Mass Spectrometry in Medicinal Chemistry

Edited by
Klaus T. Wanner and Georg Höfner
Mass Spectrometry in Medicinal Chemistry

Edited by
Klaus T. Wanner and Georg Höfner
1807–2007 Knowledge for Generations

Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation's journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Pesce
President and Chief Executive Officer

Peter Booth Wiley
Chairman of the Board
Mass Spectrometry in Medicinal Chemistry

Edited by
Klaus T. Wanner and Georg Höfner
Contents

Preface XV

A Personal Foreword XVII

List of Contributors XIX

I Introduction to MS in bioanalysis 1

1 Mass Spectrometry in Bioanalysis – Methods, Principles and Instrumentation 3

Gérard Hopfgartner

1.1 Introduction 3
1.2 Fundamentals 4
1.3 Ionization Techniques 10
1.3.1 Electron Impact and Chemical Ionization 10
1.3.2 Atmospheric Pressure Ionization 12
1.3.2.1 Electrospray 14
1.3.2.2 Atmospheric Pressure Chemical Ionization 17
1.3.2.3 Photoionization 19
1.3.2.4 Multiple Ionization Source 19
1.3.2.5 Desorption Electrospray and Direct Analysis in Real Time 20
1.3.3 Matrix Assisted Laser Desorption Ionization 21
1.4 Mass Analyzers 23
1.4.1 Quadrupole Analyzers 23
1.4.2 Triple Quadrupole Mass Analyzer 24
1.4.3 Ion Trap Mass Spectrometry 27
1.4.4 Triple Quadrupole Linear Ion Trap 30
1.4.5 Time of Flight Mass Spectrometry 33
1.4.6 Fourier Transform Mass Spectrometry 36
1.4.6.1 Fourier Transform–Ion Cyclotron Resonance Mass Spectrometry 36
1.4.6.2 Orbitrap Mass Spectrometer 37
1.5 Ion Detectors 38
1.6 Practical Aspects and Applications in Bioanalysis 41
1.6.1 Introduction
1.6.2 Quantitative Analysis in Biological Matrices
1.6.3 Drug Metabolism
1.6.4 Analysis of Proteins
1.7 Perspectives
1.8 Common Definitions and Abbreviations

References

Studying target-ligand interactions analyzing the ligand by MS

2 Drug Screening Using Gel Permeation Chromatography Spin Columns Coupled with ESI-MS

Marshall M. Siegel

2.1 Introduction

2.1.1 Preface

2.1.2 Direct and Indirect ESI-MS Analysis of Non-covalent Drug–Protein Complexes

2.1.3 Advantages of GPC Spin Columns

2.1.4 Application of Equilibrium and Non-equilibrium Theory for the Analysis of GPC Spin Column Eluates

2.1.4.1 Sample Prepared Under Equilibrium Conditions Prior to Spin Column Treatment

2.1.4.2 Calculation for Predicting the Concentration of Sample Complex Eluted From the Spin Column

2.1.4.3 Estimation of Relative Binding Affinities from GPC Spin-Column/ESI-MS Data

2.1.4.4 Experimental Determination of the K_d Value from GPC Spin-Column/ESI-MS Data

2.2 Experimental

2.2.1 Spin Columns

2.2.2 Spin Column Media: Advantages and Disadvantages, Volatile vs Non-volatile Buffers

2.2.3 Preparing Non-covalent Complexes in Protein Buffer; Protein Concentration, Ligand Concentration, Incubation Time

2.2.4 Sample Organization: Single Samples vs Mixtures, Mixture Set-up: Compatibility of Components, Plate Set-up

2.2.5 Pooling Spin Column Eluates for Higher Throughput

2.2.6 Manual vs Robotic Instrumentation for Sample Preparation and Acquiring Spin Column Eluates

2.2.7 ESI Mass Spectrometer: ESI, APCI, Photodissociation, Positive/Negative Ionization

2.2.8 ESI Multi-sprayer (MUX) Technology; Sample Throughput; Protein Consumption

2.2.9 Reversed Phase (RP) HPLC ESI-MS Considerations

2.2.10 Protein Removal for Optimum Sensitivity
2.2.11 Data Reduction and Automated Interpretation of GPC Spin Column/ESI-MS Data 84

