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Preface to the third Edition

Atomic absorption spectrometry (AAS) is today, more than 40 years after it was pro-
posed by Walsh as an analytical procedure, well established in numerous fields of in-
strumental analysis. Due to its high specificity and selectivity, as well as the fact that
operation is relatively simple, AAS has gained its place alongside ICP OES and ICP-MS.
It is used to perform numerous routine tasks in the laboratory ranging from the determi-
nation of trace contents through to major constituents. The fact that more than 1000
original papers dealing with AAS are published every year is a clear indication that there
are numerous new developments over and above the routine applications.

These include new knowledge on atomization and other reaction mechanisms, im-
proved analytical methods, especially in the fields of trace and ultratrace analysis, as well
as in solids analysis, particularly using slurries. A major contribution has been the devel-
opments in instrumentation, such as transversely-heated graphite furnaces, integrated
platforms, the application of solid-state detectors, or simultaneous multiclement AAS, as
well as new sample introduction and on-line pretreatment techniques such as flow injec-
tion. New areas of application including the analysis of ‘high tech’ materials and specia-
tion analysis must also be mentioned.

To do justice to these manifold developments, this monograph has been rearranged,
completely revised, and correspondingly extended. Thus, Chapter 1 on the historical
development of AAS is new; in the first instance it demonstrates the maturity of the
technique and provides the historically interested reader with the background informa-
tion, and in the second instance it frees the technical chapters from historical ballast,
leaving them free for a discussion of the current state of knowledge. Chapter 2 on the
physical principles of AAS is also largely new; many of the topics discussed in this
chapter are only inadequately treated in standard textbooks or not at all, and other topics
have only been thoroughly developed in recent years.

Chapters 5, 6, and 7 are likewise new. Chapter 5 deals with procedures of measure-
ment and calibration, the principles of quality control and assessment, and the basics of
the statistical evaluation of the analytical results. Chapters 6 and 7 deal with automation
and species analysis, and present a short review of the developments in these areas dur-
ing recent years. On the other hand, the comparative chapter on other analytical proce-
dures is no longer included since the recent developments in ICP OES and ICP-MS are
well beyond the scope of this monograph.

Compared to the last edition, Chapter 8 includes significantly improved knowledge
on the mechanisms of atomization and interferences, particularly for GF AAS and
HG AAS. Chapter 9, dealing with the individual elements, now includes information on
the stability and storage of test sample and calibration solutions, as well as the determi-
nation of species. In the treatment of applications in Chapter 10, methods no longer rele-
vant, such as the determination of volatile elements by GF AAS using atomization from
the tube wall with peak height evaluation, have been eliminated. On the other hand, all
relevant procedures for speciation analysis are newly included.

Throughout this edition the terminology proposed by 1SO and TUPAC has been used
consistently. Thus, instead of ambiguous units such as ppm, ppb, etc., we have consis-



VI Preface

tently used the ISO units mg/L, pg/L, ng/L. and mg/g, pg/g, ng/g, etc. We have also at-
tempted to avoid concentrations quoted in percent, which nevertheless was not possible
in all cases since it was not clear from the original papers whether the concentration of
acids, for example, were quoted in weight or volume percent.

To establish the bibliography we applied a relational databank (PELIDAS,
© M. Sperling) to evaluate more than 55000 entries from the field of atomic spectros-
copy using plausibility checks to guarantee the quality of the citations. For the selection
of the 6500 or so citations in this monograph, next to their information content, their
topicality and availability also played a role. It is clear that for such a selection subjec-
tivity comes into play, even though we have always attempted to be objective; we there-
fore ask for our readers’ understanding if any paper that they deem to be important is not
cited.

To maintain the topicality of this monograph we have also departed from traditional
methods of production. Since the entire work, including the layout, was produced on the
authors’ PCs, we were able to update the contents until shortly before publication. We
feel sure our readers will excuse the inadequacies of the word processor used in produc-
ing the layout since these are more than compensated by the advantage of topicality.

