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Preface

A leading representative of fluid dynamics defined this discipline as “part of
applied mathematics, of physics, of many branches of engineering, certainly
civil, mechanical, chemical, and aeronautical engineering, and of naval archi-
tecture and geophysics, with astrophysics and biological and physiological
fluid dynamics to be added.” [1, p. 4]

Fluid mechanics has not always been as versatile as this definition suggests.
Fifty years ago, astrophysical, biological, and physiological fluid dynamics
was still in the future. A hundred years ago, aeronautical engineering did not
yet exist; when the first airplanes appeared in the sky before the First World
War, the science that became known as aerodynamics was still in its infancy.
By the end of the 19th century, fluid mechanics meant hydrodynamics or hy-
draulics: the former usually dealt with the aspects of “ideal,” i.e., frictionless,
fluids, based on Euler’s equations of motion; the latter was concerned with
the real flow of water in pipes and canals. Hydrodynamics belonged to the
domain of mathematics and theoretical physics; hydraulics, by contrast, was
a technology based on empirical rules rather than scientific principles. Theo-
retical hydrodynamics and practical hydraulics pursued their own diverging
courses; there was only a minimal overlap, and when applied to specific prob-
lems, the results could contradict one another [2].

This book is concerned with the history of fluid dynamics in the twentieth
century before the Second World War. This was the era when fluid dynamics
evolved into a powerful engineering science. A future study will account for
the subsequent period, when this discipline acquired the multifaceted charac-
ter to which the above quote alluded. The crucial era for bridging the prover-
bial gap between theory and practice, however, was the earlier period, i.e.,
the first four decades of the twentieth century. We may call these decades the
age of Prandtl, because no other individual contributed more to the forma-
tion of modern fluid dynamics. We may even pinpoint the year and the event
with which this process began: it started in 1904, when Ludwig Prandtl pre-
sented at a conference the boundary layer theory for fluids with little friction.
Prandtl’s publication was regarded as “one of the most extraordinary papers
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of this century, and probably of many centuries” [1]—it “marked an epoch in
the history of fluid mechanics, opening the way for understanding the motion
of real fluids” [3].

In order to avoid any misunderstanding: this is not a biography of Prandtl,
however desirable an account of Prandtl’s life might be. Nor is it a hero story;
I do not claim that the emergence of modern fluid dynamics is due solely to
Prandtl. If Prandtl and his Göttingen circle’s work is pursued here in more
detail than that of other key figures of this discipline, it is because the nar-
rative needs a thread to link its parts, and Prandtl’s contributions provide
enough coherence for this purpose. The history of fluid dynamics in the age
of Prandtl, as presented in the following account, is particularly a narrative
about how science and technology interacted with another in the twentieth
century. How does one account for such a complex process? In contrast to
sociological approaches I pursue the history of fluid dynamics not within a
theoretical model of science–technology interactions. Nevertheless, the rela-
tionship of theory and practice, science and engineering, or whatever rhetoric
is used to refer to these antagonistic and yet so similar twins, implicitly runs as
a recurrent theme through all chapters of this book. I share with philosophers,
sociologists, and other analysts of science studies the concern to better grasp
science–technology interactions, but I cannot see how to present the history of
fluid dynamics from the perspective of an abstract model. My own approach
is descriptive rather than analytical; I approach the history of fluid dynamics
from the perspective of a narrator who is more interested in a rich portrayal
of historical contexts than in gathering elements for an epistemological analy-
sis. This approach requires deviations here and there from the main alley, so
to speak, in order to clarify pertinent contexts, but I am conscious not to lose
the narrative thread and regard as pertinent only what contributes to a better
understanding of the theory–practice issue. I postpone further reflections to
the epilogue, when this issue may be better discussed in view of the empirical
material presented throughout the remainder of the book.

Many people and institutions have contributed to this work. Instead of ac-
knowledging their help here individually in the form of a long list of names,
I refer readers to the notes in the appendix, where readers may better appre-
ciate how archives and authors of other studies helped to add flesh to the
skeleton of my narrative. The only exceptions concern my colleagues from
the Deutsches Museum and the Munich Center for the History of Science and
Technology, whom I owe thank for years of fruitful collaboration and stimu-
lating discussions, and the Deutsche Forschungsgemeinschaft for funding the
Research Group 393, which formed the framework of this study.

Michael Eckert, Munich, May 2005
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1
Diverging Trends before the Twentieth Century

The flow of water or air around an obstacle is such a familiar phenomenon that
we tend to underrate its importance in the history of science and technology.
Throughout the centuries, the behavior of a body in a fluid was a fundamental
theoretical problem and an obvious practical concern. The motion of celestial
bodies, ships, projectiles, and other phenomena involved conceptions of fluid
dynamics. Although the development of science from Aristotle to Einstein
is usually presented without excursions into the history of fluid dynamics,
concepts about motion inevitably involve assumptions about fluid resistance.

1.1
Galileo’s Abstraction

In Aristotle’s natural philosophy, the medium through which a motion pro-
ceeded played a paradoxical role. In order to sustain the motion, a motive
agency was required. Aristotle (384–322 BC)imagined that this motive agency
resided in the medium: “We must, therefore,” Aristotle wrote in Book VIII of
his Physics, “hold that the original movent gives the power of causing motion
to air, or water, or anything else which is naturally adapted for being a movent
as well as for being moved” [4, p. 506]. At the start of the motion of a projec-
tile, the medium would be displaced by the projectile, and together with this
displacement, a motive force would be passed along the trajectory. Thus, the
medium acquired the power to propel the projectile. At the same time the
medium would resist the motion: “If air is twice as tenuous as water,” Aristo-
tle argued, “the same moving body will spend twice as much time in travel-
ling a certain path in water as in travelling the same path in air” [5, p. 21].