2.3 Results 89

2.3.1 Secondary Screens 89

2.3.1.1 GPC Spin Column/ESI-MS Drug Screening Demonstration Papers 89

2.3.1.2 Estrogen Receptor Target 89

2.3.1.3 Non-covalent Binding of Drugs to RNA/DNA Targets 90

2.3.1.4 Amgen Secondary Screens 94

2.3.1.5 Novartis Secondary Screens 94

2.3.2 Primary Screens 94

2.3.2.1 RGS4 Protein Target 94

2.3.2.2 Amgen Primary Screens 98

2.3.2.3 Novartis Primary Screens 98

2.3.3 Additional Spin Column Methods 99

2.3.3.1 Competition Experiments of Inhibitor Mixture with Protein Target 99

2.3.3.2 GPC Spin Column/ESI-MS Determination of Binding Sites 101

2.3.3.3 Obtaining MS EC50s and Kd for Ligands Non-covalently Bound to Protein Active Sites 112

2.3.3.4 Multiple Passes Through Spin Columns – Finding Strongest Binders 113

2.3.3.5 Reverse Screening with GPC Spin Columns 113

2.4 Conclusions 113

2.4.1 GPC Spin Column/ESI-MS: Ease of Use, Mixture Analysis, High Speed, Reliability, Uncoupling of GPC from ESI-MS and HPLC ESI-MS 113

2.4.2 Comparison of GPC Spin Column/HPLC ESI-MS with Tandem Chromatographic Method of GPC/HPLC ESI-MS 114

2.4.3 Future Developments 115

2.4.3.1 MS and HPLC Improvements 115

2.4.3.2 Use of Automated Nanospray for Greater Sensitivity and Smaller Sample Size (Less Protein/Drug) 115

2.4.3.3 Microfluidic Systems: Sensitivity, High Speed 116

2.4.3.4 GPC Spin Column Eluates Analyzed by ESI/Ion Mobility/Mass Spectrometry 116

2.4.3.5 GPC Spin Columns with Matrixless MALDI-MS and Gyros GPC Microfluidic ESI/MALDI-MS System 116

References 117

3 ALIS: An Affinity Selection–Mass Spectrometry System for the Discovery and Characterization of Protein–Ligand Interactions 121

Allen Annis, Cheng-Chi Chuang, and Naim Nazef

3.1 Introduction 121

3.1.1 State of the Art 122
3.1.1.1 Spectroscopic and Biophysical Methods 122
3.1.1.2 Mass Spectrometry-based Methods 123
3.2 ALIS: An Affinity Selection–Mass Spectrometry System based on Continuous SEC 124
3.2.1 ALIS System Design 126
3.3 Discovery of Ligands from Combinatorial Libraries 127
3.4 Quantitative Binding Affinity Measurement 130
3.4.1 Theory 131
3.4.2 Simulations and Experimental Results 134
3.5 Competition-based Binding Site Determination and Affinity Ranking in Mixtures 135
3.5.1 Binding Site Classification 136
3.5.2 Affinity Ranking in Compound Mixtures 140
3.6 Protein–Ligand Dissociation Rate Measurement 142
3.6.1 Theory 143
3.6.2 Simulations 145
3.6.3 Experimental Results 147
3.7 Conclusions 150
3.8 Future Directions 151

References 152

4 Library Screening Using Ultrafiltration and Mass Spectrometry 157
Timothy E. Cloutier and Kenneth M. Comess

4.1 Introduction 157
4.2 Ultra-high Throughput Filtration-based Affinity Screening as a Discovery Tool 163
4.2.1 Affinity Selection/Mass Spectrometry 163
4.2.2 Primary Screening Strategy 164
4.2.3 Retesting and Deconvolution Strategy 167
4.2.4 Promiscuous Compound Filter 168
4.2.5 MurF Lead Discovery 171
4.3 Additional Affinity Screening Methodology That Includes Mass Spectrometry-based Readout 177
4.3.1 Pulsed Ultrafiltration MS 177
4.4 Conclusions and Future Directions 180
References 181

