Reaction Mechanism in the Dark Zone</td>
<td>169</td>
</tr>
<tr>
<td>6.4.3.3 Reaction Mechanism in the Fizz Zone Structure</td>
<td>170</td>
</tr>
<tr>
<td>6.4.4 Combustion Models of Super-Rate, Plateau, and Mesa Burning</td>
<td>171</td>
</tr>
<tr>
<td>6.4.5 LiF-Catalyzed Double-Base Propellants</td>
<td>173</td>
</tr>
<tr>
<td>6.4.6 Ni-Catalyzed Double-Base Propellants</td>
<td>175</td>
</tr>
<tr>
<td>6.4.7 Suppression of Super-Rate and Plateau Burning</td>
<td>177</td>
</tr>
<tr>
<td>7 AP Composite Propellants</td>
<td>181</td>
</tr>
<tr>
<td>7.1 Combustion Wave Structure</td>
<td>181</td>
</tr>
<tr>
<td>7.1.1 Premixed Flame of AP Particles and Diffusion Flame</td>
<td>181</td>
</tr>
<tr>
<td>7.1.2 Combustion Wave Structure of Oxidizer-Rich AP Propellants</td>
<td>185</td>
</tr>
<tr>
<td>7.1.2.1 Effect of AP Particle Size</td>
<td>189</td>
</tr>
<tr>
<td>7.1.2.2 Effect of the Binder</td>
<td>189</td>
</tr>
<tr>
<td>7.1.3 Catalyzed AP Composite Propellants</td>
<td>194</td>
</tr>
<tr>
<td>7.1.3.1 Positive Catalysts</td>
<td>195</td>
</tr>
<tr>
<td>7.1.3.2 LiF Negative Catalyst</td>
<td>197</td>
</tr>
<tr>
<td>7.1.3.3 SrCO₃ Negative Catalyst</td>
<td>200</td>
</tr>
<tr>
<td>7.2 Nitramine Composite Propellants</td>
<td>203</td>
</tr>
<tr>
<td>7.2.1 Burning Rate Characteristics</td>
<td>203</td>
</tr>
<tr>
<td>7.2.1.1 Effect of Nitramine Particle Size</td>
<td>203</td>
</tr>
<tr>
<td>7.2.1.2 Effect of Binder</td>
<td>203</td>
</tr>
<tr>
<td>7.2.2 Combustion Wave Structure</td>
<td>204</td>
</tr>
<tr>
<td>7.2.3 HMX-GAP Propellants</td>
<td>207</td>
</tr>
<tr>
<td>7.2.3.1 Physicochemical Properties of Propellants</td>
<td>207</td>
</tr>
<tr>
<td>7.2.3.2 Burning Rate and Combustion Wave Structure</td>
<td>207</td>
</tr>
<tr>
<td>7.2.4 Catalyzed Nitramine Composite Propellants</td>
<td>210</td>
</tr>
<tr>
<td>7.2.4.1 Super-Rate Burning of HMX Composite Propellants</td>
<td>210</td>
</tr>
<tr>
<td>7.2.4.2 Super-Rate Burning of HMX-GAP Propellants</td>
<td>211</td>
</tr>
<tr>
<td>7.2.4.3 LiF Catalysts for Super-Rate Burning</td>
<td>213</td>
</tr>
<tr>
<td>7.2.4.4 Catalyst Action of LiF on Combustion Wave</td>
<td>215</td>
</tr>
<tr>
<td>7.3 AP-Nitramine Composite Propellants</td>
<td>217</td>
</tr>
<tr>
<td>7.3.1 Theoretical Performance</td>
<td>217</td>
</tr>
<tr>
<td>7.3.2 Burning Rate</td>
<td>219</td>
</tr>
<tr>
<td>7.3.2.1 Effects of AP/RDX Mixture Ratio and Particle Size</td>
<td>219</td>
</tr>
</tbody>
</table>
Table of Contents

7.3.2.2 Effect of Binder 221
7.4 TAGN-GAP Composite Propellants 223
7.4.1 Physicochemical Characteristics 223
7.4.2 Burning Rate and Combustion Wave Structure 224
7.5 AN-Azide Polymer Composite Propellants 225
7.5.1 AN-GAP Composite Propellants 225
7.5.2 AN-(BAMO-AMMO)-HMX Composite Propellants 227
7.6 AP-GAP Composite Propellants 228
7.7 ADN, HNF, and HNIW Composite Propellants 230

8 Combustion of CMDB Propellants 235
8.1 Characteristics of CMDB Propellants 235
8.2 AP-CMDB Propellants 235
8.2.1 Flame Structure and Combustion Mode 235
8.2.2 Burning Rate Models 237
8.3 Nitramine-CMDB Propellants 239
8.3.1 Flame Structure and Combustion Mode 239
8.3.2 Burning Rate Characteristics 242
8.3.3 Thermal Wave Structure 243
8.3.4 Burning Rate Model 248
8.4 Plateau Burning of Catalyzed HMX-CMDB Propellants 249
8.4.1 Burning Rate Characteristics 249
8.4.2 Combustion Wave Structure 250
8.4.2.1 Flame Stand-off Distance 250
8.4.2.2 Catalyst Activity 252
8.4.2.3 Heat Transfer at the Burning Surface 253