Uberlingen, September 1998 Bernhard Welz
Michael Sperling

Preface to the second Edition

In the nine years since the publication of the first edition of this monograph, atomic ab-
sorption spectrometry has undergone a remarkable development. This is perhaps no
entirely true for flame AAS, which nowadays is established as a routine procedure in all
branches of elemental analysis, but it is certainly the case with all other techniques of
AAS. Even though flame AAS had already found acceptance in many standard methods
due to its reliability in the mg/L range, it is only a few years ago that considerable doubt
was cast on the ability of graphite furnace and hydride generation AAS to provide cor-
rect resuits at all in the pg/L and ng/L ranges.

The difficulties observed by many analysts using these techniques were due in part to
the shortcomings of the instruments employed and in part to non-optimum application,
since the significance of a number of parameters had not been recognized. In addition,
the general problems of trace and nanotrace analysis had to be taken into consideration,
since these newer techniques opened this concentration range to AAS.

These days, the causes of the majority of interferences and also the possibilities for
their elimination are known. Even if all technical problems have not been completely
solved, the way to their solution has been shown.

Thus, as well as the flame technique, the graphite furnace, hydride generation, and
cold vapor techniques are nowadays of equal significance. The major field of application
of these newer techniques is in trace, nanotrace and ultratrace analysis. Each of these
techniques has its own atomizer, its own specific mechanisms of atomization and inter-
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ference, and of course its own preferred field of application. In this second edition, these
three techniques are thus treated separately whenever this appears expedient.

This made it necessary to substantially revise numerous chapters. Chapter 3 now
deals only with atomizers, their historical development, and their specific characteristics
for each technique. A new chapter 8 has been introduced in which the mechanisms of
atomization and the interferences for each technique are discussed in detail. Additionally,
typical interferences and their elimination are mentioned. A general discussion and clas-
sification of interferences is presented in chapter 7. Application of the Zeeman effect for
background correcttion is also treated in detail in this chapter. This treatment includes
the theoretical aspects of the method, the various configurations, and their advantages
and disadvantages. In the chapters on individual elements and specific applications, the
various techniques are, wherever applicable, weighed against each other.

A discussion on trace and nanotrace analysis has also been newly introduced, since
the newer techniques of AAS are among the most sensitive methods for elemental analy-
sis. Solids analysis is also treated since this has become possible with the graphite fur-
nace technique. A section on environmental analysis has been included in the chapter on
specific applications, and topical questions on the analysis of air, waste water and sew-
age sludge are addressed.

Among associated analytical methods, atomic emission spectrometry employing an
inductively coupled argon plasma is discussed especially, since it is frequently regarded
as a competitive technique to flame AAS. However, a broad treatment of this theme is
outside the scope of this book.

Graphite furnace atomic emission spectrometry has also received attention even
though, like atomic fluorescence spectrometry, it is rarely used in practice.

Finally, terms, nomenclature and units of measurement have been brought into line
with the latest international standards — a fact reflected in the changed title of this mono-
graph. Of particular help in this respect was my work on the committee of material test-
ing within the German Institute of Standardization. This committee was chaired by Dr.
Hans Massmann, who, until his death, worked on the completion of DIN 51 401 and who
also made valuable suggestions for the second edition of this book — a fact greatly appre-
ciated.

I should also like to thank those readers who wrote to me pointing out errors in the
first edition; they have made valuable contributions to improving this work. I should
particularly like to thank Sir Alan Walsh who drew my attention to a number of errors
and who proposed numerous improvements and more precise definitions.

The numerous new diagrams were prepared with the customary care by Mr.
E. Klebsattel who receives my grateful thanks. I should also like to thank Mr. J. Storz. for
designing the cover.

This book is the English-langnage version of its German forerunner “Atomabsorp-
tionsspektrometrie” (formerly “Atom-Absorptions-Spektroskopie”) which is now in its
third edition. As for the first edition the translation has been very capably carried out by
Christopher Skegg to whom I extend my thanks.

Meersburg, May 1985 Bernhard Welz
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Preface to the first Edition

It was very convenient that the translation of my book into the English languagee was
undertaken just as I was completing the second German edition. Therefore, all the latest
developments and publications could be incorporated directly in the English edition

Usually, years go by between the publication of the original book and the completion
of a translation which, therefore, typically does not represent the latest state. Here, how-
ever, the translation could be published about a year after the original German edition.
This is of special importance for the rapidly growing field of furnace atomic absorption
which was hardly known a few years ago when the first edition of my book was pub-
lished. In the meantime it has found worldwide acceptance among analysts.