Aristotle dominated pre-modern natural philosophy – but some of his
views also served as bones of contention. How could the same medium
at the same time propel and resist the motion of a projectile? Most famous
among those who criticized this concept was Jean Buridan (1300–1358), who
argued that the propulsive property resided in the projectile itself rather than
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in the medium. He called this property impetus: “Whenever some agency
sets a body in motion,” Buridan wrote, “it imparts to it a certain impetus, a
certain power which is able to move the body along in the direction imposed
upon it at the outset (...) It is this impetus which moves a stone after it has
been thrown until the motion is at an end. But because of the resistance of the
air and also because of the heaviness, which inclines the motion of the stone in
a direction different from that in which the impetus is effective, this impetus
continually decreases” [5, pp. 49–50]. Now the medium through which the
motion proceeded was left with just one property: resistance.

The impetus concept marked the emergence of the modern notions of in-
ertia and momentum. But that did not happen at once. Even Galileo Galilei
(1564–1642), with whom we associate the revolutionary turn from the me-
dieval philosophy to the “new science” of motion, still mixed Aristotelian con-
cepts with modern concepts of motion. Like his predecessors, Galileo strug-
gled with the role of the medium through which a body moves. His famous
Dialogues Concerning Two New Sciences reveals what problems were behind the
effort to imagine how a body would move without the resistive property of the
medium. Galileo lets Salviati ask, for example, “What would happen if bod-
ies of different weight were placed in media with different resistances?” The
answer was presented by comparing the motion in air and water: “I found,”
Salviati continues, ”that the differences in speed were greater in those media
which were more resistant, that is, less yielding. This difference was such that
two bodies which differed scarcely at all in their speed through air would, in
water, fall the one with a speed ten times as great as that of the other” [6, p. 68].

Obviously, motion in air would be closer to a motion without any influ-
ence of the medium. But there were problems in quantitatively measuring
differences for bodies with different weights in air. “It occurred to me there-
fore,” Galileo argues with the voice of Salviati, “to repeat many times the fall
through a small height in such a way that I might accumulate all those small
intervals of time that elapse between the arrival of the heavy and light bodies
respectively at their common terminus.” With the repetition of the free fall, he
meant the repeated swings of a pendulum:

“Accordingly I took two balls, one of lead and one of cork, the
former more than a hundred times heavier than the latter, and sus-
pended them by means of two equal fine threads, each four or five
cubits long. Pulling each ball aside from the perpendicular, I let
them go at the same instant, and they, falling along the circum-
ferences of circles having these equal strings for semi-diameters,
passed beyond the perpendicular and returned along the same
path. This free vibration repeated a hundred times showed clearly
that the heavy body maintains so nearly the period of the light
body that neither in a hundred swings nor even in a thousand will
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the former anticipate the latter by as much as a single moment,
so perfectly do they keep step. We can also observe the effect of
the medium which, by the resistance which it offers to motion, di-
minishes the vibration of the cork more than that of the lead, but
without altering the frequency of either; even when the arc tra-
versed by the cork did not exceed five or six degrees while that
of the lead was fifty or sixty, the swings were performed in equal
times” [6, pp. 84–85].

In order to find out how the resistance of air depends on the velocity, Galileo
compared the swings of pendulums with equal weights but different ampli-
tudes. He found that the air resistance is proportional to the velocity of the
moving body [6, p. 254].

Already Galileo’s contemporaries noticed that these conclusions could not
have resulted from actual experiments. Marin Mersenne (1588–1648) com-
pared the swings of equal pendulums with different amplitudes: he found
that one which started swinging with an amplitude of two feet differed from
one with an amplitude of one foot already after thirty periods of oscillation
by as much as one full period. In 1639, a year after the publication of the
Dialogues Concerning Two New Sciences, he remarked that if Galileo had per-
formed real pendulum experiments and only waited for thirty or forty swings,
he would have noticed the difference [7]. Recent pendulum experiments con-
firmed Mersenne’s critique [8, 11].

This and other observations of Galileo stirred considerable debate among
historians of science – to what extent did Galileo actually perform experi-
ments? Only his pendulum experiments with small amplitude are presumed
“real”; those with larger amplitudes are regarded as “imaginary” or “hypo-
thetical,” i.e., they were not performed in reality, but (contrary to mere thought
experiments) are based on extrapolation from empirical observations [7]. Ear-
lier interpretations tended to categorize Galileo’s style of research into one of
two extremes: either as deductive in the tradition of Platonic and idealistic
natural philosophy, in which the experiment only plays a role as a confirma-
tion of insights gained by mere thinking; or as inductive, with the experiment
as the origin of new knowledge. According to more recent historical studies,
however, Galileo’s science was more complex and does not fit neatly into one
category or the other alone [9].

The question whether Galileo actually performed free fall experiments from
the leaning tower of Pisa attracted particular scrutiny [10]. As with the pen-
dulum experiments, the problem of resistance plays an important role here,
too. “Aristotle says that ‘an iron ball of one hundred pounds falling from a
height of one hundred cubits reaches the ground before a one-pound ball has
fallen a single cubit.’ I say,” Salviati responds to such an obvious discrepancy
with reality, “that they arrive at the same time. You find, on making the exper-
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iment, that the larger outstrips the smaller by two finger-breadths” [6, p. 64].
However, a modern calculation, which takes into account the air resistance,
yields a difference of 1.05 m for the free fall of a 100-lb. iron sphere (with a
radius of 11.13 cm) and a 1-lb. iron sphere (with a radius of 2.4 cm) over a
distance of 100 cubits (58.4 m). The lighter sphere would be more than one
meter behind the heavier one – certainly much more than the “two finger-
breadths” in Galileo’s argument [11]. If Galileo really performed the tower
experiment, why didn’t he notice this discrepancy? The puzzle can be re-
solved by a psycho-physical argument: when an experimenter intends to re-
lease simultaneously two different weights from his outstretched hands, the
palm with the lighter weight tends to open a bit earlier than the palm with the
heavier weight; this difference could have compensated for the difference due
to the air resistance [12], [13, Supplement 3].