9 Combustion of Explosives 257
9.1 Detonation Characteristics 257
9.1.1 Detonation Velocity and Pressure 257
9.1.2 Estimation of Detonation Velocity of CHNO Explosives 258
9.1.3 Equation of State for Detonation of Explosives 259
9.2 Density and Detonation Velocity 260
9.2.1 Energetic Explosive Materials 260
9.2.2 Industrial Explosives 261
9.2.2.1 ANFO Explosives 262
9.2.2.2 Slurry and Emulsion Explosives 262
9.2.3 Military Explosives 263
9.2.3.1 TNT-Based Explosives 263
9.2.3.2 Plastic-Bonded Explosives 264
9.3 Critical Diameter 265
9.4 Applications of Detonation Phenomena 265
9.4.1 Formation of a Flat Detonation Wave 265
9.4.2 Munroe Effect 267
9.4.3 Hopkinnson Effect 269
9.4.4 Underwater Explosion 270
Formation of Energetic Pyrolants

Differentiation of Propellants, Explosives, and Pyrolants

Thermodynamic Energy of Pyrolants

Thermodynamic Properties

Energetics of Pyrolants

Reactants and Products

Generation of Heat and Products

Energetics of Elements

Physicochemical Properties of Elements

Heats of Combustion of Elements

Selection Criteria of Chemicals

Characteristics of Pyrolants

Physicochemical Properties of Pyrolants

Formulations of Pyrolants

Oxidizer Components

Metallic Crystalline Oxidizers

Potassium Nitrate

Potassium Perchlorate

Potassium Chlorate

Barium Nitrate

Barium Chlorate

Strontium Nitrate

Sodium Nitrate

Metallic Oxides

Metallic Sulfides

Fluorine Compounds

Fuel Components

Metallic Fuels

Non-metallic Solid Fuels

Boron

Carbon

Silicon

Sulfur

Polymeric Fuels

Nitropolymers

Polymeric Azides

Hydrocarbon Polymers

Metal Azides

Combustion Propagation of Pyrolants

Physicochemical Structures of Combustion Waves

Thermal Decomposition and Heat Release Process

Homogeneous Pyrolants

Heterogeneous Pyrolants

Pyrolants as Igniters

Combustion of Metal Particles
11.2.1 Oxidation and Combustion Processes 305
 11.2.1.1 Aluminum Particles 305
 11.2.1.2 Magnesium Particles 305
 11.2.1.3 Boron Particles 306
 11.2.1.4 Zirconium Particles 306
11.3 Black Powder 306
 11.3.1 Physicochemical Properties 306
 11.3.2 Reaction Process and Burning Rate 307
11.4 Li-SF₆ Pyrolants 307
 11.4.1 Reactivity of Lithium 307
 11.4.2 Chemical Characteristics of SF₆ 307
11.5 Zr Pyrolants 308
 11.5.1 Reactivity with BaCrO₄ 308
 11.5.2 Reactivity with Fe₂O₃ 309
11.6 Mg-Tf Pyrolants 309
 11.6.1 Thermochemical Properties and Energetics 309
 11.6.2 Reactivity of Mg and Tf 311
 11.6.3 Burning Rate Characteristics 311
 11.6.4 Combustion Wave Structure 314
11.7 B-KNO₃ Pyrolants 315
 11.7.1 Thermochemical Properties and Energetics 315
 11.7.2 Burning Rate Characteristics 316
11.8 Ti-KNO₃ and Zr-KNO₃ Pyrolants 317
 11.8.1 Oxidation Process 317
 11.8.2 Burning Rate Characteristics 318
11.9 Metal-GAP Pyrolants 318
 11.9.1 Flame Temperature and Combustion Products 318
 11.9.2 Thermal Decomposition Process 319
 11.9.3 Burning Rate Characteristics 319
11.10 Ti-C Pyrolants 320
 11.10.1 Thermochemical Properties of Titanium and Carbon 320
 11.10.2 Reactivity of Tf with Ti-C Pyrolants 321
 11.10.3 Burning Rate Characteristics 321
11.11 NaN₃ Pyrolants 322
 11.11.1 Thermochemical Properties of NaN₃ Pyrolants 322
 11.11.2 NaN₃ Pyrolant Formulations 322
 11.11.3 Burning Rate Characteristics 323
 11.11.4 Combustion Residue Analysis 324
11.12 GAP-AN Pyrolants 324
 11.12.1 Thermochemical Characteristics 324
 11.12.2 Burning Rate Characteristics 324
 11.12.3 Combustion Wave Structure and Heat Transfer 325
11.13 Nitramine Pyrolants 325
 11.13.1 Physicochemical Properties 325
 11.13.2 Combustion Wave Structures 325
11.14 B-AP Pyrolants 326
11.14.1 Thermochemical Characteristics 326
11.14.2 Burning Rate Characteristics 327
11.14.3 Burning Rate Analysis 329
11.14.4 Site and Mode of Boron Combustion in the Combustion Wave 331
11.15 Friction Sensitivity of Pyrolants 332
11.15.1 Definition of Friction Energy 332
11.15.2 Effect of Organic Iron and Boron Compounds 332