So, to all my friends and colleagues who have been involved in the translation and
completion of this book, I would like to express my thanks for the time that they have
spent and for all the effort that they have put into it so that it could be published so early.
Last not least, I want to express my pleasure that my book on Atomic Absorption Spec-
troscopy has been accepted for translation into English. I hope that it will prove a stimu-
lus to atomic absorption spectroscopy and will help analysts and spectroscopists in their
daily work.

Meersburg, March 1976 Bernhard Welz
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Abbreviations and Acronyms

The following abbreviations and acronyms are used in this monograph:

AA acetylacetone

AAS atomic absorption spectrometry

A/D (conversion)  analog-to-digital

AES Auger electron spectroscopy

AFM atomic force microscopy

ANOVA analysis of variance

APDC ammonium pyrrolidine dithiocarbamate

AsB arsenobetaine

ASV anode stripping voltammetry

BC background correction; background corrector

BCR Bureau Commun de Référence, Belgium

BERM International Symposium for Biological and Environmental
Reference Materials

BG borosilicate glass

BOC baseline offset correction

BPTH 1,5-bis[phenyl-(2-pyridyl)methylene]thiocarbohydrazide

CARS coherent anti-Stokes Raman spectroscopy

CCD charge coupled device

CE concentration efficiency

CF continuous flow

CGC capillary gas chromatography

CI consumptive index

CID charge injection device

CPG controlled pore glass

CRA carbon rod atomizer

CRM certified reference material

CSIRO Commonwealth Scientific and Industrial Research Organization
(Australia)

CT cryotrapping

CV AAS cold vapor AAS

DAL dialkyl-lead

DBT dibutyltin

DCTA 1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid

DDAB didodecyl-dimethylammonium-bromide

DDC diethyldithiocarbamate

DDTC diethyldithiocarbamate

DDTP dimethoxydithiophosphate

DESe diethylselenium

DIBK di-isobutyl ketone

DIN Deutsches Institut fiir Normung (German Standards Institute)
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DMA
DMF
DMSe
DMSO
DPTH
DTC
DTP
EDL
EDTA
EDX
EF

EG

EMP

EPA

ESCA

ET AAS
ETV
ETV-1CP-MS

F AAS
FANES
FEP

FG

Fl1

FIA

FID
FIMS
FIT
FWHM
GAP
GC

GF AAS
GLP
GLS
HCL
HG AAS
HGA
HMA-HMDTC
HMDTC
HPLC
TAEA
IBMK
ICP
ICP-MS

dimethylarsonate

dimethylformamide

dimethylselenium

dimethylsulfoxide
1,5-bis(di-2-pyridylmethylene)thiocarbonhydrazone
dithiocarbamate

dithiophosphoric acid

electrode discharge lamp

ethylendiamine-tetraactic acid

energy-dispersive X-ray spectrometry

enrichment factor

polycrystalline electrographite (also Erfassungsgrenze in Section
52.3)

electron microprobe

Environmental Protection Agency (U.S.A))

electron spectroscopy for chemical analysis
electrothermal AAS

electrothermal vaporization

electrothermal vaporization inductively coupled plasma mass
spectrometry

flame AAS

furnace atomic non-thermal excitation spectrometry
fluorinated engineering polymers (perfluoro-ethylene-propylene)
flint glass

flow injection

flow injection analysis

flame ionization detector

flow injection mercury systern (Perkin-Elmer)
flame-in-tube (non-heated quartz tube atomizer with flame)
full width at half maximum

good analytical practice

gas chromatography (also glassy carbon in Chapter 1)
graphite furnace AAS

good laboratory practice

gas-liquid separator

hollow cathode lamp

hydride-generation AAS

longitudinally-heated graphite atomizer (Perkin-Elmer)
hexamethyleneammonium-hexamethylenedithiocarbamate
hexamethylenedithiocarbamate

high performance liquid chromatography

International Atomic Energy Authority (Austria)

isobutyl methyl ketone

inductively coupled plasma

inductively coupled plasma mass spectrometry



ILOD
INAA
IR

ISO
TUPAC
KR
LC
LD-TOF-MS
LEAFS
LOD
LOQ
MBT
MeHg
MeT
MipP
MMA
MMT
MS
NAA
NaHEDC
NIST
NL
NTA
OES
PAN
PAR
PC
Pd-Mg
PE
PET
PFA
PG