But Galileo, presumably, was rather motivated by a theoretical argument.
The medium had to be “thrust aside by the falling body,” Salviati argued.
“This quiet, yielding, fluid medium opposes motion through it with a resis-
tance which is proportional to the rapidity with which the medium must give
way to the passage of the body.” By such reasoning, Galileo related the dis-
placed mass of the medium to the resistance: “And since it is known that the
effect of the medium is to diminish the weight of the body by the weight of
the medium displaced, we may accomplish our purpose by diminishing in
just this proportion the speeds of the falling bodies, which in a non-resisting
medium we have assumed to be equal” [6, pp. 74–75].

In other words, despite a flawed concept of fluid resistance in terms of buoy-
ancy, Galileo arrived at his goal: the abstraction of a motion in a non-resisting
medium. With a vanishing buoyancy, the resistance would vanish too. In
this case, with no mass to be displaced, all bodies would fall in the same
manner. Galileo’s law of free fall certainly has to be rated among the most
important accomplishments in the history of science, but it is erroneous to in-
fer from Galileo’s abstraction that he “had a correct notion of air resistance,”
as a widely read book on the history of aerodynamics has claimed [14, p. 8].
Galileo did not aim at a theory of aerodynamics; his predominant concern was
Aristotle’s natural philosophy. The abstraction of a motion in a non-resisting
medium, perceived as a motion in which no medium had to be displaced,
touched upon another ancient philosophical belief: Aristotle believed in the
impossibility of a vacuum; for Galileo, it was the domain in which the laws of
free fall hold. Maybe it is not an exaggeration to state that Galileo’s elabora-
tions on the medium through which a body moves only served to justify his
abstraction of a motion in empty space.

Against this background it does not come as a surprise that it was a pupil
of Galileo, Evangelista Torricelli (1608–1647), who is credited with presenting
the first experimental evidence of a vacuum. Torricelli emptied glass tubes



1.1 Galileo’s Abstraction 5

filled with mercury into a container, such that the openings of the tubes were
not exposed to the air. Inside the inverted tube, above a remaining column of
mercury, there was left an empty space, a “Torricellian vacuum.” The height
of the mercury column in the tube was found to depend on the ambient air
pressure. Torricelli undertook these experiments with another pupil of Galileo
(Vincenzio Viviani). Like Galileo himself, his pupils also were primarily inter-
ested in refuting Aristotelian dogmas. “Many have said [that vacuum] cannot
happen,” Torricelli wrote to another follower of Galileo after his experiment;
yet, it “may occur with no difficulty, and with no resistance from nature.”
Thus, he refuted the dogma of a “horror vacui.” He concluded, with a now
famous quote: “We live submerged at the bottom of an ocean of elementary
air which is known by incontestable experiments to have weight.” [15, p. 84].

After Torricelli’s experiment the old debate among “vacuists” and “plenists”
seemed to be decided in favor of the “vacuists,” but René Descartes (1586–
1650) renewed the belief of a universal filling of space. He denied that
Galileo’s extrapolation of free fall in empty space was based on sound ar-
guments. According to Descartes’ doctrine, all natural phenomena resulted
from the motions of infinitely fine weightless particles of an ether that per-
vaded the entire universe. The particles of ordinary matter, such as air or
water, were supposed to have weight, so that their displacement by a moving
body would retard its motion. In order to prevent a temporary depletion be-
hind a moving object, the displacement of matter involved a flow around the
object, which Descartes imagined as vortical. He extended his doctrine to the
entire universe. The solar system was supposed to be an enormous vortex of
matter, in which the planets orbited as smaller vortices around the center [16].

Descartes did not produce quantitative results – neither for his cosmogony
nor for the domain of earthly physics. Once, he communicated in a letter a
formula about the retardation of a free falling body in a medium, whereby the
speed approached a limit in the form of an infinite geometrical series, but he
did not provide a physical argument for this result [23, p. 110]. Nevertheless,
he exerted a remarkable influence on seventeenth century natural philosophy.
Christiaan Huygens (1629–1695) pursued several of Descartes’ ideas, such as
the concept of an attracting force due to vortical motion around a center. Such
a force would keep a planet embedded in a vortex in his orbit around the
sun. In order to illustrate this force, Huygens arranged a little sphere in a
cylindrical vessel filled with water such that it was free to move in a radial
direction only. When the vessel was rotated around its axis, the sphere moved
inwards against the centrifugal force [16, pp. 76–77].
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1.2
Hogs’ Bladders in St. Paul’s Cathedral

Descartes’ concepts of motion also influenced Isaac Newton (1643–1727),
but as an opponent rather than as a follower. Alluding to Descartes’ Prin-
cipia Philosophiae, Newton titled his own three-volume treatise on mechanics
Philosophiae Naturalis Principia Mathematica. The first volume with “Newton’s
laws of motion” for a body in a vacuum is celebrated as the foundation of
classical mechanics. It is less known that Newton also spent a lot of time
developing the laws of motion for a body in a fluid. The entire second volume
is dedicated to this problem. It was regarded as “the most original part of
the whole work, though also largely incorrect” [17, p. 167]. As for Galileo
and Descartes, the debate among “vacuists” and “plenists” was also a ma-
jor issue for Newton. One of his pupils, Henry Pemberton, wrote in 1728 a
book titled A View of Sir Isaac Newton’s Philosophy about the second volume
of Newton’s Principia: “By this theory of the resistance of fluids, and these
experiments our author decides the question so long agitated among natural
philosophers whether the space is absolutely full of matter. The Aristotelians
and Cartesians both assert this plenitude; the Atomists have maintained the
contrary. Our author has chosen to determine this question by his theory of
resistance” [18, p. 314].