12 Emission from Combustion Products 337
12.1 Fundamentals of Light Emission 337
12.1.1 Nature of Light Emission 337
12.1.2 Black-Body Radiation 338
12.1.3 Emission and Absorption by Gases 339
12.2 Light Emission from Flames 340
12.2.1 Emission from Gaseous Flames 340
12.2.2 Continuous Emission from Hot Particles 341
12.2.3 Colored Light Emitters 341
12.3 Smoke Emission 342
12.3.1 Physical Smoke and Chemical Smoke 342
12.3.2 White Smoke Emitters 343
12.3.3 Black Smoke Emitters 344
12.4 Smokeless Pyrolants 344
12.4.1 Nitropolymer Pyrolants 344
12.4.2 Ammonium Nitrate Pyrolants 345
12.5 Smoke Characteristics of Pyrolants 346
12.6 Smoke and Flame Characteristics of Rocket Motors 352
12.6.1 Smokeless and Reduced Smoke 352
12.6.2 Suppression of Rocket Plume 354
12.6.2.1 Effect of Chemical Reaction Suppression 355
12.6.2.2 Effect of Nozzle Expansion 358
12.7 HCl Reduction from AP Propellants 360
12.7.1 Background of HCl Reduction 360
12.7.2 Reduction of HCl by the Formation of Metal Chlorides 361
12.8 Reduction of Infrared Emission from Combustion Products 363

13 Transient Combustion of Propellants and Pyrolants 367
13.1 Ignition Transient 367
13.1.1 Convective and Conductive Ignition 367
13.1.2 Radiative Ignition 369
13.2 Ignition for Combustion 370
13.2.1 Description of the Ignition Process 370
13.2.2 Ignition Process 372
13.3 Erosive Burning Phenomena 374
13.3.1 Threshold Velocity 374
13.3.2 Effect of Cross-Flow 376
13.3.3 Heat Transfer through a Boundary Layer 376
13.3.4 Determination of Lenoir−Robilard Parameters 378
13.4 Combustion Instability 380
13.4.1 T* Combustion Instability 380
13.4.2 L* Combustion Instability 383
13.4.3 Acoustic Combustion Instability 386
13.4.3.1 Nature of Oscillatory Combustion 386
13.4.3.2 Combustion Instability Test 387
13.4.3.3 Model for Suppression of Combustion Instability 395
13.5 Combustion under Acceleration 396
13.5.1 Burning Rate Augmentation 396
13.5.2 Effect of Aluminum Particles 397
13.6 Wired Propellant Burning 398
13.6.1 Heat-Transfer Process 398
13.6.2 Burning Rate Augmentation 400

14 Rocket Thrust Modulation 405
14.1 Combustion Phenomena in a Rocket Motor 405
14.1.1 Thrust and Burning Time 405
14.1.2 Combustion Efficiency in a Rocket Motor 407
14.1.3 Stability Criteria for a Rocket Motor 410
14.1.4 Temperature Sensitivity of Pressure in a Rocket Motor 412
14.2 Dual-Thrust Motor 414
14.2.1 Principles of a Dual-Thrust Motor 414
14.2.2 Single-Grain Dual-Thrust Motor 414
14.2.3 Dual-Grain Dual-Thrust Motor 417
14.2.3.1 Mass Generation Rate and Mass Discharge Rate 417
14.2.3.2 Determination of Design Parameters 418
14.3 Thrust Modulator 421
14.4 Erosive Burning in a Rocket Motor 421
14.4.1 Head-End Pressure 421
14.4.2 Determination of Erosive Burning Effect 423
14.5 Nozzleless Rocket Motor 426
14.5.1 Principles of the Nozzleless Rocket Motor 426
14.5.2 Flow Characteristics in a Nozzleless Rocket 427
14.5.3 Combustion Performance Analysis 429
14.6 Gas-Hybrid Rockets 430
14.6.1 Principles of the Gas-Hybrid Rocket 430
14.6.2 Thrust and Combustion Pressure 432
14.6.3 Pyrolants used as Gas Generators 433