5 Continuous-flow Systems for Ligand Binding and Enzyme Inhibition Assays Based on Mass Spectrometry 185
Hubertus Irth

5.1 Introduction 185
5.2 Continuous-flow Enzyme Assays Based on Mass Spectrometry 186
11.2.2 Determination and Interpretation of the Titration Curves 343
11.3 Applications of PLIMSTEX 345
11.3.1 Determination of Association Constant (K_a), Stoichiometry (n), and Protection (ΔD_i) 345
11.3.2 Ras-GDP Interacting with Mg$^{2+}$: A 1:1 Protein:Metal Ion Interaction 347
11.3.2.1 Kinetic Study of Forward H/D Exchange Ras-GDP with Different [Mg$^{2+}$] 347
11.3.2.2 PLIMSTEX Results for Ras-GDP Titrated with Mg$^{2+}$ 348
11.3.2.3 Interpretation of PLIMSTEX Results with H/D Exchange Kinetics 349
11.3.2.4 Application of PLIMSTEX to Relatively Weak Protein–Ligand Binding 350
11.3.2.5 Experimental Issues Regarding Using Metal Chelators 350
11.3.3 Apo-CaM Interacting with Ca$^{2+}$: A 1:4 Protein:Metal Ion Interaction 351
11.3.3.1 PLIMSTEX Results for CaM and Intermediate Protein–Ligand Binding Species 351
11.3.3.2 PLIMSTEX in Biologically Relevant Media and High Ionic Strength 352
11.3.4 Apo-IFABP and Oleate: A Protein–Small Organic Molecule Interaction 353
11.3.5 Holo-CaM and Melittin: A Protein–Peptide Interaction 354
11.3.5.1 PLIMSTEX Curves Under Different Holo-CaM Concentrations 355
11.3.6 Self-association of Insulin: A Protein–Protein Interaction 356
11.3.6.1 Modified Version of PLIMSTEX for Insulin Self-association 356
11.4 Features of PLIMSTEX 357
11.4.1 Determines K_i, Stoichiometry, and Protection (ΔD_i) 357
11.4.2 Requires Low Quantities of Protein 357
11.4.3 Relies Only on MS to Measure m/z And Not Solution Concentration 358
11.4.4 Works in Biologically Relevant Media at High Ionic Strength 359
11.4.5 Does Not Need Specially Labeled Protein or Ligand 359
11.4.6 Avoids Perturbation of the Binding Equilibrium 360
11.4.7 Has Potential for Peptide Resolution 360
11.4.8 Current Challenges and Future Directions 360
11.5 Fast Radical Footprinting for Protein–Ligand Interaction Analysis 361
11.5.1 Rationale for Hydroxyl Radicals as a Probe 362
11.5.2 Methods for Generating Hydroxyl Radicals 362
11.5.3 Fast Photochemical Oxidation of Proteins 363
11.5.4 Locating the Sites of Oxidation 364
11.5.5 Application of FPOP to Apomyoglobin 364
11.5.6 Advantages of FPOP 366
12 Protein-targeting Drug Discovery Guided by Hydrogen/Deuterium Exchange Mass Spectrometry (DXMS) 377
Yoshitomo Hamuro, Stephen J. Coales, and Virgil L. Woods Jr

12.1 Introduction 377
12.2 Theory of H/D Exchange 378
12.2.1 Amide H/D Exchange 378
12.2.2 Protection Factor 378
12.2.3 Backbone Amide Hydrogens as Thermodynamic Sensors 379
12.3 Overview of H/D Exchange Technologies 380
12.3.1 On Exchange Reaction 380
12.3.2 Quench of Exchange Reaction 380
12.3.3 Protein Fragmentation by Proteolysis 381
12.3.4 Digestion Optimization 381
12.3.5 HPLC Separation 381
12.3.6 Mass Analysis 381
12.3.7 Automation of H/D Exchange by MS 382
12.3.8 Automated Data Analysis 383
12.4 DXMS-guided Design of Well Crystallizing Proteins 383
12.4.1 Disordered Regions and Protein Crystallography 383
12.4.2 Poorly Crystallizing Proteins Contain Substantial Disordered Regions 384
12.4.3 Disorder-depleted Mutant Preserved Ordered Structure 384
12.4.4 Disorder-depleted Mutant Improved Crystallization Efficiency and Produced High Resolution Structure 384
12.5 Rapid Characterization of Protein Conformational Change with DXMS 385
12.5.1 Human Growth Hormone 386
12.5.2 H/D Exchange of hGH 386
12.5.3 Free Energy Change upon Folding of hGH 386
12.6 Application of H/D Exchange to Protein–Small Molecule Ligand Interactions 388
12.6.1 p38 Mitogen-activated Protein Kinase 388
12.6.2 H/D Exchange of p38 MAP Kinase 389
12.6.3 Peroxisome Proliferator-activated Receptor γ 390
12.6.4 H/D Exchange of PPARγ 390
12.7 DXMS-guided Design of Small Molecules that Target Protein–Protein Interaction Surfaces 391
12.8 Optimal Formulation and Quality Control of Whole-protein Therapeutics with DXMS 393
12.9 Conclusions 394
References 394
13 Mass Spectrometry in Early Pharmacokinetic Investigations 401
Walter A. Korfmacher