If the universe were filled with a material substance, as taught by Descartes
and his school, then the planets would encounter a resistance along their or-
bits around the sun. Descartes’ vortex conception could not escape that funda-
mental problem and therefore would have given rise to contradictions if it had
been formulated in a quantitative manner. Newton presented an alternative
concept with his theory of universal gravitation, which assumed an empty
space between the celestial bodies–or a “bodiless” medium that would not ex-
ert a noticeable resistance: “And therefore the celestial spaces, thro’ which the
globes of the Planets and Comets are perpetually passing towards all parts,
with the utmost freedom, and without the least sensible diminution of their
motion, must be utterly void of any corporeal fluid, excepting perhaps some
extremely rare vapours, and the rays of light.” This was Newton’s conclusion
at the end of the section “Of the motion of fluids and the resistance made to
projected bodies” [19, vol. 2, proposition 40, pp. 161–162].

From the outset, Newton assumed: “In mediums void of all tenacity, the re-
sistances made to bodies are in the duplicate ratio of the velocities.” Galileo’s
relation “that the resistance is in the ratio of the velocity,” according to New-
ton, was “more a mathematical hypothesis than a physical one” [19, vol. 2,
proposition 4, p. 11]. Others had already made the same assumption of a
quadratic velocity dependence, which seemed to be more in agreement with
empirical observations (see below); but Newton was the first natural philoso-
pher who attempted to justify this relation on the basis of a physical model.
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His concept is too complex for a short summary. It may suffice to hint at New-
ton’s argument for an “elastic fluid” like air, which he conceived as a gas of
particles. Based on certain assumptions about the mutual collisions of these
particles, Newton obtained quantitative results about the resistance of such a
fluid. “But whether elastic fluids do really consist of particles so repelling each
other,” he concluded, “is a physical question. We have here demonstrated
mathematically the property of fluids consisting of particles of this kind, that
hence philosophers may take occasion to discuss that question” [19, vol. 2,
proposition 23, theorem 18, p. 79]. Newton explicitly envisioned different
sources of resistance, “as from the expansion of the particles after the man-
ner of wool, or the boughs of trees, or any other cause, by which the particles
are hindered from moving freely among themselves; the resistance, by rea-
son of the lesser fluidity of the medium, will be greater than in the corollaries
above” [19, vol. 2, proposition 34, theorem 17, p. 117]. He also developed a
notion of viscosity: “The resistance, arising from the want of lubricity in the
parts of fluid, is, ceteris paribus, proportional to the velocity with which the
parts of the fluid are separated from each other” [19, vol. 2, proposition 51,
p. 184].1

Newton did not content himself with establishing theorems. “In order to
investigate the resistances of fluids from experiments, I procured a square
wooden vessel (...) this I filled with rain-water: and having provided globes
made up of wax, and lead included therein, I noted the times of descents.”
Thus, Newton described the beginning of a series of experiments on fluid re-
sistance. He used a pendulum with an oscillation period of a half-second for
the measurement of time, and meticulously compared the various outcomes
with his theoretical formulae: “Three equal globes, weighing 141 grains in air
and 4 3/8 in water, being let fall several times, fell in the times of 61, 62, 63,
64 and 65 oscillations, describing a space of 182 inches,” he described one of
these experiments. “And by the theory they ought to have fallen in 64 1/2

oscillations, nearly.” He noticed that sometimes “the globes in falling oscil-
late a little” and believed that for this reason the resistance was “somewhat
greater than in the duplicate ratio of the velocity.” But in general he regarded
the outcome as an experimental verification of his square law formula for the
resistance of a “globe moving though a perfectly fluid compressed medium.”
After a series of 12 experiments he concluded “that the theory agrees with
the phaenomena of bodies falling in water; it remains that we examine the
phaenomena of bodies falling in air” [19, vol. 2, proposition 40, pp. 145–155].

1) In modern terms, this is equivalent to a linear relation between shear
stress and strain rate: we call fluids with such viscous behavior
“Newtonian.” However, Newton did not investigate the relation
between stress and strain. See [20, pp. 258–259].
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In order to verify his theory of the resistance of a spherical body moving
in air, Newton, like Galileo, first performed pendulum experiments. He sus-
pended a sphere by a fine thread on a hook, then varied the diameters and
materials of the sphere, as well as the lengths of the thread. According to
his theory, the resistance was proportional to the square of the velocity of the
sphere, and this is what he “nearly” observed. But he could not account for
the additional resistance of the thread “which was certainly considerable.” He
also compared the oscillations of the pendulum in air with those in water, but
found the outcome not reliable because the vessel in which the water was con-
tained was not large enough so that “by its narrowness [the vessel] obstructed
the motion of the water as it yielded to the oscillating globe.” Even less con-
clusive were pendulum experiments in mercury. “I intended to have repeated
these experiments with larger vessels, and in melted metals, and other liquors
both cold and hot: but I had not leisure to try all,” Newton admitted [19, vol. 2,
proposition 31, pp. 95–110].

Newton hoped to obtain more reliable measurements of air resistance with
free fall experiments: “From the top of St. Paul’s church in London in June
1710 there were let fall together two glass globes, one full of quicksilver, the
other of air.” The two spheres traversed a height of 220 English feet (67 m) be-
fore they shattered into pieces on the cathedral’s floor. They were released by
a sophisticated trapdoor-mechanism which ensured their simultaneous begin
of fall. The time was measured by a pendulum with a period of oscillation of
one second. The experiment was repeated several times with varying weights.
The spheres filled with mercury had a diameter of 0.8 inches; those filled with
air were between 5.0 and 5.2 inches in diameter. The time of free fall was 4 s
for the heavier spheres and between 8 and 8.5 s for the lighter ones. (In a vac-
uum the time would have been 3.7 s.) In order to compare these results with
his theory, Newton compared the experimental height of free fall with the dis-
tance they would have traversed within the measured time according to his
formula. Both distances differed by less than 11 feet [19, vol. 2, proposition
40, pp. 155–157].

