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Jököping University

55111 Jönköping
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1

Introduction

This book comprises the proceedings of the final symposium of the Collaborative

Research Center (SFB 370) of the Deutsche Forschungsgemeinschaft on ‘‘Inte-

gral Materials Modeling’’ which took place in Aachen, Germany, on December

1–2, 2005. It is composed of the final reports of the projects and complementary

manuscripts of renowned scientists in the field of materials modeling, covering a

broad range of current simulation activities.

The projects are identified by their project numbers in their title. The manu-

scripts are organized such that after a list of persons involved in the SFB 370 the

final through-process modeling exercises (group C) are introduced by the reports

on supporting process and materials models (groups A and B) and comple-

mented by the invited contributions. The first article on ‘‘Integral Materials Mod-

eling’’ gives an introduction into the philosophy, history, and structure of the col-

laborative research center.

With the final symposium the SFB officially ended but its core topic was con-

tinued in a transfer program of the Deutsche Forschungsgemeinschaft (TFB 63)

on ‘‘Industrially Relevant Modeling Tools’’.

As a chairman of the collaborative research center on ‘‘Integral Materials Mod-

eling’’ (SFB 370) I would like to express my sincere gratitude to my colleagues for

their continuous support and encouragement. As a university professor it was my

great pleasure to see the interest and engagement of the young doctoral students

in the research program, their fascination by the scientific challenge, and their

natural openness to interdisciplinary cooperation, discussion, and information ex-

change. Last but not least my thanks go to the review panels for their valuable

advice and the Deutsche Forschungsgemeinschaft which not only funded the col-

laborative research center for 12 years but also offered unbureaucratic support.

Günter Gottstein
Chairman, SFB 370

Aachen, December 2006
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2

Integral Materials Modeling

G. Gottstein

Abstract

This chapter reviews the historical background of computational materials

science and introduces the scientific concept of ‘‘integral materials modeling’’.

The objectives of the collaborative research center on this topic are formulated

and an overview is given on the structure development and achievements of the

research program.

2.1

Introduction

One of the ultimate dreams of materials science is the theoretical design of new

materials. It would save tremendous costs that are currently invested in alloy de-

velopment, e.g. for operating expensive pilot plants and conducting comprehen-

sive materials testing, and in view of the fact that even today it takes more than

15 years before a new material eventually sees the market. That there is still need

for research to develop new metallic materials although they have be successfully

processed for more than 5000 years is not due to the large number of potential

alloys that can be produced in multicomponent alloys out of 92 elements or even

70 elements with metallic character. On the contrary, if the properties of these

alloys would only reflect the property mix of their components, it would be easy

with current computer power to predict the properties of virtually any potential

alloy system. However, the properties of a material do not reflect the properties

of the constituent elements, rather the properties of a material are controlled by

the spatial distribution of elements and crystal defects, which is also referred to as

microstructure. The microstructure comprises phase distribution, elemental dis-

tribution, orientation distribution, as well as crystal defects like grain boundaries,

dislocations, and point defects. What is more, the microstructure is seriously af-

fected by materials processing. In essence, the properties of a material are not

given by a superposition of elemental properties, but by a complex function of

5



its chemical composition and its processing history, and there is a virtually infi-

nite number of possible microstructures and, therefore, of material properties.

This is good news for alloy development since material properties can be changed

by processing at constant chemistry in a wide range but it is a nightmare for ma-

terials modeling that aims at predicting material properties from the knowledge

of materials chemistry and processing, and it appears hopeless to design com-

putational strategies for optimization of materials chemistry and processing for

a given desired property spectrum.

As a result, it is practically impossible to establish relations between materials

properties and both processing parameters and the overall chemistry. This is be-

cause of the fact that the processing conditions are not the state variables of ma-

terials properties even though that would be desirable for the materials engineer

who is used to formulate the properties of a product in terms of the engineering

control parameters. Processing–property relationship may be most desirable for

engineering practice, but unfortunately this approach cannot be successful. It is

common in materials engineering to establish correlations between material

properties and processing conditions. These correlations, however, are not equa-

tions of state for the material, and thus liable to fail when the chemistry or pro-

cessing parameters are changed.

The only correct way to formulate equations of state for the terminal properties

of a processed material is in terms of microstructure development during pro-

cessing because the microstructure constitutes the state variable of the material.

In fact, the microstructure is a fingerprint of the processing history of a material

and determines the current properties of a material. That is why geologists hope

to derive the history of rocks from today’s microstructure to understand the

formation of the Earth’s crust. Consequently, the very problem of property predic-

tions is to adequately quantify a microstructure and, in particular, to establish

microstructure–property relationships. This requires an understanding of the

controlling microstructural elements and the microscopic processes that deter-

mine a specific property.

An adequate characterization of the microstructure requires knowledge of the

atomistic arrangement in a material. Therefore, a deeper physical understanding

Fig. 2.1 The scale problem of materials modeling: the macroscopic

properties are defined by the microstructure which develops by atomic

mechanisms.
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of material properties and phenomena could only be developed after the discovery

of X-rays and their application to crystallography in the beginning of the 20th

century. This engendered an understanding of material behavior on the basis of

its atomistic arrangements and atomistic transport processes. Application of X-ray

diffraction and spectroscopy complemented much later by electron and neutron

diffraction and spectroscopy revealed the importance of nanoscale configurations,

notably the crystal structure, crystal defects, and nanoscale chemistry, in terms of

solute distribution and dispersion of second phases, for an interpretation of ma-

terial properties. In fact, materials science in the 20th century was essentially

dedicated to an understanding of microstructure evolution and a formulation of

microstructure–property relationships.