13.1 Introduction 401
13.2 HPLC-MS/MS Overview 402
13.3 In Vitro Applications 405
13.4 In Vivo Applications 406
13.5 Rapid Method Development 408
13.6 Increasing Throughput in HPLC-MS/MS 410
13.7 Matrix Effects 411
13.8 Discovery PK Assay Rules 413
13.9 New Technology in LC-MS 415
13.10 Conclusion 419

References 419

Index 429
Preface

For a long time, mass spectrometry in organic chemistry was just used for the “fingerprint” identification of different compounds. Initiated by F.W. McLafferty and K. Biemann, and largely extended by C. Djerassi, H. Budzikiewicz and D.H. Williams, sets of structure-specific fragmentation rules were established, which enabled organic chemists to interpret the chemical structures of their compounds, even highly complex natural products and drugs. Within a few years, between 1962 and 1964, five books on mass spectrometry of organic compounds were published, three of them by the Djerassi group. In this manner, Carl Djerassi made another significant contribution to medicinal chemistry, besides his research results on optical rotation dispersion and his role in the development of the “pill”. Nowadays, mass spectrometry is well established in drug research, for the characterization of new compounds, their structure elucidation and structural confirmation, the identification of drugs and their metabolites in body fluids, and in anti-doping campaigns.

Largely unperceived by medicinal chemists, in the past two decades mass spectrometry developed into a powerful tool in drug discovery, by the detection and analysis of ligand–protein interactions. One of the major breakthroughs to enable such applications was the development of new desorption – ionisation techniques for large-sized, non-volatile molecules, i.e. proteins, RNA, and DNA fragments. The importance of these new tools was honored in 2002, by the Nobel prize in Chemistry for John B. Fenn, Professor at the Virginia Commonwealth University, for his contributions to electrospray ionisation (ESI), and to Koichi Tanaka, an engineer at Shimadzu Corp., Japan, for the development of matrix-assisted laser desorption ionisation (MALDI), sharing the prize with Kurt Wüthrich at ETH Zurich, Switzerland, for his contributions to protein 3D structure elucidation by NMR. In parallel, progress in instrumentation, for better mass (more correctly, mass/charge: \(m/z \)) separation and ion detection, and coupling with HPLC separation broadened the field of potential applications.

Whereas mass spectrometry in proteomics was discussed in an earlier volume of this series (Volume 28, M. Hamacher et al. 2006, *Proteomics in Drug Research*, Wiley–VCH, Weinheim), the current monograph focuses on mass spectrometry applications in lead discovery and optimization. As discussed in more detail in the foreword of the volume editors, the chapters provide a comprehensive over-
view on all current and potential, “non-classic” applications of mass spectrometry in various areas of drug research, especially small molecule screening, fragment-based drug discovery, ligand–protein interactions, protein 3D structure characterization, and the study of pharmacokinetics.

The series editors would like to thank Klaus T. Wanner and Georg Höfner, as well as all chapter authors, for compiling and structuring this comprehensive monograph on mass spectrometry techniques. In addition, we want to thank the publisher Wiley–VCH, especially Dr. Frank Weinreich and Renate Dötzer, for their ongoing support of our series “Methods and Principles in Medicinal Chemistry”.

Raimund Mannhold, Düsseldorf
Hugo Kubinyi, Weisenheim am Sand
Gerd Folkers, Zürich

November 2006
A Personal Foreword

Mass spectrometry has been a well established technique in analytical chemistry for more than five decades, but its use to characterize target–ligand interactions is comparatively new. Only the availability of modern mass spectrometers achieving sufficient accuracy and sensitivity as well as the advent of soft ionization techniques such as ESI or MALDI has paved the way for successful studies in this field. From the first investigations in the early 1990s until now a great variety of mass spectrometry-based approaches covering target–ligand interactions have been implemented in the drug discovery process, so that drug–ligand interactions can be explored from almost every perspective: it is possible to focus on the ligand, the target–ligand complex or the target (i.e. its binding site). Among the numerous advantages that qualify mass spectrometry for this purpose are two that should be emphasized: First, mass spectrometry offers the possibility to monitor the interacting partners without labelling either the ligand or the target. Second, mass spectrometry has the capability to identify structurally unknown hits, i.e. compounds binding to the target, from huge combinatorial compound libraries. Conversely, mass spectrometry can also provide an insight into the molecular structure of the binding domains on macromolecular targets.

