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Preface

Clean water is an essential nutrient for humans, animals and plants. Because of its
limited resources, especially in countries with low rainfall, little surface water,
deep ground water levels and relatively high temperatures, careful use and fre-
quent reuse after appropriate treatment are requirements for healthy life. This
awareness is relatively new, because it was not until the late 19th century that the
population of larger industrialized cities learned that wastewater must be treated to
prevent disease. The reuse of treated water is still a topic of controversial discus-
sions. However, the authors of this book are convinced both that we must learn to
develop and continue to promote water recycling systems and also that biological
wastewater treatment processes play a highly important role.

The modern concept of industrial wastewater treatment is moving away from
the classic “end-of-pipe” technology towards “decentralized effluent treatment pro-
cesses”, “process integrated water management” and ultimately in a number of
cases being as close as possible to “fresh water-free processes”. The central concept
is to save water. In the classic concept, the groups producing intermediate or fin-
ished products are relatively isolated from the group which treats the wastewater,
frequently treating several different effluents mixed together. This situation char-
acterizes the first period of industrial wastewater treatment. After sampling, the
water quality is determined and compared with regulations and the treated water
is discharged into surface water. In all but a few exceptional cases, municipal
wastewater treatment is performed in this same manner. Frequently, it is more
favorable and economical to treat some industrial effluents by using specialized
processes (“decentralized effluent treatment”), giving a water quality which makes
it possible to reuse one or more water streams and to save fresh water. The next
phase of development is to combine production processes and wastewater treat-
ment, often called “process-integrated water management” (sustainable water use,
industrial water use, cleaner production, etc.).

Typically, the improvement comes about through a complete change of the pro-
duction process paradigm to reduce water and energy consumption, as well as
waste production. Here, productional and environmental engineers need to coop-
erate and build one team. In this book, the fundamentals are discussed which 
are needed to better understand the processes taking place in “end-of-pipe” and
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XIV Preface

“decentralized effluent treatment” plants. In the last chapter, examples of “process-
integrated water management” and “decentralized treatment” are presented.

Two different wastewater treatment concepts can be followed: either the separa-
tion of impurities from water, or the partial or complete mineralization of impur-
ities. Separation processes are based on fluid mechanics (sedimentation, centrifu-
gation, filtration and flotation) or on synthetic membranes (micro-, ultra- and
nanofiltration, as well as reverse osmosis). Additionally, physical–chemical pro-
cesses can be used – like adsorption and coagulation – to separate dissolved or
emulsified compounds from water. Impurities can be mineralized by biological
and chemical processes (advanced oxidation with ozone, H2O2, UV, etc.). We want
to concentrate our attention on biological processes. Other ones, such as sedimen-
tation or membranes, will be discussed in connection with the activated sludge
process and membrane bioreactors.

The main advantages of biological processes in comparison with chemical oxida-
tion are: no need to separate colloids and dispersed solid particles before treat-
ment, lower energy consumption, the use of open reactors, resulting in lower
costs, and no need for waste gas treatment.

The advantages of chemical oxidation over biological processes are: no sludge
production, mineralization of non-biodegradable compounds and smaller reactor
volumes. If it is necessary to remove very large amounts of organics, both process-
es should be coupled if possible, first the biological step and then the chemical
step. We will concentrate our discussion on the fundamentals of biodegradation.

Because of the early development of wastewater technology in industrialized
countries, we frequently find “end-of-pipe” treatment plants in industry which si-
multaneously treat municipal wastewater and vice versa. “Decentralized effluent
treatment” plants are initiated only if a large plant would be overloaded or the pro-
cess would be negatively influenced by hazardous compounds. The main aim is
then to optimize the treatment process by using process controls and thereby to re-
duce the cost of aeration and pumping.

In countries with rapidly growing industries and no municipal treatment plants,
the construction and operation of a “decentralized effluent treatment” plant fre-
quently has to be tested for each factory and realized as necessary. An appropriate
treatment method should be applied rigorously to enable water reuse in regions
with water scarceness or high water prices, for irrigation in agriculture, or as cool-
ing water for power stations or industry. In addition, it is often very important to
protect natural water systems used for drinking water supplies, recreation and con-
servation. Compared with “end-of-pipe” treatment, “decentralized treatment” is
often the more economical process.