Pl
PIXE
PMPB
PMT
PP
PSF
PTFE
PU
PVC
PVD
QF
QTA
RBS

Abbreviations and Acronyms
instrument limit of detection
instrumental neutron activation analysis
infrared (wavelength range > 800 nm)
International Organization for Standardization
International Union of Pure and Applied Chemistry
knotted reactor
liquid chromatography
laser-dispersion time-of-flight mass spectrometry
laser-enhanced atomic fluorescence spectrometry
limit of detection
limit of quantitation
monobutyltin
methylmercury
methyltin
microwave induced plasma
monomethylarsonate
monomethyltin
mass spectrometry
neutron activation analysis
bis(2-hydroxyethyl)dithiocarbamate sodium salt
National Institute of Standards and Technology (U.S.A.)
non-linearity
nitrilotriacetic acid
optical emission spectroscopy
1-(2-pyridylazo)-2-naphthol
4-(2-pyridylazo)resorcinol
polycarbonate
mixed modifier of palladium nitrate and magnesium nitrate
polyethylene
poly(ethyleneterephthalate)
perfluoroalkoxy plastics
pyrolytic graphite
polyimides
particle [proton] induced X-ray emission spectroscopy
1-phenyl-3-methyl-4-benzoyl-5-pyrazolone
photomultiplier tube
polypropylene
polysulfone
polytetrafluoroethylene
polyurethane
polyvinyl chloride
physical vapor deposition
quartz tube furnace with a small flame burning in it
quartz tube atomizer
Rutherford backscattering spectroscopy
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REE
RF
RNAA
ROC (model)
S

S-H
S/N
SEM
SeMet
SIMS
SRM
SS
SSD
SSF
STM
STPF

TAL
TAR
TBT
TEL
TEM
TGL
THF
THGA

TMDTC
TML
TMSe
TOMA
TOPO
TPG
TPN (patients)
TPP
TTFA
uv
WHO
XAD
XPS
XRD
ZBC

rare earth elements

radio frequency

radiochemical neutron activation analysis
reduction of oxides by carbon

silica

Smith-Hieftje high current pulsing background correction
signal-to-noise ratio

scanning electron microscopy
selenomethionine

secondary ion mass spectrometry
standard reference material

solid sampling

solid state detector

spectral shadow filming

scanning tunneling microscopy
stabilized temperature platform furnace (a concept for quasi
isothermal atomization)

tetraalkyl-lead
4-(2-thiazolylazo)resorcinol

tributyltin

tetraethyl-lead

transmission electron microscopy
temperature gradient lamp
tetrahydrofuran

transversely-heated graphite atomizer with integrated platform
(Perkin-Elmer)
tetramethylenedithiocarbamate
tetramethyl-lead

trimethylselenonium
tri-N-octylmethylammonium
trioctylphosphine oxide

total pyrolytic graphite

total parenteral nutrition
triphenylphosphine
thenoyltrifluoroacetone

ultraviolet (wavelength range < 400 nm)
World Health Organization

ion exchange resin

X-ray photoelectron spectroscopy

X-ray diffraction analysis
Zeeman-effect background correction



‘Atomic absorption spectrometry (AAS) is a spectroanalytical procedure for the qualita-
tive detection and quantitative determination of elements employing the absorption of
optical radiation by free atoms in the gaseous state’ [1501].

1 The Historical Development of Atomic Absorption Spec-
trometry

1.1 The Early History

The beginning of optical spectroscopy is generally attributed to Sir ISAAC NEWTON
[3205] who, in a letter to the Royal Society in 1672, described the observation that sun-
light is split into various colors when it is passed through a prism. Albeit JOANNES
MARCUS MARCI VON KRONLAND (1595-1667), professor of medicine at the University
of Prague (Figure I-1), had already explained the origin of the rainbow on the basis of
the diffraction and scattering of light in water droplets in his book Thaumantias. Liber de
arcu coelesti deque colorum apparentium natura ortu et causis published in 1648; he can
thus be looked upon as the first spectroscopist.