15 Ducted Rocket Propulsion 439
15.1 Fundamentals of Ducted Rocket Propulsion 439
15.1.1 Solid Rockets, Liquid Ramjets, and Ducted Rockets 439
15.1.2 Structure and Operational Process 440
15.2 Design Parameters of Ducted Rockets 441
15.2.1 Thrust and Drag 441
15.2.2 Determination of Design Parameters 442
15.2.3 Optimum Flight Envelope 444
15.2.4 Specific Impulse of Flight Mach Number 444
15.3 Performance Analysis of Ducted Rockets 445
15.3.1 Fuel-Flow System 445
15.3.1.1 Non-Choked Fuel-Flow System 446
15.3.1.2 Fixed Fuel-Flow System 446
15.3.1.3 Variable Fuel-Flow System 447
15.4 Principle of the Variable Fuel-Flow Ducted Rocket 447
15.4.1 Optimization of Energy Conversion 447
15.4.2 Control of Fuel-Flow Rate 447
15.5 Energetics of Gas-Generating Pyrolants 450
15.5.1 Required Physicochemical Properties 450
15.5.2 Burning Rate Characteristics of Gas-Generating Pyrolants 451
15.5.2.1 Burning Rate and Pressure Exponent 451
15.5.2.2 Wired Gas-Generating Pyrolants 452
15.5.3 Pyrolants for Variable Fuel-Flow Ducted Rockets 453
15.5.4 GAP Pyrolants 453
15.5.5 Metal Particles as Fuel Components 455
15.5.6 GAP-B Pyrolants 456
15.5.7 AP Composite Pyrolants 458
15.5.8 Effect of Metal Particles on Combustion Stability 458
15.6 Combustion Tests for Ducted Rockets 459
15.6.1 Combustion Test Facility 459
15.6.2 Combustion of Variable-Flow Gas Generator 460
15.6.3 Combustion Efficiency of Multi-Port Air-Intake 464

Appendix A 469
List of Abbreviations of Energetic Materials 469

Appendix B 471
Mass and Heat Transfer in a Combustion Wave 471
B.1 Conservation Equations at a Steady State in a One-Dimensional Flow Field 472
B.1.1 Mass Conservation Equation 472
B.1.2 Momentum Conservation Equation 472
B.1.3 Energy Conservation Equation 473
B.1.4 Conservation Equations of Chemical Species 474
B.2 Generalized Conservation Equations at a Steady-State in a Flow Field 475

Appendix C 477
Shock Wave Propagation in a Two-Dimensional Flow Field 477
C.1 Oblique Shock Wave 477
C.2 Expansion Wave 481
C.3 Diamond Shock Wave 481
Preface to the First Edition

Propellants and explosives are composed of energetic materials that produce high temperature and pressure through combustion phenomena. The combustion phenomena include complex physicochemical changes from solid to liquid and to gas, which accompany the rapid, exothermic reactions. A number of books related to combustion have been published, such as an excellent theoretical book, Combustion Theory, 2nd Edition, by F. A. Williams, Benjamin/Cummings, New York (1985), and an instructive book for the graduate student, Combustion, by I. Glassman, Academic Press, New York (1977). However, no instructive books related to the combustion of solid energetic materials have been published. Therefore, this book is intended as an introductory text on the combustion of energetic materials for the reader engaged in rocketry or in explosives technology.

This book is divided into four parts. The first part (Chapters 1–3) provides brief reviews of the fundamental aspects relevant to the conversion from chemical energy to aerothermal energy. References listed in each chapter should prove useful to the reader for better understanding of the physical bases of the energy conversion process; energy formation, supersonic flow, shock wave, detonation, and deflagration. The second part (Chapter 4) deals with the energetics of chemical compounds used as propellants and explosives, such as heat of formation, heat of explosion, adiabatic flame temperature, and specific impulse.

The third part (Chapters 5–8) deals with the results of measurements on the burning rate behavior of various types of chemical compounds, propellants, and explosives. The combustion wave structures and the heat feedback processes from the gas phase to the condensed phase are also discussed to aid in the understanding of the relevant combustion mechanisms. The experimental and analytical data described in these chapters are mostly derived from results previously presented by the author. Descriptions of the detailed thermal decomposition mechanisms from solid phase to liquid phase or to gas phase are not included in this book. The fourth part (Chapter 9) describes the combustion phenomena encountered during rocket motor operation, covering such topics as the stability criterion of the rocket motor, temperature sensitivity, ignition transients, erosive burning, and combustion oscillations. The fundamental principle of variable-flow ducted rockets is also presented. The combustion characteristics and energetics of the gas-generating propellants used in ducted rockets are discussed.
Since numerous kinds of energetic materials are used as propellants and explosives, it is not possible to present an entire overview of the combustion processes of these materials. In this book, the combustion processes of typical energetic crystalline and polymeric materials and of various types of propellants are presented so as to provide an informative, generalized approach to understanding their combustion mechanisms.