A better understanding is needed of the biological, physical, ecological, social
and economical interactions surrounding water and wastewater. We cannot con-
sider all these aspects, but this book provides important information about the fun-
damentals and engineering aspects of biological wastewater treatment. The meth-
ods used to describe and solve the problems presented are those used by biochem-
ical engineers developing models based on mass balances which are valid for spe-
cific systems. The authors made every effort to present mathematical derivations



so comprehensively that at least graduate students can follow. The target group al-
so includes all engineers, biologists and chemists working in the field of wastewa-
ter treatment who are interested in learning more about its fundamentals.

After a survey of the historical development of microbiology and wastewater
treatment, we give a brief introduction to wastewater characteristics and relevant
legislation as well as microbial metabolism and stoichiometry, which is of funda-
mental importance for mass balances with biological reactions. Gas/liquid oxygen
transfer is discussed in detail because of its high importance for all aerobic pro-
cesses in wastewater treatment. Anaerobic substrate degradation is discussed af-
terwards as a very interesting alternative for the treatment of high-load effluents.
Persistent, industrially produced compounds are not easily treated in biological
processes. Therefore, the results of several recent studies are summarized and dis-
cussed here. The great significance of nitrogen and phosphorus removal has led us
to report about their stoichiometric and kinetic backgrounds individually. In the
past two decades, discussions about modelling of the activated sludge process have
increased. To gain a better understanding of activated sludge model number 1
(ASM 1) and its description of nitrogen removal, we give detailed explanations. We
have dealt with the use of membranes in place of secondary clarifiers to emphasize
that new possibilities exist for reusing and recycling water in the future. Therefore,
they may be suitable in tandem with the topic of the previous chapters which dis-
cuss production-integrated water management and decentralized effluent treat-
ment.

Mrs. Christine Heimerl-Rötsch transcribed our texts several times, as they were
updated numerous times. She deserves our high recognition for her thoroughness
and punctuality. Dr.-Ing. Gregory Morgan corrected our English. Although we
made every effort to compose the text faultlessly, there was still need for improve-
ment. We express our thanks to him.

It would not have been possible to write this book without the numerous discus-
sions with students, graduate students, scientific and chemotechnical co-workers
as well as assistants. Thank you all very much for your cooperation!

We realize that not all parts of this book are easy to read, because it was neces-
sary to use a large number of different variables and complicated indices. It was
our conviction, however, that this was necessary to avoid misunderstanding and
confusion.

Over the past 25 years, many new processes have been tested successfully, a lot
of them have gone into operation and a great number of papers have been pub-
lished in this field. We hope that this book will help provide a better understanding
and orientation in the important and interesting field of “Biological Wastewater
Treatment”.

The Authors

XVPreface
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List of Symbols and Abbreviations

Symbol Explanation Unit Basic unit
(example)

A Surface m2 L2

A Membrane area m2 L2

A Membrane constant m h–1 bar–1 L2 M–1

A* Membrane constant g m–2 h–1 bar–1 L–1

a Volume specific surface m2 m–3 L2 L–3

a Activity – –
a Coefficient – –
a1, a2, a3 Constants – –
B Membrane constant m h–1 L T–1

Bi Biot number –
Bv Loading per volume g m–3 d–1 M L3 T–1

C Dimensionless concentration – –
C Integration constant
C* Dimensionless dissolved – –

concentration in equilibrium 
with gas  concentration

C′ Dimensionless dissolved oxygen – –
concentration

c Concentration of special gas g m–3 M L–3

components in air
c′ Dissolved concentration g m–3 M L–3

c* Dissolved concentration in equi- g m–3 M L–3

librium with gas concentration
D Dilution rate h–1 T–1

Dc Critical dilution rate h–1 T–1

D Diameter m L
D Diffusion coefficient m2 h–1 L2 T–1

DC Desorption capacity g m–3 h–1 M L–3 T–1

Dx Dispersion coefficient in x direction m2 h–1 L3 T–1



Symbol Explanation Unit Basic unit
(example)

DaII Damköhler number II (= μmax tv) –
d Diameter m L
dh Hydraulic diameter m –
E Efficiency kg (kWh)–1 O2 L–2 T2

E Density of residence time –
E* Dimensionless efficiency – –
eA Energy of activation kJ mol–1 M L2 T–2 N–1