Newton mentioned in his Principia yet another series of free fall experiments
from a somewhat greater height in St. Paul’s cathedral: “Anno 1719 in the
month of July, Dr. Desaguliers made some experiments of this kind again, by
forming hogs’ bladders into spherical orbs; which was done by means of a
concave wooden sphere, which the bladders, being wetted well fist, were put
into. After that, being blown full of air, they were obliged to fill up the spher-
ical cavity that contained them; and then, when dry, were taken out. These
were let fall from the lantern on the top of the cupola of the same church;
namely from a height of 272 feet.” For comparison, a leaden sphere was let
fall down at the same time. The air filled hogs’ bladders had diameters of
about 5 inches and required about 20 s to fall down; the leaden spheres, by
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contrast, reached the ground in 4 1/4 s. Newton also reported about phenom-
ena which delayed the free fall by as much as a whole second sometimes, be-
cause “the bladders did not always fall directly down, but sometimes fluttered
a little in the air, and waved to and fro as they were descending.” One blad-
der “was wrinkled, and by its wrinkles was a little retarded.” Nevertheless,
he found that the results agreed much better with his theory than nine years
ago: “Our theory therefore exhibits rightly, within a very little, all the resis-
tance that globes moving either in air or in water meet with; which appears to
be proportional to the densities of the fluids in globes of equal velocities and
magnitudes” [19, vol. 2, proposition 40, pp. 157–159].

In modern terminology, Newton’s formula for the resistance of a fluid is
expressed as ∼ ρD2v2, with ρ representing the density of the fluid, D the di-
ameter of the sphere, and v its velocity. This has become known as “Newton’s
square law” and has been established as a valid description of fluid resistance
for a wide range of flow regimes. However, although Newton’s experiments
seemed to corroborate this law, they bear little evidence for Newton’s theory
because only one quantity, the time of free fall, was observed. The particle
model gave rise to contradictory results when applied to bodies of different
shape in fluids such as air and water. In air, a “rare medium, consisting of
equal particles freely disposed at equal distances from each other,” the resis-
tance of a sphere would be half of that of a cylinder with the same radius
moving in the direction of it axis. In water, “a compressed, infinite, and non-
elastic fluid,” would both experience the same resistance [19, vol. 2, proposi-
tions 34 and 37, pp. 117, 135, and 141]. If Newton had compared experimental
results of spheres and cylinders, he would have noticed a contradiction with
his theoretical results. Similarly, if he had calculated by the same reasoning
the air resistance of a flat plane oriented at an oblique angle to the flow of
air, he would have found a result proportional to the square of the sine of the
angle of incidence. Newton did not perform such a calculation, but among
aerodynamicists “Newton’s sine square law” became famous as an erroneous
formula for the lift of a wing. At the beginning of the nineteenth century, this
formula was even used to demonstrate the impossibility of flying, and later
aerodynamicists blamed Newton for having delayed aviation at least for half
a century [18, p. 311].

1.3
Ballistics

Beyond its pertinence to natural philosophy, the resistance of a body in a
medium had always been a practical problem. Since antiquity, understanding
the trajectory of projectiles was an obvious challenge for natural philosophers
as much as for practically minded men. It was part of a science named “bal-
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listics” (derived from the Greek word βαλλειν, to throw). Niccolò Tartaglia
(1499–1557), a mathematician with some experience in military affairs, de-
scribed the knowledge of his epoch on ballistics in a treatise Nova scientia.
This work exerted some influence on Galileo, who spent considerable time in
his youth coming to grips with ballistics problems. In Tartaglia’s treatise, one
could read, for example, that a projectile traveled the farthest when fired at
an angle of 45 degrees; but the trajectory was no parabola: on a horizontal
plane, the distance between the vertex of the projectile and the site of its im-
pact on the ground was always shorter than the distance between the origin
of its trajectory and the vertex, as depicted in Fig. 1.1. Initially, he adopted
the Aristotelian belief that a trajectory starts out straight, but in a subsequent
work, he argued that the trajectories are curved everywhere [23, 24].

Fig. 1.1 Tartaglia imagined that a projectile’s trajectory starts out
straight due to the “violent” motion impressed by the shot; it is followed
by a curved mixed motion, and finally becomes “natural” [21, p. 38].

As recent studies of Galileo’s manuscripts have shown [25], Galileo de-
scribed the trajectory of a projectile in a vacuum as a parabola before he ar-
rived at his law of free fall – not the other way around, as a deductive ap-
proach would suggest. The parabola emerged in 1592, when Galileo lectured
on military technology at the University of Padua. Based on his conviction
that the air resistance did not exert an appreciable effect, Galileo assumed a
symmetric trajectory – in contrast to Tartaglia’s more realistic descriptions of
asymmetric trajectories. But when Torricelli derived ballistic tables based on
parabolic trajectories in 1644, an artillery officer uttered doubts: he wrote to
Torricelli that if it were not for the authority of the great Galileo, whom he
revered, he would not believe that the motion of projectiles is parabolic. Torri-
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celli admitted that if there are discrepancies, one should find out what caused
them, but with the experimental and theoretical tools available at the time – a
hundred years before the advent of calculus – such efforts were futile. The
correspondence between the practical artillery officer and the theorist (Torri-
celli was court mathematician at the Medicis) ended without a tangible result
shortly before Torricelli died in 1647 [26].

Fig. 1.2 Like the jets of a fountain [22, p. 325], ballistic trajectories were
assumed to be parabolic.