Kamakura, Japan
March 2001

Naminosuke Kubota
Preface to the Second Edition

The combustion phenomena of propellants and explosives are described on the basis of pyrodynamics, which concerns thermochemical changes generating heat and reaction products. The high-temperature combustion products generated by propellants and explosives are converted into propulsive forces, destructive forces, and various types of mechanical forces. Similar to propellants and explosives, pyrolants are also energetic materials composed of oxidizer and fuel components. Pyrolants react to generate high-temperature condensed and/or gaseous products when they burn. Propellants are used for rockets and guns to generate propulsive forces through deflagration phenomena and explosives are used for warheads, bombs, and mines to generate destructive forces through detonation phenomena. On the other hand, pyrolants are used for pyrotechnic systems such as ducted rockets, gas-hybrid rockets, and igniters and flares. This Second Edition includes the thermochemical processes of pyrolants in order to extend their application potential to propellants and explosives.

The burning characteristics of propellants, explosives, and pyrolants are largely dependent on various physicochemical parameters, such as the energetics, the mixture ratio of fuel and oxidizer components, the particle size of crystalline oxidizers, and the decomposition process of fuel components. Though metal particles are high-energy fuel components and important ingredients of pyrolants, their oxidation and combustion processes with oxidizers are complex and difficult to understand.

Similar to the First Edition, the first half of the Second Edition is an introductory text on pyrodynamics describing fundamental aspects of the combustion of energetic materials. The second half highlights applications of energetic materials as propellants, explosives, and pyrolants. In particular, transient combustion, oscillatory burning, ignition transients, and erosive burning phenomena occurring in rocket motors are presented and discussed. Ducted rockets represent a new propulsion system in which combustion performance is significantly increased by the use of pyrolants.

Heat and mass transfer through the boundary layer flow over the burning surface of propellants dominates the burning process for effective rocket motor operation. Shock wave formation at the inlet flow of ducted rockets is an important process for achieving high propulsion performance. Thus, a brief overview of the fundamentals of aerodynamics and heat transfer is provided in Appendices B–D as a prerequisite for the study of pyrodynamics.

Tokyo, Japan

Naminosuke Kubota

September 2006
Preface to the Second Edition
Foundations of Pyrodynamics

Pyrodynamics describes the process of energy conversion from chemical energy to mechanical energy through combustion phenomena, including thermodynamic and fluid dynamic changes. Propellants and explosives are energetic condensed materials composed of oxidizer-fuel components that produce high-temperature molecules. Propellants are used to generate high-temperature and low-molecular combustion products that are converted into propulsive forces. Explosives are used to generate high-pressure combustion products accompanied by a shock wave that yield destructive forces. This chapter presents the fundamentals of thermodynamics and fluid dynamics needed to understand the pyrodynamics of propellants and explosives.

1.1 Heat and Pressure

1.1.1 First Law of Thermodynamics

The first law of thermodynamics relates the energy conversion produced by chemical reaction of an energetic material to the work acting on a propulsive or explosive system. The heat produced by chemical reaction (q) is converted into the internal energy of the reaction product (e) and the work done to the system (w) according to

$$dq = de + dw$$

(1.1)

The work is done by the expansion of the reaction product, as given by

$$dw = pdv \quad \text{or} \quad dw = pd\left(\frac{1}{\rho}\right)$$

(1.2)

where p is the pressure, v is the specific volume (volume per unit mass) of the reaction product, and ρ is the density defined in $\nu = 1/\rho$. Enthalpy h is defined by

$$dh = de + d\left(pv\right)$$

(1.3)
Substituting Eqs. (1.1) and (1.2) into Eq. (1.3), one gets

\[dh = dq + vdp \]

(1.4)

The equation of state for one mole of a perfect gas is represented by

\[pv = R_gT \quad \text{or} \quad p = \rho R_gT \]

where \(T \) is the absolute temperature and \(R_g \) is the gas constant. The gas constant is given by

\[R_g = \frac{R}{M_g} \]

(1.6)

where \(M_g \) is the molecular mass, and \(R \) is the universal gas constant, \(R = 8.314472 \text{ J mol}^{-1} \text{ K}^{-1} \). In the case of \(n \) moles of a perfect gas, the equation of state is represented by

\[pv = nR_gT \quad \text{or} \quad p = n\rho R_gT \]

(1.5a)

1.1.2 Specific Heat

Specific heat is defined according to

\[c_v = \frac{de}{dT}_v \quad c_p = \frac{dh}{dT}_p \]

(1.7)

where \(c_v \) is the specific heat at constant volume and \(c_p \) is the specific heat at constant pressure. Both specific heats represent conversion parameters between energy and temperature. Using Eqs. (1.3) and (1.5), one obtains the relationship

\[c_p - c_v = R_g \]

(1.8)

The specific heat ratio \(\gamma \) is defined by

\[\gamma = \frac{c_p}{c_v} \]

(1.9)

Using Eq. (1.9), one obtains the relationships

\[c_v = \frac{R_g}{\gamma - 1} \quad c_p = \gamma R_g/(\gamma - 1) \]

(1.10)