F Residence time distribution –
FO2 Power of resistence of oxygen – 

molecules
fi Portion of inert biomass related –

to the total biomass
fp Portion of particulate products – –

related to biomass
ÄG0 Difference of free reaction 

enthalpy kJ mol–1 M L2 T–2 N–1

g Earth acceleration m s–2 L T –2

h Distance of the stirrer from the m
bottom

ÄH0 Difference of enthalpy kJ mol–1 M L2 T–2 N–1

H′ Henry coefficient g L–1 bar–1 M L–1 T–2

H Henry coefficient –
Hg Henry coefficient atm (mol/l)–1 N L–2 M–1 L–3

H “Height” of deep tanks
H Height m L
I Strength of a electric current A S
i Strength of electric carrent A
iXB Nitrogen in bacteria related to – –

mass of bacteria and slowly biod. 
susbstrate

iXP Nitrogen in bacteria related to – –
particular inert organic matter

J Specific mass transfer rate g m–2 s–1 M L–2 T–1

(volume flux) mol m–2 s–1 N L–2 T–1

JD Diffusion flux g m–2 s–1 M L–2 T–1

JD+C Flux for diffusion and convection g m–2 s–1 M L–2 T–1

Jo Standard volume flux L m–2 bar–1 s–1 M T–3

K Total mass transfer coefficient h–1 T–1

K Bolzmann constant 1.38 ×10–23 J K–1 M L2 T–2 è
K′ Saturation coefficient for oxygen mg L–1 M L–3

KD Dissoziation constant – –
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Symbol Explanation Unit Basic unit
(example)

Ke Equilibrium constant – –
Ke′ Equilibrium constant L mg–1 L3 M–1

KiH, Ki Coefficients for excess substrate mg L–1 M L–3

inhibition
KiN Coefficient of non-competitive mg L–1 M L–3

inhibition
KL Overall mass transfer coefficient m h–1 L T–1

KLa Specific overall mass transfer
coefficient h–1 T–1

Km Michaelis–Menten coefficient mol L–1 N L–3

Km Equilibrium constant – –
KOH Saturation coefficient for mg L–1 M L–3

hydrolysis
KP Henry coefficient bar L g–1 M T L–1

KS Saturation coefficient for substrate mg L–1 M L–3

KSH Saturation coefficient – –
k Coefficient for dry air (= 0.2857) – –
k Coefficient of reaction rate h–1 T–1

ko Theoretical maximal value of – –
reaction rate for T → ∞

kL Mass transfer coefficient for m h–1 L T–1

liquid boundary
kLa Specific mass transfer coefficient h–1 T–1

for liquid boundary
kG Mass transfer coefficient for m h–1 L T–1

gaseous boundary
kGa Specific mass transfer coefficient h–1 T–1

for gaseous boundary
kd Decay coefficient h–1 T–1

ks Coefficient of bacteria dying h–1 T–1

ke Coefficient of endogeneous h–1 T–1

respiration
L Length m L
L Biofilm thickness m L
LD50 Mass of a compound per mass of mg kg–1 –

living test organism, fatal to one-
half of population if delivered 
rapidly

M Molmass g mol–1 M N–1

m Mass g M
N Amount of moles mol N

XIXList of Symbols and Abbreviations



Symbol Explanation Unit Basic unit
(example)

n Speed of a stirrer s–1 T–1

ni Number of droplets – –
nR Recycle ratio – –
nE Thickening degree – –
nPHB Fraction of PHB inside of

bacteria
n Number of stages of a cascade – –
OC Specific oxygenation capacity mol L–1 h–1 N L–3 T–1

OTR Oxygen transfer rate g O2 L–1 h–1 M L–3 T–1

OTE Oxygen transfer efficiency – –
P Power demand kW M L2 T–3

p Pressure bar M L–1 T–2

Q Flow rate m3 h–1 L–3 T–1

R Radius m L
R Gas constant [= 8.314 J (mol K)–1] J (mol K)–1 M L2 T–2 N–1 è–1

R Resistance m–1 L–1

R Retention coefficient %
Rt True retention coeffcient %
r Reaction rate mg L–1 h–1 M L–3 T–1

N L–3 T–1

r′ Respiration rate g L–1 h–1 M L–3 T–1

rx Growth rate of bacteria g L–1d–1 MLSS M L–3 T–1

S Concentration of substrates mg L–11)
, mol L–1 M L–3, NL–3

SOTR Standardized oxygen transfer rate mg L–1 h–1 M L–3 T–1

S* Dimensionless dissolved oxygen
concentration (= S′/K′) – –

S Selectivity – –
T Temperature K, °C è
t Time h T
tR Mean retention time h T
tRC Critical mean retention time h T
tRX Mean retention time of bacteria h T

(= sludge age)
tRXC Critical sludge age h T
U Voltage V M L2 T A–1

V Volume m3 L3

v Velocity m s–1 L T–1

w Flow rate m s–1 L T–1

XX List of Symbols and Abbreviations

1) BOD5, COD, DOC etc.