It is the intention of this book to give an overview of the opportunities that mass spectrometry provides in medicinal chemistry, focusing primarily on the early drug discovery process. Therefore, particular emphasis is put on screening procedures for low relative molecular mass drug candidates supplemented by other approaches suitable to elucidate target–ligand interactions and the field of pharmacokinetic investigations. Instead of giving a complete summary of this topic, which would be clearly beyond the scope of a single book, selected approaches are presented reflecting the diversity of possible strategies.

For those readers who are not yet familiar with mass spectrometry, the introduction provides an explanation of the basics of mass spectrometry and its instrumentation as well as practical aspects and applications in bioanalysis. Next, a block of three chapters shows different affinity selection procedures suitable to identify hits from combinatorial compound libraries. This subject, being metaphorically speaking a search for a needle in a haystack, is of outstanding relevance for “big pharma”. The techniques described here offer real high throughput capabilities and are implemented already in the routine industrial screening
process. The next three chapters present more techniques also dealing with small molecule screening. One approach combines the biological assay directly with the analytical method using microcoil reactors integrated in a HPLC system to study target–ligand interactions. Another is based on the unique features of frontal affinity chromatography and has already proved its potential in several screening projects. The last one is a very simple but also very effective approach that enables binding assays with native, i.e. nonlabelled markers in analogy to conventional radioligand binding assays. Although ESI clearly dominates mass spectrometric screening procedures, MALDI and other ionization techniques based on laser desorption can also be utilized for this purpose. This is documented in the following chapter summing up recent advances in this field. In a further chapter the challenging concept of fragment-based drug discovery is presented which makes use of dynamic equilibrium processes in order to accumulate fragments with rather moderate affinity to a target binding site by forming a covalent bond to a linker. Even though this concept is basically a synthetic approach, its success is unambiguously connected to the use of mass spectrometry. The topic of target–ligand interactions presented in the preceding chapters is rounded off by two chapters showing mass spectrometric strategies benefiting from hydrogen deuterium exchange at the target. In one approach the deuterium uptake by the target as a function of the test compound is quantified in order to deduce binding affinity or stoichiometry. The other approach describes the possibility to characterize protein structure and conformational changes of proteins as well as how to localize the physical interactions between target and ligand, based on the exact assignment of target incorporated deuterium atoms in proteolytically generated peptide fragments. The last chapter touches on the issue of pharmacokinetics where mass spectrometry traditionally plays a prominent role. The fact that these mass spectrometric investigations can help to avoid failures in later clinical trials further illustrates the immense value of mass spectrometry for the drug discovery process.

As editors we would also like to take the opportunity to cordially thank all authors for their contributions. We hope that the applications collected in this book will give the reader an idea of the capabilities of mass spectrometry when used in the early stages of drug discovery. Considering that mass spectrometry only began to have an impact on early drug discovery in the past decade, we can expect that this process will be further accelerated in the near future by the rapidly proceeding evolution of mass spectrometry as an analytical tool to screen bioactivity.

Munich, November 2006
Klaus T. Wanner
Georg Höfner
List of Contributors

Allen Annis
Schering–Plough Research Institute
320 Bent Street
Cambridge, MA 02141
USA

Mark T. Cancilla
Sunesis Pharmaceuticals, Inc.
341 Oyster Point Boulevard
South San Francisco, CA 94080
USA

Nora Chan
Defence R & D Canada – Suffield Box 4000, Stn Main
Medicine Hat, Alberta T1A 8K6
Canada

Cheng-Chi Chuang
Schering–Plough Research Institute
840 Memorial Drive
Cambridge, MA 02139
USA

Timothy E. Cloutier
Target and Lead Discovery
Global Pharmaceutical R&D
100 Abbott Park
Abbott Park, IL 60064
USA

Stephen J. Coales
ExSAR Corporation
11 Deer Park Drive, Suite 103
Monmouth Junction, NJ 08852
USA

Kenneth M. Comess
Abbott Labs PPD R&D
100 Abbott Park
Abbott Park, IL 60064
USA

Daniel A. Erlanson
Sunesis Pharmaceuticals, Inc.
341 Oyster Point Boulevard
South San Francisco, CA 94080
USA

Michael L. Gross
Center for Biomedical and Bioorganic Mass Spectrometry
Department of Chemistry
Washington University
Campus Box 1134, One Brookings Drive
St. Louis, MO 63130
USA