Specific heat is an important parameter for energy conversion from heat energy to mechanical energy through temperature, as defined in Eqs. (1.7) and (1.4). Hence, the specific heat of gases is discussed to understand the fundamental physics of the energy of molecules based on kinetic theory.\[1,2\] The energy of a single molecule, \(\varepsilon_m \), is given by the sum of the internal energies, which comprise translational energy,
\(\varepsilon_t \), rotational energy, \(\varepsilon_r \), vibrational energy, \(\varepsilon_v \), electronic energy, \(\varepsilon_e \), and their interaction energy, \(\varepsilon_i \):

\[
\varepsilon_m = \varepsilon_t + \varepsilon_r + \varepsilon_v + \varepsilon_e + \varepsilon_i
\]

A molecule containing \(n \) atoms has \(3n \) degrees of freedom of motion in space:

<table>
<thead>
<tr>
<th>Molecular Structure</th>
<th>Degrees of Freedom</th>
<th>Translational</th>
<th>Rotational</th>
<th>Vibrational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monatomic</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diatomic</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Polyatomic Linear</td>
<td>(3n)</td>
<td>3</td>
<td>2</td>
<td>(3n-5)</td>
</tr>
<tr>
<td>Polyatomic Nonlinear</td>
<td>(3n)</td>
<td>3</td>
<td>3</td>
<td>(3n-6)</td>
</tr>
</tbody>
</table>

A statistical theorem on the equipartition of energy shows that an energy amounting to \(kT/2 \) is given to each degree of freedom of translational and rotational modes, and that an energy of \(kT \) is given to each degree of freedom of vibrational modes. The Boltzmann constant \(k \) is \(1.38065 \times 10^{-23} \) J K\(^{-1} \). The universal gas constant \(R \) defined in Eq. (1.6) is given by

\[
R = \frac{k}{\zeta}, \quad \zeta = 6.02214 \times 10^{23} \text{ mol}^{-1}.
\]

When the temperature of a molecule is increased, rotational and vibrational modes are excited and the internal energy is increased. The excitation of each degree of freedom as a function of temperature can be calculated by way of statistical mechanics. Though the translational and rotational modes of a molecule are fully excited at low temperatures, the vibrational modes only become excited above room temperature. The excitation of electrons and interaction modes usually only occurs at well above combustion temperatures. Nevertheless, dissociation and ionization of molecules can occur when the combustion temperature is very high.

When the translational, rotational, and vibrational modes of monatomic, diatomic, and polyatomic molecules are fully excited, the energies of the molecules are given by

\[
\varepsilon_m = \varepsilon_t + \varepsilon_r + \varepsilon_v
\]

\[
\varepsilon_m = 3 \times kT/2 = 3 \frac{kT}{2} \text{ for monatomic molecules}
\]

\[
\varepsilon_m = 3 \times kT/2 + 2 \times kT/2 + 1 \times kT = 7 \frac{kT}{2} \text{ for diatomic molecules}
\]

\[
\varepsilon_m = 3 \times kT/2 + 2 \times kT/2 + (3n - 5) \times kT = (6n - 5) \frac{kT}{2} \text{ for linear molecules}
\]

\[
\varepsilon_m = 3 \times kT/2 + 3 \times kT/2 + (3n - 6) \times kT = 3(n - 1) kT \text{ for nonlinear molecules}
\]

Since the specific heat at constant volume is given by the temperature derivative of the internal energy as defined in Eq. (1.7), the specific heat of a molecule, \(c_{v,m} \), is represented by

\[
c_{v,m} = \frac{d\varepsilon_m}{dT} = \frac{d\varepsilon_t}{dT} + \frac{d\varepsilon_r}{dT} + \frac{d\varepsilon_v}{dT} + \frac{d\varepsilon_e}{dT} + \frac{d\varepsilon_i}{dT} \quad \text{J molecule}^{-1} \text{ K}^{-1}
\]
Thus, one obtains the specific heats of gases composed of monatomic, diatomic, and polyatomic molecules as follows:

\[c_v = \frac{3R}{2} = 12.47 \text{ J mol}^{-1} \text{ K}^{-1} \text{ for monatomic molecules} \]

\[c_v = \frac{7R}{2} = 29.10 \text{ J mol}^{-1} \text{ K}^{-1} \text{ for diatomic molecules} \]

\[c_v = \frac{(6n - 5)R}{2} \text{ J mol}^{-1} \text{ K}^{-1} \text{ for linear molecules} \]

\[c_v = 3(n - 1)R \text{ J mol}^{-1} \text{ K}^{-1} \text{ for nonlinear molecules} \]

The specific heat ratio defined by Eq. (1.9) is 5/3 for monatomic molecules; 9/7 for diatomic molecules. Since the excitations of rotational and vibrational modes only occur at certain temperatures, the specific heats determined by kinetic theory are different from those determined experimentally. Nevertheless, the theoretical results are valuable for understanding the behavior of molecules and the process of energy conversion in the thermochemistry of combustion. Fig. 1.1 shows the specific heats of real gases encountered in combustion as a function of temperature. The specific heats of monatomic gases remain constant with increasing temperature, as determined by kinetic theory. However, the specific heats of diatomic and polyatomic gases are increased with increasing temperature as the rotational and vibrational modes are excited.