Throughout the seventeenth century it was fashionable for practical gun-
ners to assume, like Galileo and Torricelli, that the parabola is the true tra-
jectory of a projectile – despite air resistance. Francois Blondel (1617–1686), a
field marshal of the Royal French Army, published a treatise on L’Art de Jetter
les Bombes in which he addressed the problem of air resistance but assumed
that it could be neglected. He pointed to fountains with their nearly parabolic
jets as evidence for this assumption – see Fig. 1.2. Another treatise on The
Genuine Use and Effects of the Gunne, published in 1674, also claimed that air
resistance is negligible and, therefore, a parabola describes the real trajectory
of a projectile. It is ironic that those who believed that air resistance does ex-
ert a considerable influence and that the resulting trajectory is different from
a parabola were not the gunners with experience with “real” trajectories, but
men like Huygens and Newton, who based their arguments on mathematics
rather than practical observations. Newton derived from the square law for
air resistance that a parabolic trajectory would require that the air density not
be constant but become negative along part of its trajectory. A hyperbolic tra-
jectory would not result in such a blatant contradiction. Therefore, “It is evi-
dent that the line which a projectile describes in a uniformly resisting medium,
approaches nearer to these hyperbola’s than to a parabola” [23, pp. 120–127,
140–141].
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In retrospect, it is not astonishing why ballistic theory and practice diverged
to such an extent before the eighteenth century. Only in 1742, with the treatise
by Benjamin Robins (1707–1751), New Principles of Gunnery, did a method be-
come known by which it was possible to measure the velocity of a projectile
in the beginning of its trajectory: the ballistic pendulum (see Fig. 1.3).

Fig. 1.3 Robins’s ballistic pendulum.

Robins’s innovative contributions to experimental ballistics made him fa-
mous as “Father Gunnery.” He experimented with projectiles that left his gun
with velocities as high as 1,700 feet per second (559 m/s). If such a projectile,
when fired at an angle of 45 degrees, would follow a parabolic trajectory, it
would hit the ground 17 miles away – in contrast to an actual range of only
about half a mile. Projectiles with such a high starting velocity obviously ex-
perienced an enormous resistance if their range was so much shorter. “The
track described by the flight of shot or shells is neither a parabola,” Robins
concluded, “nor nearly a parabola, unless they are projected with small veloc-
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ities.” Robins also invented a whirling arm technique to measure the air resis-
tance of objects with small velocities. Based on his experiments, he found “that
all the theories of resistance hitherto established, are extremely defective” [27,
pp. 153–154]. But Robins’s mathematical abilities were limited. It was left to
Leonhard Euler (1707–1783), in his German translation of Robins’s New Prin-
ciples of Gunnery, to elaborate a theory of ballistic trajectories [20, pp. 211–220].

Besides Euler, mathematicians and natural philosophers like Johann
Bernoulli (1667–1748) and Jean le Rond d’Alembert (1717–1783) became
deeply engaged in ballistic calculations. The problem to find a projectile’s
trajectory became a proving ground for the newly developed calculus.2

1.4
D’Alembert’s Paradox

The same eighteenth century thinkers who had recognized that air resistance
posed a serious problem for calculating the trajectory of a projectile also
formulated the laws of motion for ideal, i.e., inviscid, fluids, and found a
strange result. D’Alembert published a treatise in 1768 titled “Paradoxe pro-
posé aux Géometres sur la Résistance des Fluides” in which he asserted that
a body moving through an ideal fluid does not experience a resistive force.
D’Alembert, from his efforts in ballistics, knew about the practical importance
of air resistance, but neither he nor other theorists were able to derive New-
ton’s square law or any other law of fluid resistance from the laws of me-
chanics. In retrospect, d’Alembert’s paradox does not appear so paradoxical
because it was derived under the assumption of an inviscid fluid. Yet, it is
difficult to understand why the displacement of the fluid does not involve a
force. Euler had expressed this strange result many years before d’Alembert,
after whom the paradox finally became named. If each fluid particle flowed
around the body in such a way that it maintained the direction it had when
it was in front of the body, argued Euler in one of his comments to Robins’s
New Principles of Gunnery, then there is no net force “and the body would not
experience any resistance” [20, p. 245].

D’Alembert’s paradox, therefore, should have entered the history of fluid
mechanics more appropriately as the “Euler–d’Alembert paradox.” Both had
approached these problems as theorists. Their mutual relation was often one
of fierce rivalry, which gave rise to some legendary stories. D’Alembert’s rep-

2) The major problem, however, was due to yet unknown physical pro-
cesses rather than an unavailability of mathematical tools. At the
high (usually supersonic) velocities of projectiles fired from can-
nons and guns, the density of the air around the moving body is no
longer constant. The study of air resistance in varying air density
had to await twentieth century gas dynamics.
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utation has been overrated, claimed one historian of mechanics, while Euler’s
role in this history was not appreciated enough.

Despite his theoretical leanings, Euler was very open-minded about prac-
tical problems. Nevertheless, his practical work was regarded largely as a
failure. When Frederick the Great, king of Prussia, gave orders to decorate
his Royal Garden of Sanssouci with water art, Euler became involved with
hydraulic calculations about pumps and pipes required to raise water into an
elevated water reservoir from where it was supposed to feed the fountains in
the park. The king, however, never came to enjoy a fountain. He blamed Euler
for having failed miserably: “My mill was constructed mathematically, and it
could not raise one drop of water to a distance of fifty feet from the basin.
Vanity of Vanities! Vanity of mathematics.” Based on this passage, historians
concluded “The mathematical genius Euler was a second-rate physicist,” or
“Euler’s theory was not applicable for practical ends.” This is how Euler is
seen in the history of science – as a prime example of the proverbial schism
between theory and practice. However, although it is true that the water art
constructions in the Royal Garden of Sanssouci were abandoned unfinished in
the lifetime of Frederick the Great, this fact was not Euler’s fault, but was the
result of the king’s stinginess. He employed cheap laborers who had no expe-
rience with such work and who completely ignored Euler’s hydraulic advice,
which could have prevented the sad outcome. Euler conceived a theory of
pipe flow that explained why the pipes always burst before water was raised
to the elevated reservoir: as a consequence of the pumping action, which ac-
celerated the water through the pipes, the walls of the pipes had to sustain a
much higher water pressure than expected from the height difference between
the pumps and the reservoir [28].