David Hambly
1201 Amgen Court West
Seattle, WA 98119
USA
Yoshitomo Hamuro
ExSAR Corporation
11 Deer Park Drive, Suite 103
Monmouth Junction, NJ 08852
USA

Georg Höfner
Ludwig-Maximilians-University Munich
Department of Pharmacy
Center of Drug Research
Butenandtstrasse
81377 Munich
Germany

Steven A. Hofstadler
Ibis BioSciences
ISIS Pharmaceuticals
1891 Rutherford Road
Carlsbad, CA 92008
USA

Gérard Hopfgartner
Life Sciences Mass Spectrometry,
School of Pharmaceutical Sciences
University of Geneva
University of Lausanne
20 Boulevard d’Yvoy
CH-1211 Geneva 4
Switzerland

Hubertus Irth
Department of Analytical Chemistry & Applied Spectroscopy
Vrije Universiteit Amsterdam
De Boelelaan 1083
1081 HV Amsterdam
The Netherlands

Uwe Karst
Institute of Inorganic and Analytical Chemistry
University of Münster
Corrensstrasse 30
48149 Münster
Germany

Michele Kelly
Groton/New London Laboratories
Pfizer Inc.
Eastern Point Road
Groton, CT 06340
USA

Walter A. Korfmacher
Exploratory Drug Metabolism
Department of Drug Metabolism and Pharmacokinetics
Schering–Plough Research Institute
Kenilworth, NJ 07033
USA

Darren Lewis
Upchurch Scientific Inc.
619 Oak Street
Oak Harbor, WA 98277
USA

André Liesener
Boehringer Ingelheim Pharma GmbH & Co. KG
Birkendorfer Strasse 65
88397 Biberach/Riss
Germany

Naim Nazef
Schering–Plough Research Institute
840 Memorial Drive
Cambridge, MA 02139
USA
Ella S.M. Ng
Department of Biochemistry and Molecular Biology
University of Calgary
Calgary, Alberta T2N 4N1
Canada

Kristin A. Sannes-Lowery
Ibis Therapeutics
ISIS Pharmaceuticals
1891 Rutherford Road
Carlsbad, CA 92008
USA

Andy Scheffer
Institute of Inorganic and Analytical Chemistry
University of Münster
Corrensstrasse 30
48149 Münster
Germany

David C. Schriemer
Department of Biochemistry and Molecular Biology
University of Calgary
Calgary, Alberta T2N 4N1
Canada

Marshall M. Siegel
Wyeth Research
401 N. Middletown Rd.
Bldg. 222/Room 1043
Pearl River, NY 10965
USA

Martin Vogel
Institute of Inorganic and Analytical Chemistry
University of Münster
Corrensstrasse 30
48149 Münster
Germany

Klaus T. Wanner
Ludwig-Maximilians-University Munich
Department of Pharmacy
Center of Drug Research
Butenandtstrasse
81377 Munich
Germany

Virgil L. Woods Jr.
Department of Medicine and Biomedical Sciences Graduate Program
University of California San Diego
Basic Science Building
9500 Gilman Drive, Dept 0656
La Jolla, CA 92093-0656
USA

Christine Zepperitz
Ludwig-Maximilians-University Munich
Department of Pharmacy
Center of Drug Research
Butenandtstrasse
81377 Munich
Germany

Mei M. Zhu
Millennium Pharmaceuticals, Inc.
40 Landsdowne Street
Cambridge, MA 02139
USA
Part I
Introduction to MS in bioanalysis
1
Mass Spectrometry in Bioanalysis – Methods, Principles and Instrumentation

Gérard Hopfgartner

1.1 Introduction

Mass spectrometry started about 100 years ago with the work of Sir J.J. Thomson. His interest was the quantitative measurement of the mass and charge of the cathode rays (electrons). For that purpose he constructed the first mass spectrometer (parabola mass spectrograph) and he received in 1906 the Nobel Prize for Physics in recognition of his work [1]. In the next decades the major focus in the development and application of mass spectrometry was dedicated to the studies of isotopes [2]. In 1918 Dempster [3] developed an instrument in which a strong magnetic field was produced, between two semicircular iron plates, to separate positive ion rays with great resolving power. He also described the bombardment of chemical compounds with electrons forming positive ions. This technique is known today as electron impact ionization and is still widely used in modern mass spectrometry. In the early 1940s the first commercial instruments based on magnetic deflection and electron impact ionization became available. These instruments were mostly applied for the analysis of hydrocarbons in petroleum products. Beyond instrumental development the end of the 1950s saw the application of mass spectrometry for structure elucidation of natural products and the studies of fragmentation patterns. At the same time the concept of several mass analyzers was described, such as time of flight or ion cyclotron resonance.