From this research it became clear, however, that there are only a few although

complex physical processes that impact the microstructure of a bulk metallic ma-

terial. The mechanisms of these processes have been the subject of investigations

for many years, and the outcome of this research constitutes the foundations and

concepts of modern materials science.

In essence, there are three major processes that affect the microstructure of a

material, namely phase transformations, plastic deformation, and restoration pro-

cesses like recovery, recrystallization, and grain growth. These processes and their

impact on microstructure are complex in detail and interdependent in a highly

nonlinear fashion. Their thermodynamics, kinetics, and atomic mechanisms

have been subject of numerous investigations over the past 50 years, which have

substantiated that microstructural evolution is strongly related to the properties

Fig. 2.2 During conventional processing of a metallic material to the

final product (here a welded tube) the microstructure changes during

each processing step.
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and behavior of crystal defects: deformation of crystals proceeds by the genera-

tion, motion, interaction, and storage of dislocations; phase transformations are

controlled by diffusion, the fundamental atomic transport mechanism; and re-

crystallization and grain growth involve the motion of grain boundaries.

These three microstructural processes affect each other, e.g. precipitation of a

second phase hinders dislocation and grain boundary motion and, therefore, in-

fluences hardening during crystal plasticity and softening by recrystallization and

grain growth. A major complication for the mathematical treatment of these pro-

cesses is the local inhomogeneity that is introduced or even imposed by process-

ing, e.g. fluctuation of composition, segregation of elements, deformation inho-

mogeneities, etc.

The theoretical foundations that govern the thermodynamics and kinetics of

these processes have been developed during the past 50 years [1–4]. The respec-

tive equations of motion and equations of state for these processes are generally

formulated in terms of partial differential equations. An analytical solution of

these equations was in the vast majority of cases beyond reach, even impossible.

Even 20 years ago such mathematical problems could be solved only by experts

for very special cases. This situation changed dramatically with the advent of pow-

erful computers, which could be utilized to solve numerically these difficult equa-

tions. With the increasingly powerful computers at hand to everybody nowadays,

virtually every scientist can tackle these mathematical problems by utilizing

sophisticated software. Moreover, the availability of high-performance computers

has engendered novel computational techniques to address microstructural

changes and thus the option to simulate microstructural evolution on the com-

puter [5].

Fig. 2.3 For simulation of microstructure evolution the microstructure

processes have to be interfaced to the process variables; here for sheet

fabrication of an aluminum alloy.
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While the simulation of microstructure evolution constitutes a remarkable

progress in computational materials science it does not yet solve the engineering

problem to predict the properties of a material. Since the microstructure controls

materials properties but is affected by each processing step, the prediction of ter-

minal material properties or the behavior of a part under service conditions re-

quires one to follow microstructural evolution along the entire processing chain,

i.e. conventionally from the liquid state to the final product. To simulate this on

the computer, it is necessary to connect the microstructural evolution to the pro-

cessing parameters, which essentially means to subject each microstructural vol-

ume element to a temporal change of strain and temperature. In engineering ap-

plications this temperature and strain history of a material is typically computed

by finite element (FE) approaches. On the other hand, the results of an FE simu-

lation depend on the current properties of a material; hence microstructural evo-

lution along the processing history and the local processing parameters, strain

and temperature, are interdependent. In essence, both approaches, processing in

terms of FE codes and microstructure in terms of physics-based microstructure

evolution codes, have to be connected and interfaced in space and time. This

means accounting for local and temporal changes of chemical composition, seg-

regation, defect densities, etc., under changing boundary conditions. Therefore, it

also requires advanced interface tools and sophisticated numerical techniques to

solve the respective sets of mathematical equations and places a substantial de-

mand on computing power.

2.2

The Collaborative Research Center on ‘‘Integral Materials Modeling’’

In 1994 the collaborative research center on ‘‘Integral Materials Modeling’’ (SFB

370) of the Deutsche Forschungsgemeinschaft set out to tackle this problem and

to develop strategies and techniques to predict terminal material properties from

the knowledge of material chemistry and processing conditions. Since each pro-

cessing step affects the microstructure, the microstructure evolution through the

entire processing chain had to be traced to determine the final microstructure at

the end of the processing chain in order to predict the properties associated with

it. This though-process modeling approach on a physics-based microstructure

definition was subject of research for a variety of materials and their processing.

Two fundamental processing stages (A and B) were distinguished, which charac-

terized virtually all materials fabrication procedures (Fig. 2.4):

(A) Generation of the solid state from the liquid phase (solidification)

or gas phase (condensation).

(B) Processing of the solid by mechanical and thermal treatment.

They determined the properties of the product which constituted stage C:

(C) Determination of the specific properties of interest for a processed product.
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Depending on the specific product considered these processing stages can be con-

nected in various ways (Fig. 2.5). For a net shape cast metallic part or an injection

molded polymer, stage A directly connects to stage C. Stage A itself may be sub-

divided in to several steps, e.g. if a cast part is coated. A homogenization anneal

Fig. 2.4 Coupling of microstructure and processing by interfacing FEM

and physics-based microstructure models. For each volume element the

microstructural information has to be updated in every time step.

Fig. 2.5 Topical structure of the collaborative research center (SFB 370)

‘‘Integral Materials Modeling’’ of the Deutsche Forschungsgemeinschaft.
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