XXIList of Symbols and Abbreviations

Symbol Explanation Unit Basic unit
(example)

w– Gaging void velocity
w– Mean velocity m s–1 L T–1

X Concentration of bacteria g L–1 MLSS M L–3

X* Dimensionless bacteria – –
concentration (= X/K′)

x Local coordinate m L
x Mole fraction – –
y Mole fraction – –
yX-0/X-C Mole fraction oxygen/carbon in – –

bacteria
Y Yield coefficient – –
Yo

X/S True yield coefficient growth of g MLSS (g COD)–1

bacteria/used substrate –
Yo

XC/SC True yield coefficient growth of g C (g DOC)–1

bacteria carbon/used substrate
YX/S Apparent yield coefficient growth g MLSS (g COD)–1

of bacteria/used substrate –
Z Dimensionless local coordinate – –
z Local coordinate m L

Bi Biot number (= w d D–1)
Da Damköhler number ({μmax tR)
DaII Damköhler number II ({μmax R2 D–1)
Fr Froude number ({n2 d g–1)
Mo Monod number ({So KS

–1)
Mo′ Modified Monod number ({c* k′–1)
Ne Newton number ({P d–5 n–3 g–1)
Pe Peclet number ({w d D–1)
Pe′ Modified Peclet number ({w– L Dx

–1)
Re Reynolds number ({w– d í–1)
Sc Schmidt number ({í D–1)
Sh Sherwood number ({kL d D–1)
Sm Semenov number ({kLa μ–1

max)

Y Oxygen transfer number �{ � �
1/3

�í

g2

KLaV

d3



XXII List of Symbols and Abbreviations

Symbol Explanation

Greek Symbols

α Conversion, removal ratio – –
αw Relation of specific mass transfer – –

coefficient wastewater/clean water
â Separation coefficient of a settler – –
â Osmotic coefficient – –
âw Relation dissolved oxygen con- – –

centration at 20 °C wastewater/
clean water

ã Activity coefficient – –
ãw αwâw relation maximal oxygen – –

mass transfer rate at 20 °C 
wastewater/clean water

ä Boundary layer thickness m L
å Porosity – –
ç Rate of hydrolosis by anoxic – – 

bacteria related to rate of 
hydrolosis by aerobic bacteria

ç Efficiency coefficient – –
ç Dynamic viscosity g m–1 s–1 M L–1 T–1

è Coefficient, describing an – –
influence of temperature

μ Specific growth rate d–1 T–1

μ Tortousity – –
μO2 Velocity of diffusing oxygen m s–1 L T–1

molecules
í Kinematic viscosity m2 s–1 L2 T–1

î Resistance coefficient – –
π Number in analysis of dimensions – –
π Osmotic pressure bar M L–1 T–2

ñ Density g m–3 M L–3

Σ Sum – –
ó Surface tension N m–1 M T–2

ó Dimensionless variance – –
ó* Dimensionless surface tension – –
ót Variance according time s T
ô Dimensionless time – –
ϕ Phase angle of electric current – –



XXIIIList of Symbols and Abbreviations

Symbol Explanation

Indices

arith Arithmetic mean value
A Active autotrophs
A Air
Alk Alkaline
a Adsorption
a Behind reactor
a Air
ae Aerobic
an Anaerobic
ap Apparent
ax Anoxic
b Back
b Blower
c Cake
cat Catalyst
cf Cross flow
C Convective
CO2-O CO2-oxygen
CO2-C CO2-carbon
CO2-C/S-C CO2-C/substrate-carbon
CO2-O/S-O CO2-O/substrate-oxygen
CO2-N CO2 needed for neutralisation of H+ formed

by NH4-N oxidation
Σ Summary
d Daily
d Decay
d Diameter
d Dissolved
D Denitrifyers
D Diffusion
DO Dodecan
D+C Diffusion and convection
e Effluent
e Endogenous
eff Effective
ex Excess
E Enzyme
ES Enzyme–substrate complex
ET5 Emulgin ET5