While the first coupling of gas chromatography and mass spectrometry had been reported in the late fifties [4] one had to wait for almost another 20 years before the direct interfacing of liquid chromatography with mass spectrometry (LC-MS) was described by Arpino et al. [5]. With the direct liquid interface (DLI) the effluent of the chromatographic column was directly introduced in the electron impact source. Contrarily to gas chromatography coupled to mass spectrometry (GC-MS), LC-MS did do not catch on as rapidly. One of the reasons was that the MS interface could only handle LC flow rates of a few microliters per minute. Another limitation was that electron impact or chemical ionization was not suit-
able for very thermolabile and high molecular weight compounds. It took almost
10 years before the LC-MS analysis of larger molecules, using continuous flow
fast atom bombardment (FAB), was first reported [6, 7]. For small molecules it
was thermospray (TSP) [8] and particle beam (PB) [9] which allowed the routine
use of LC-MS. Thermospray formed in most cases ammonium adducts, while
particle beam yielded electron impact spectra. Within a few years thermospray
was rapidly replaced by atmospheric pressure ionization techniques.

Quadrupole mass spectrometers [10] or quadrupole ion traps are today the
most widely used mass spectrometers. The physical bases were described in the
early 1950s by Paul and Steinwedel. For his work Paul received the Nobel Prize
in 1989 [11]. Triple quadrupole mass spectrometers have become very popular
instruments for qualitative and quantitative analysis. Yost et al. [12] built in 1978
the first instrument and it took four years before this type of instrument was
commercialized. The coupling with liquid chromatography or gas chromatogra-
phy is well established and benchtop ion traps or quadrupoles are nowadays part
of the standard equipment of many analytical laboratories.

For the analysis of macromolecules and in particular for proteins a major mile-
stone was achieved with the development in 1987 of matrix assisted laser desorp-
tion ionization by Karas and Hillenkamp [13] and in 1988 of electrospray ioniza-
tion by J. Fenn (Nobel Prize in 2002) [14].

Over the past decade progress in mass spectrometry and its hyphenation with
separation techniques has made these tools essential in life sciences. The present
chapter will describe current ionization techniques as well as mass analyzers.

1.2
Fundamentals

Mass spectrometry is a sensitive analytical technique which is able to quantify
known analytes and to identify unknown molecules at the picomoles or femto-
moles level. A fundamental requirement is that atoms or molecules are ionized
and analyzed as gas phase ions which are characterized by their mass (m) and
charge (z). A mass spectrometer is an instrument which measures precisely the
abundance of molecules which have been converted to ions. In a mass spectrum
m/z is used as the dimensionless quantity that is an independent variable. There
is still some ambiguity how the x-axis of the mass spectrum should be defined.
Mass to charge ratio should not no longer be used because the quantity measured
is not the quotient of the ion’s mass to its electric charge. Also, the use of the
Thomson unit (Th) is considered obsolete [15, 16]. Typically, a mass spectrometer
is formed by the following components: (i) a sample introduction device (direct
probe inlet, liquid interface), (ii) a source to produce ions, (iii) one or several
mass analyzers, (iv) a detector to measure the abundance of ions, (v) a computer-
ized system for data treatment (Fig. 1.1).

Most mass analyzers operate under high vacuum or at low pressure, so that the
charged particles do not deviate from their trajectories due to collision with resid-
ual gas and thus never reach the detector. Mass spectrometers can be grouped into different types of operation mode: continuous mode (magnetic sector, quadrupole), pulsed mode (time of flight), and ion trapping mode (quadrupole traps, Fourier transform ion cyclotron, orbitrap). In the source, positive or negative ions are produced either under vacuum or at atmospheric pressure. Depending on the ionization technique, either molecular ions \((\text{M}^+)\) with an odd electron number or protonated ions \(([\text{M}+\text{H}]^+)\) with an even electron number are formed. In the mass spectrum when no fragmentation occurs, in general the most intense peak represents the molecular ion, the protonated molecule or a molecule with an adduct ion followed by ions containing the heavier isotopes. \(M_r\) is the mass of one molecule of a compound, with a specified isotopic composition, relative to one-twelfth of the mass of one atom of \(^{12}\text{C}\). An important aspect is that many atoms have naturally occurring isotopes which can be differentiated by mass spectrometry. Molecules analyzed by organic mass spectrometry contain in general carbon, hydrogen, nitrogen, oxygen and sulfur. These elements have stable isotopes (Table 1.1) which have different atomic mass. Therefore, under certain conditions and for a given molecule, the isotopic contribution can be measured by mass spectrometry.