This was not the first incidence that a study in fluid flow was motivated
by problems with water art. The science of moving water was among those
specialties that were met with the greatest interest from Royal Academies.
One outstanding work on hydraulics, which resulted from the patronage of
the Paris Académie Royale des Sciences, is Edme Mariotte’s Traité de Mouve-
ment des Eaux, published in 1686. Mariotte and other academy members per-
formed experiments investigating the speed with which water is ejected from
a pipe, the principles of raising water, the height of water jets, and the resis-
tance of a body as a function of the flow velocity. The motivation to undertake
such experiments came from ambitious projects of water constructions, such
as the canals all across France and the plans for the Royal Park at Versailles,
where the world’s most sophisticated water art was established for the plea-
sure of the Sun King and his court. The flow of water in open canals and in
closed pipes became the subject matter of intensive study. The law of energy
conservation in fluids, Bernoulli’s equation, was formulated in the context of
pipe flow by Johann Bernoulli (1667–1748) and his son Daniel Bernoulli (1700–
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1782). Like Euler, the Bernoullis are mainly renowned for their mathematical
work, but as is evident from the father’s Hydraulica (1732) and the son’s Hydro-
dynamica (1738), their work was motivated to a large extent by practical con-
cerns of contemporary water art. In the age of Euler and the Bernoullis, the
notions of hydrodynamics and hydraulics were used almost synonymously,
often with an emphasis on the “art of raising water” and “the several ma-
chines employed for that purpose, as siphons, pumps, syringes, fountains,
jets d’eau, fire-engines, etc.,” according to a contemporary dictionary [29].

After he had established and solved the equations of fluid motion for the
special case of pipe flow, Euler formulated the general equations of motion
for inviscid fluids. They were published in 1755 under the title “Principes
généraux du mouvement des fluides”; with “Euler’s equations,” as they were
called, fluid mechanics was based on a firm theoretical foundation. Although
these equations are valid for ideal fluids only, which inevitably involves
d’Alembert’s paradox, a number of practical problems can still be solved on
that assumption.

1.5
New Attempts to Account for Fluid Friction

In 1822, Claude Louis Marie Henri Navier (1785–1836) added a term to Euler’s
equations, which turned them into equations of motion for viscous fluids. A
few years later, Siméon-Denis Poisson (1781–1840) arrived at the same result.
Other contributors to this new formulation of the theory of fluid flow are Au-
gustin Louis Cauchy (1789–1857) and Barré de Saint-Venant (1797–1886). But
only in 1845 did George Gabriel Stokes (1819–1903) present a valid derivation
for the Navier–Stokes equations, as they became known. The earlier theo-
ries of Navier and Poisson were based on hypotheses of atoms which, from
a modern perspective, have to be dismissed as wrong, illustrating “a com-
mon phenomenon in the history of science: Falsehood ⇒ Truth,” commented
a twentieth century expert on fluid mechanics and historian of mechanics on
the gradual emergence of the Navier–Stokes equations, but then the treatise
of Stokes appeared as “a burst of sunlight” [30, p. 316].

It is not accidental that it was mostly scientists in post-revolutionary France
who paid so much attention to the mechanics of continuous media – not only
fluid mechanics but also elasticity theory – in the early nineteenth century.
This interest was rooted in the Laplacian program, in which all phenomena
in nature were believed to be explainable in terms of an attraction or repul-
sion of particles. This program emerged in the tradition of Newton’s natural
philosophy: inspired by the model of celestial mechanics, central forces were
believed to govern phenomena on a large scale as much as they do on the



16 1 Diverging Trends before the Twentieth Century

scale of atoms [31]. However, there was little unanimity on how to pursue
this program: Navier was adhering the school of “analytical mechanics,” in
contrast to another faction which headed for a more “physical mechanics” ap-
proach. Institutionally these traditions were rooted in l’École Polytechnique
and the special engineering schools, l’École des Mines and l’École des Ponts et
Chaussées. Navier, for example, had studied at l’École Polytechnique and at
l’École des Ponts et Chaussées before he became a professor himself at these
institutions. From a sociological perspective, his career was described as an
early example of a “hybrid career,” where the realms of science and technol-
ogy became entangled [32].

Stokes’s effort to account for friction was also initially based on assump-
tions about “ultimate particles”, but he became aware that his conclusions
did not depend on such assumptions [33]. Like Navier, Stokes was primar-
ily a theorist, but in contrast to Navier, he was not affiliated institutionally
with engineering. As a professor at the University of Cambridge, Stokes had
no official research interests devoted to experimental or technological studies.
Nevertheless for Stokes “mathematics was the servant and assistant, not the
master.” His approach was described in an obituary: “His guiding star in sci-
ence was natural philosophy. Sound, light, radiant heat, chemistry, were his
fields of labour, which he cultivated by studying properties of matter with the
aid of experimental and mathematical investigation” [34].

For Stokes, like for other nineteenth century natural philosophers, hydrody-
namics was a specialty where fundamental questions about the constitution of
matter sometimes went hand in hand with practical problems. This dual ori-
entation, which led to the Navier–Stokes equations, is also apparent in the
derivation of what is known as Stokes’s law: a sphere of radius a moving with
a constant velocity V in a fluid of viscosity µ experiences a resistance 6πµaV.
Stokes arrived at this result by simplifying the Navier–Stokes equation so that
terms involving the square of the velocity were neglected. It was published in
1850 in a paper titled “On the Effect of the Internal Friction of Fluids on the
Motion of Pendulums” [35, vol. 3, 1–141].