1.1.3

Entropy Change

Entropy \(s \) is defined according to

\[ds = dq/T \quad (1.11) \]
Substituting Eqs. (1.4), (1.5), and (1.7) into Eq. (1.11), one gets

\[ds = c_p \frac{dT}{T} - \frac{R_g dp}{p} \]

(1.12)

In the case of isentropic change, \(ds = 0 \), Eq. (1.12) is integrated as

\[\frac{p}{p_1} = \left(\frac{T}{T_1} \right)^{\frac{\gamma}{\gamma - 1}} \]

(1.13)

where the subscript 1 indicates the initial state 1. Using Eqs. (1.10), (1.5), and (1.13), one gets

\[\frac{p}{p_1} = \left(\frac{T}{T_1} \right)^{\frac{\gamma}{\gamma - 1}} \quad \text{and} \quad p \left(\frac{1}{\rho} \right)^\gamma = p_1 \left(\frac{1}{\rho_1} \right)^\gamma \]

(1.14)

When a system involves dissipative effects such as friction caused by molecular collisions or turbulence caused by a non-uniform molecular distribution, even under adiabatic conditions, \(ds \) becomes a positive value, and then Eqs. (1.13) and (1.14) are no longer valid. However, when these physical effects are very small and heat loss from the system or heat gain by the system are also small, the system is considered to undergo an isentropic change.

1.2 Thermodynamics in a Flow Field

1.2.1 One-Dimensional Steady-State Flow

1.2.1.1 Sonic Velocity and Mach Number
The sonic velocity propagating in a perfect gas, \(a \), is given by

\[a = \left(\frac{\partial p}{\partial \rho} \right)_s^{1/2} \]

(1.15)

Using the equation of state, Eq. (1.8), and the expression for adiabatic change, Eq. (1.14), one gets

\[a = \left(\gamma R_g T \right)^{1/2} \]

(1.16)

Mach number \(M \) is defined according to

\[M = \frac{u}{a} \]

(1.17)

where \(u \) is the local flow velocity in a flow field. Mach number is an important parameter in characterizing a flow field.
1.2.1.2 Conservation Equations in a Flow Field

Let us consider a simplified flow, that is, a one-dimensional steady-state flow without viscous stress or a gravitational force. The conservation equations of continuity, momentum, and energy are represented by:

rate of mass in − rate of mass out = 0

\[\frac{d}{dt}(\rho u) = 0 \]
(1.18)

rate of momentum gain by convection + pressure difference acting on flow = 0

\[\rho u \frac{du}{dt} + dp = 0 \]
(1.19)

rate of energy input by conduction + rate of energy input by convection = 0

\[\frac{d}{dt}(h + \frac{u^2}{2}) = 0 \]
(1.20)

Combining Eqs. (1.20) and Eq. (1.4), one obtains the relationship for the enthalpy change due to a change of flow velocity as

\[dh = dq - u \frac{du}{dt} \]
(1.21)

1.2.1.3 Stagnation Point

If one can assume that the process in the flow field is adiabatic and that dissipative effects are negligibly small, the flow in the system is isentropic \((\frac{ds}{dt} = 0)\), and then Eq. (1.21) becomes

\[dh = -u \frac{du}{dt} \]
(1.22)

Integration of Eq. (1.22) gives

\[h_0 = h + \frac{u^2}{2} \]
(1.23)

where \(h_0 \) is the stagnation enthalpy at \(u = 0 \) of a stagnation flow point. Substituting Eq. (1.7) into Eq. (1.23), one gets

\[c_p T_0 = c_p T + \frac{u^2}{2} \]
(1.24)

where \(T_0 \) is the stagnation temperature at \(u = 0 \).

The changes in temperature, pressure, and density in a flow field are expressed as a function of Mach number as follows:

\[\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2} M^2 \]
(1.25)

\[\frac{p_0}{p} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{\frac{\gamma}{\gamma - 1}} \]
(1.26)

\[\frac{\rho_0}{\rho} = \left(1 + \frac{\gamma - 1}{2} M^2\right)^{\frac{1}{\gamma - 1}} \]
(1.27)
1.2.2

Formation of Shock Waves

One assumes that a discontinuous flow occurs between regions 1 and 2, as shown in Fig. 1.2. The flow is also assumed to be one-dimensional and in a steady state, and not subject to a viscous force, an external force, or a chemical reaction.