XXIV List of Symbols and Abbreviations

Symbol Explanation

f Fouling
f Foreign
f Free of oxygen
g Gear
G Gas
G Generation
H Active heterotrophs
H Hydrolysis
i Impuls
i Inert
i Inhibitor
i,j Component
L Liquid
max Maximal
m Membrane
m Motor
M After mixure
M Mixing point
ML Mixed liquid
MLSS Mixed liquid suspended solids
N Nitrogen
N secondary materials
NB Nitrobacter
ND dissolved organic nitrogen
NH Dissolved NH3 and NH4

NH4-O2 Oxygen used for NH4 oxydation
NH4-N Nitrogen in ammonia
NS Nitrosomonas
NO Nitrate and nitrite nitrogen
NO2 Nitrite
NO3 Nitrate
NS Nitrosomonas
o Influent Standardized to c′ = 0 mg L–1

org.P Dissolved organic phosphorous
oTS Organic dry matter
O2 Oxygen
p Permeate
p Particulate product
po Pore
pw Process water
P Phosphorus



XXVList of Symbols and Abbreviations

Symbol Explanation

PM Primary materials
PO4 Orthophosphate
P-P Dissolved inorganic polyphosphate
rt Rapid test
R Reactor
R Recycle
s Substrate
spec Specific
S Sewage
SC Substrate-carbon
SO Substrate-oxygen
SS Readily biodegradable substrate
St Standard test
t Total
th Theoretical
T Temperature
v Related to volume
VOC Volatile organic carbon
w Water
XA Biomass of autotrophs
XH Biomass of heterotrophs
X Local coordinate
XC Bacteria mass-carbon
XO Bacteria mass-oxygen
XC/XO Carbon in bacteria mass/oxygen in bacteria mass
XC/SC Carbon in bacteria mass/carbon in substrate
X/O2 Bacteria mass/oxygen
X/S Bacteria mass/substrate
z Local coordinate
0 Influent

Numbers as Indices

20 Temperature of 20 °C
* Saturation
– Mean value
20 Applied to 20 °C
20,0 Applied to 20 °C and

c′ = 0 mg O2 L–1 dissolved oxygen



XXVI List of Symbols and Abbreviations

Symbol Explanation

Abbreviations

AAO Anaerobic Anoxic Oxic
ADP Adenosin diphosphate
AO Anaerobic Oxic
ASM Activated sludge model
ASCE American Society of Civil Engineers
ATP Adenosine triphosphate
ATV Abwasser Technische Vereinigung
BOD Biological oxygen demand
BWB Berliner Wasserbetreiber
CA Cellulose acetate
CFD Computational fluid dynamics
COD Chemical oxygen demand
CSTR Completely stirred tank reactor
DNA Deoxyribonucleic acid
DMSO Dimethylsulfonoxide
DOC Dissolved organic carbon
DWA Deutsche Vereinigung für Wasserwirtschaft,

Abwasser und Abfall e.V.
DVWK Deutscher Verband für Wasserwirtschaft und Kulturbau e.V.
EDS Endocrine disrupting substances
EPA Environmental Protection Agency
EPS Extracellular polymer substances
FM Ratio of feed to biomass
LDS Lignin degradation system
MAP Magnesium ammonium phosphate
MBR Membrane bioreactor
MLSS Mixed liquor suspended solid
MLVSS Mixed liquor volatile suspended solid
NDSA Naphtalene disulfonic acid
NSA Naphtalene sulfonic acid
PA Polyamide
PAN Polyacrylnitrile acid
PAO Phosphate-accumulating organism
PES Polyethensulphone
PFU Plug-forming unit
PHB Polyhydroxybutyrate
PP Polypropylen
PSU Polysulphone
PUDF Polyvinylidenfluoride



XXVIIList of Symbols and Abbreviations

Symbol Explanation

RB5 Reactive black 5
RDR Rotating disc reactor
RNA Ribonucleic acid
SCP Single-cell protein
SRB Sulfur-reducing bacteria
SS Suspended solid
UASB Upflow anaerobic sludge blanket
VFA Volatile fatty acid
VOC Volatile organic compound
WWTP Wastewater treatment plant