The relation to pendulums hints at the practical context that motivated this
study: from Galileo via Huygens and Newton until the nineteenth century,
the pendulum was the preferred instrument to measure time, but the preci-
sion that could be obtained theoretically was, in the true sense of the word,
dampened by air resistance. When Stokes started to analyze the potential rea-
sons why the swings of a pendulum would slow down, he investigated the
buoyancy that the sphere at the end of a pendulum experiences in a medium
as a primary cause. A second cause was the dynamic effect of the displace-
ment of the medium, which resulted in an apparent increase of the inertia of
the sphere. Stokes concluded “that the mass which we must suppose added
to that of the pendulum is equal to half the mass of the fluid displaced.” With
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regard to friction, it was unclear to what extent the density played a role.3

Experiments commissioned by the Board of Longitude had shown that the re-
sistance depended both on the density and composition of the gas in which
the pendulum swung. In practice, medium-related influences for a pendulum
designed for a certain period of oscillation were accounted for in terms of cor-
rection factors for the ideal length of a pendulum in vacuum. There were
numerous theoretical and experimental studies in order to determine such
correcting factors. Stokes cited studies performed by the German astronomer
Friedrich Wilhelm Bessel (1784–1846) or the Frenchman Louis Gabriel Dubuat
(1732–1787), whose research had been largely ignored by those interested in
pendulum clocks, as Stokes argued, “probably because such persons were not
likely to seek in a treatise on hydraulics for information connected with the
subject of their researches. Dubuat had, in fact, rather applied the pendulum
to hydrodynamics than hydrodynamics to the pendulum.” The same may be
said about Stokes. His goal was to derive an “index of friction,” by which the
experimentally determined correction factors for pendulums used for precise
measurement of time could be understood in terms of hydrodynamics.

Stokes’s law was of interest far beyond its original pendulum context.
Stokes argued, for example, that the resistance of the water droplets in a cloud
may be estimated from his law. “The terminal velocity thus obtained is so
small in the case of small globules such as those of which we may conceive
a cloud to be composed, that the apparent suspension of the clouds does not
seem to present any difficulty,” he argued. “The pendulum thus, in addition
to its other uses, affords us some interesting information relating to the de-
partment of meteorology” [35, p. 10].

Stokes had also sketched another application which could be analyzed by
the Navier–Stokes equations: he derived a formula for the velocity profile of
a fluid in a tube. If one assumes that the velocity is zero at the inner wall of
the tube (which Stokes mentioned as a possible assumption but did not pur-
sue), one finds a parabolic increase of the velocity towards the tube’s center.
Integration over the tube’s cross section yields the total flow as proportional
to r4 (with r being the radius of the tube), or the resistance per unit length
as proportional to 1/r4. This law was found earlier from experiments by the
German hydraulic engineer Gotthilf Hagen (1797–1884) and the French phys-
iologist Jean Louis Poiseuille (1797–1869); it became known as the Hagen–
Poiseuille law. Hagen’s experiments were performed with metal tubes with
a diameter of a few centimeters and were motivated by practical considera-
tions concerning the design of water pipelines. Poiseuille experimented with

3) Stokes assumed that the viscosity µ is proportional to ρµ′, where µ′
is the “index of friction,” and ρ is the density of the medium; it was
later shown by Maxwell that contrary to Stokes’s assumption, the
viscosity is independent of the density and therefore, the density
does not enter into the formula of Stokes’s law.
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glass tubes with a diameter of only a tenth of a millimeter; he aimed at a better
understanding of blood circulation [36, 37].

The theoretical explanation of the Hagen–Poiseuille law was published in
1860 in a physiological as well as a physical context, the former in the Archiv
für Anatomie, Physiologie und Medizin and the latter in the Annalen der Physik.
What is remarkable about these publications is that the result stemmed from
such diverse disciplines – physiology and physics—which seems to indicate
that after the Navier–Stokes equations were formulated and the first applica-
tions appeared, theory and practice would grow closer together. However,
this was not the case. Hydrodynamics became an ever more theoretical sci-
ence and hydraulics a specialty for practical men. The interest in the theory
of ideal fluids did not fade away but further increased when mathematicians
and physicists explored new avenues of fluid behavior in the second half of
the nineteenth century.

1.6
Revival of Ideal Fluid Theory

Despite d’Alembert’s paradox, there is an influence upon the motion of a body
in an ideal fluid that is due to the displacement of the fluid. In 1852, the
mathematician Gustav Lejeune Dirichlet (1805–1859) investigated this influ-
ence through a novel analysis of Euler’s equations. He wondered whether
there were specific motions in which a resistance in an ideal fluid was theoret-
ically possible. Dirichlet analyzed the case of a sphere in a uniformly acceler-
ated fluid. He found that the sphere experiences a constant force proportional
to the ratio of the densities of the fluid and the sphere, and to the accelerat-
ing force. This “resistance” was independent of the momentary flow velocity
and disappeared with a vanishing acceleration, so that for the case of uniform
motion, d’Alembert’s paradox was established. Dirichlet’s “resistance” had
nothing to do with friction but was a mere inertial effect due to the displace-
ment of fluid by the solid body, as analyzed by Stokes in his pendulum motion
experiments. It was most conspicuous when expressed in terms of the kinetic
energy: compared with motion in a vacuum, the kinetic energy of the sphere
in the fluid was as if the motion involved an increased mass of the sphere.
That mass corresponded to the mass of the fluid which had to be displaced by
the sphere [38].

Although Dirichlet’s result was derived from ideal fluid theory, it was im-
portant for the understanding of fluid resistance in real fluids because it
showed how to discern forces due to inertial effects from friction. One is
tempted to conclude that his result stemmed from efforts to learn more about
the differences between ideal and real fluids, but that was not Dirichlet’s mo-