The history of absorption spectrometry is closely connected with the observation of
sunlight [5934]. In 1802 Wollaston discovered the black lines in the sun’s spectrum.
These were later investigated in detail by Fraunhofer, who assigned letters to the

MARCVS MARCI PHIL: “« MEDIC DOCTOR
natus Landscrona Ilrlrmn.wr. rum in Boem:a
¢ 9y 1§ duwr

JOANNES

Fignure 1-1. ‘Joannes Marcus Marci. Doctor of
Philosophy and Medicine, and Professor, born
in Kronland in Bohemia, 17 June 1595.°



2 1 The Historical Development of Atomic Absorption Spectrometry

strongest lines, starting at the red end of the spectrum with the letter A. Even nowadays it
is common to refer to the ‘sodium D line’, a designation originated by Fraunhofer.

In 1820 Brewster expressed the view that these Fraunhofer lines were caused by ab-
sorption processes in the sun’s atmosphere. The underlying principles of this absorption
were established by KIRCHHOFF and BUNSEN [3121-3124] during their systematic ex-
amination of the line reversal in the spectra of alkali and alkaline-earth elements. They
conclusively demonstrated that the typical yellow line emitted by sodium salts in a flame
is identical to the black D line of the sun’s spectrum. The classical experimental ar-
rangement is shown in Figure 1-2.

Figure 1-2. Experimental setup of KIRCHHOFF and BUNSEN for investigating the line reversal in
the sodium spectrum (according to [5934]). Radiation from a lamp is focused by lens L through
the flame of a Bunsen burner B into which sodium chloride is introduced with a spatula. The
radiation beam is dispersed by prism P and observed on screen S. The sodium D line appears as a
black discontinuity in the otherwise continuous spectrum.

The relationship between emission and absorption was formulated by Kirchhoff in
his law, which is generally valid and states that any material that can emit radiation at a
given wavelength will also absorb radiation of that wavelength.

The connection between atomic structure and the interaction of atoms with radiation
was established by Planck (1900) in the quantum law of absorption and emission of
radiation, according to which an atom can only absorb radiation of well defined wave-
length A or frequency v, i.e. it can only take up and release definite amounts of energy e:

_he

e=hv ,
A

(1.

where h is Planck’s constant and ¢ is the speed of light. Characteristic values of & and v
exist for each atomic species.

On the basis of this and many other spectroscopic observations, Bohr proposed his
atomic model in 1913, the fundamental principle of which is that atoms do not exist in
random energy states, but only in certain fixed states which differ from each other by
integral quantum numbers. Upon absorbing a quantum of energy, an atom is transformed
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into a particular, energy-enriched state ‘containing’ the radiation energy which has been
taken up. After a period of around 10 s to 10-* s the atom can re-emit this energy and
thus return to the ground state.

Although Kirchhoff had already recognized the principle of atomic absorption in
1860 and the theoretical basis was steadily extended during the following decades, the
practical significance of this technique was not recognized for a long time. Since the
work of Kirchhoff, the principle of atomic absorption was mainly used by astronomers to
determine the composition and concentration of metals in the atmospheres of stars.
Chemical analyses were only carried out very sporadically by this technique; the deter-
mination of mercury vapor did, however, acquire a degree of importance [4225, 6380)
(see Section 1.8.1).

The actual year of birth of modern AAS was 1955. In that year, publications authored
independently by WALSH [6135] and ALKEMADE and MILATZ [125, 126] recommended
AAS as a generally applicable analytical procedure.

1.2 Sir Alan Walsh and the Period 1952-1962

Even though the publications by ALKEMADE and MILATZ [ 125, 126] in The Netherlands
and WALSH [6135] in Australia appeared in the same year, making it difficult to answer
the question as to who actually rediscovered AAS, Alan Walsh (Figure 1-3) is generally
recognized as the ‘father’ of modern AAS. This privilege is his just due since he cam-
paigned with untiring energy against the resistance to this new idea for more than a dec-
ade, spending much time to overcome the disinterest and misunderstanding. Best of all,
let Alan Walsh himself describe the events and developments of the period 1952 to 1962
[6137].