For example, carbon is composed of two naturally occurring isotopes: \(^{12}\text{C}\) for 98.9% and \(^{13}\text{C}\) for 1.1% abundance, respectively. For cyclohexane \((\text{C}_6\text{H}_{12})\) the \(\text{M}^+\) ion composed exclusively of \(^{12}\text{C}\) and \(^1\text{H}\) atoms is observed at a nominal mass of \(m/z\) 84. The nominal mass is the integer of the sum of the masses calculated from the most abundant naturally occurring isotopes. The monoisotopic

Fig. 1.1 Principle of a mass spectrometer, the outcome of an analysis is a mass spectrum with \(m/z\) in the x-axis and ion intensities in the y-axis. The ion intensities can be given in percentages (relative intensity) or in counts or in counts per second (absolute intensity). The most abundant peak at \(m/z\) 578.6 is called the base peak.
peak represents the exact mass of an ion or a molecule calculated from the most abundant isotope of each element. The relative intensity of this ion compared to the others ions is 100%. A weaker isotopic peak \((M^{+} + 1) \) is observed at \(m/z \) 85 with an abundance of 6.5% corresponding to one \(^{13}\text{C} \), five \(^{12}\text{C} \) and 12 \(^{1}\text{H} \) atoms. An even weaker peak (0.2% abundance) is visible at \(m/z \) 86 \((M^{+} + 2) \) corresponding to two \(^{13}\text{C} \), four \(^{12}\text{C} \) and 12 \(^{1}\text{H} \) atoms. In this example, the contribution of deuterium can be neglected. For large molecules with increasing the number of carbon atoms, a shift of the maximum of the isotopic distribution towards higher masses can be observed, as depicted in Fig. 1.2. Above several hundred atoms of carbons, mostly a Gaussian distribution is observed. The consequence is that, in particular for protein analysis, only the relative molecular mass and not the monoisotopic mass is observed since either the monoisotopic masses can no longer be resolved or the intensity of the peak is too weak. The average mass is the calculated mass of an ion based on the relative atomic mass of each atom.

The isotopic contribution of various atoms is additive. For low molecular weight compounds, the isotopic contribution originates mainly from the carbon atom as long as no other element with a second isotope of significant abundance is present. For a molecule of \(M_r \) 192 the intensity of the \(m/z \) 194 ion represents 12% of the \([M+H]^+\) peak \((m/z \) 193; Fig. 1.3A). Chlorine (Cl) has two intense isotopes: \(^{35}\text{Cl} \) and \(^{37}\text{Cl} \) (76% and 24% abundance, respectively). Replacing one \(^{1}\text{H} \) by a Cl atom results in a change of the isotopic distribution of the molecule.

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic mass</th>
<th>Symbol</th>
<th>Isotopic mass</th>
<th>Abundance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>12.0110</td>
<td>C</td>
<td>12.000000</td>
<td>98.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>13.003354</td>
<td>1.1</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>1.0080</td>
<td>H</td>
<td>1.007825</td>
<td>99.985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>2.013999</td>
<td>0.015</td>
</tr>
<tr>
<td>Oxygen</td>
<td>15.993</td>
<td>O</td>
<td>15.9994915</td>
<td>99.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>16.999133</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>17.999160</td>
<td>0.20</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>14.0067</td>
<td>N</td>
<td>14.0030698</td>
<td>99.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>15.00010</td>
<td>0.36</td>
</tr>
<tr>
<td>Chlorine</td>
<td>35.4610</td>
<td>Cl</td>
<td>34.968849</td>
<td>75.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cl</td>
<td>36.99988</td>
<td>24.23</td>
</tr>
<tr>
<td>Bromine</td>
<td>79.9035</td>
<td>Br</td>
<td>78.918348</td>
<td>50.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Br</td>
<td>80.916344</td>
<td>49.5</td>
</tr>
<tr>
<td>Sulfur</td>
<td>32.066</td>
<td>S</td>
<td>31.97207</td>
<td>95.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>32.971456</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>33.96787</td>
<td>4.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>35.96708</td>
<td>0.02</td>
</tr>
</tbody>
</table>