The mass continuity equation is given by

\[\rho_1 u_1 = \rho_2 u_2 = m \]

(1.28)

The momentum equation is represented by

\[p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2 \]

(1.29)

The energy equation is represented by the use of Eq. (1.20) as

\[c_p T_1 + \frac{u_1^2}{2} = c_p T_2 + \frac{u_2^2}{2} \]

(1.30)

where \(m \) is the mass flux in a duct of constant area, and the subscripts 1 and 2 indicate the upstream and the downstream of the discontinuity, respectively. Substituting Eq. (1.29) into Eq. (1.30), one gets

\[p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2 \]

(1.31)

Using Eq. (1.25), the temperature ratio in regions 2 and 1 is represented by the Mach number in 2 and 1 according to

\[\frac{T_2}{T_1} = \frac{1 + \frac{\gamma - 1}{2} M_1^2}{1 + \frac{\gamma - 1}{2} M_2^2} \]

(1.32)

Using Eqs. (1.5), (1.17), and (1.28), one gets

\[\frac{T_2}{T_1} = \left(\frac{M_2}{M_1} \right)^2 \left(\frac{p_2}{p_1} \right)^{\frac{\gamma - 1}{2}} \]

(1.33)

Combining Eqs. (1.31) and (1.32), the pressure ratio is obtained as a function of \(M_1 \) and \(M_2 \):

\[\frac{p_2}{p_1} = \frac{M_1}{M_2} \sqrt{1 + \frac{\gamma - 1}{2} M_1^2} \]

(1.34)

\[\begin{array}{c}
\text{Upstream} \\
\text{Downstream}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\rho_1 \\
T_1 \\
M_1 \\
u_1
\end{array} \\
\begin{array}{c}
p_1 \\
T_2 \\
M_2 \\
u_2
\end{array}
\end{array} \]

\[\begin{array}{c}
1 \\
2
\end{array} \]

Fig. 1.2 Shock wave propagation.
Combining Eqs. (1.33) and (1.34), the Mach number relationship in the upstream 1 and downstream 2 is obtained as

\[
\frac{M_1\sqrt{1 + \frac{\gamma - 1}{2} M_1^2}}{1 + \gamma M_1^2} = \frac{M_2\sqrt{1 + \frac{\gamma - 1}{2} M_2^2}}{1 + \gamma M_2^2}
\]

(1.35)

One obtains two solutions from Eq. (1.35):

\[M_2 = M_1\] (1.36)

\[M_2 = \left[\frac{2 + M_1^2}{\frac{\gamma - 1}{2} M_1^2 - 1}\right]^{\frac{1}{2}}\] (1.37)

The solution expressed by Eq. (1.36) indicates that there is no discontinuous flow between the upstream 1 and the downstream 2. However, the solution given by Eq. (1.37) indicates the existence of a discontinuity of pressure, density, and temperature between 1 and 2. This discontinuity is called a “normal shock wave”, which is set-up in a flow field perpendicular to the flow direction. Discussions on the structures of normal shock waves and supersonic flow fields can be found in the relevant monographs.[4,5]

Substituting Eq. (1.37) into Eq. (1.34), one obtains the pressure ratio as

\[
\frac{p_2}{p_1} = \frac{2\gamma}{\gamma + 1} M_2^2 - \frac{\gamma - 1}{\gamma + 1}
\]

(1.38)

Substituting Eq. (1.37) into Eq. (1.33), one also obtains the temperature ratio as

\[
\frac{T_2}{T_1} = \left[\frac{2(\gamma - 1)}{\gamma + 1} M_2^2 \left(1 + \frac{\gamma - 1}{2} M_1^2\right) \left(\frac{2\gamma}{\gamma - 1} M_1^2 - 1\right)\right]^{1/2}
\]

(1.39)

The density ratio is obtained by the use of Eqs. (1.38), (1.39), and (1.8) as

\[
\frac{\rho_2}{\rho_1} = \frac{p_2}{p_1} \frac{T_2}{T_1}
\]

(1.40)

Using Eq. (1.24) for the upstream and the downstream and Eq. (1.38), one obtains the ratio of stagnation pressure as

\[
\frac{p_{02}}{p_{01}} = \left(\frac{\gamma + 1}{2} M_2^2\right)^{\gamma/\gamma - 1} \left(1 + \frac{\gamma - 1}{2} M_1^2\right)^{\gamma/\gamma - 1} \left(\frac{2\gamma}{\gamma + 1} M_1^2 - \frac{\gamma - 1}{\gamma + 1}\right)^{1/\gamma - 1}
\]

(1.41)

The ratios of temperature, pressure, and density in the downstream and upstream are expressed by the following relationships:

\[
\frac{T_2}{T_1} = \frac{p_2}{p_1} \left(1 + \frac{1}{\xi} \frac{p_2}{p_1}\right) \left(1 + \frac{p_2}{p_1}\right)
\]

(1.42)

\[
\frac{p_2}{p_1} = \left(\xi \frac{p_2}{p_1} - 1\right) \left(\xi \frac{p_2}{p_1}\right)
\]

(1.43)