*My initial interest in atomic absorption spectroscopy was a result of two interacting
experiences: one of the spectrochemical analysis of metals over the period 1939-1946;
the other of molecular spectroscopy over the period from 1946-1952. The interaction
occurred early in 1952, when I began to wonder why, as in my experience,

Figure 1-3. Sir Alan Walsh.
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molecular spectra were usually obtained in absorption and atomic spectra in emission.
The result of this musing was quite astonishing: there appeared to be no good reasons for
neglecting atomic absorption spectra; on the contrary, they appeared to offer many vital
advantages over atomic emission spectra as far as spectrochemical analysis was con-
cerned. There was the attraction that absorption is, at least for atomic vapours produced
thermally, virtually independent of the temperature of the atomic vapour and of excita-
tion potential. In addition, atomic absorption methods offered the possibility of avoiding
excitation interference, which at that time was thought by many to be responsible for
some of the interelement interferences experienced in emission spectroscopy when using
an electrical discharge as light source. In addition, one could avoid problems due to self-
absorption and self-reversal which often make it difficult to use the most sensitive lines
in emission spectroscopy.’

‘As far as possible experimental problems were concerned, | was particularly fortu-
nate in one respect. For several years prior to these first thoughts on atomic absorption, I
had been regularly using a commercial i.r. spectrophotometer employing a modulated
light source and synchronously tuned detection system. A feature of this system is that
any radiation emitted by the sample produces no signal at the output of the detection
system. This experience had no doubt prevented the formation of any possible mental
block associated with absorption measurements on luminous atomic vapours.’

In an internal report for the period February—-March 1952 Walsh suggested that the
same type of modulated system should be considered for recording atomic absorption
spectra. ‘Assuming that the sample is vaporised by the usual methods, e.g. flame, arc, or
spark, then the emission spectrum is “removed™ by means of the chopper principle. Thus
the emission spectrum produces no output signal and only the absorption spectrum is
recorded.’

In the same report he continued: ‘For analytical work it is proposed that the sample is
dissolved and then vaporised in a Lundegardh flame. Such flames have a low tempera-
ture (2000 K) compared to arcs and sparks (5000 K) and have the advantage that few
atoms would be excited, the great majority being in the ground state. Thus absorption
will be restricted to a small number of transitions and a simple spectrum would result. In
addition, the method is expected to be sensitive since transitions will be mainly confined
to those from the ground level to the first excited state.’

The next report for the period April-May 1952 included the diagram shown in Figure
I-4 and described the first experiment as follows: “The sodium lamp was operated from
50 cycles/s and thus had an alternating output so that it was not necessary to use a chop-
per. The D lines from the lamp were isolated—but not resolved from each other—by
means of a direct vision spectroscope and their intensities were measured by means of a
photomultiplier tube, the output from which was recorded on a cathode ray oscillograph.
Amplification of the signal was achieved by the a.c. amplifiers in the oscillograph. With
the slit-width used the signal gave full-scale deflection on the oscillograph screen. A
Meker flame was interposed between the sodium lamp and the entrance slit of the spec-
troscope. When a solution of sodium chloride was atomised into the air supply of the
flame the signal at the oscillograph was reduced to zero. The principle of the method is
therefore established.’
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VMW Mleian

Figure 1-4. The first outline by Walsh for the measurement of atomic absorption from his report
for April-May 1952.

In retrospect Walsh admitted to ‘optimistic naivety’; he nevertheless recalls: ‘This
simple experiment gave me a great thrill, and I excitedly called John Willis, who at the
time was working on infrared spectroscopy and was later to make important contribu-
tions to the development of atomic absorption methods of chemical analysis. “Look,” |
said, “that’s atomic absorption.” “So what?” was his reply, which was the precursor of
many disinterested reactions to our atomic absorption project over the next few years.’

In his report for June-July 1952 Walsh discussed the problem of recording atomic
absorption spectra using a continuum source and came to the conclusion that a resolution
of approximately 2 pm would be required. This was far beyond the capabilities of the
best spectrometer available in his laboratory at that time. The report concluded: ‘One of
the main difficulties is due to the fact that the relations between absorption and concen-
tration depend on the resolution of the spectrograph, and on whether one measures peak
absorption or total absorption as given by the area under the absorption/wavelength
curve.’

This realization led him to conclude that the measurement of atomic absorption re-
quires line radiation sources with the sharpest possible emission lines. The task of the
monochromator is then merely to separate the line used for the measurement from all the
other lines emitted by the source. The high resolution demanded for atomic absorption
measurements is in end effect provided by the line source.

At this point Walsh had already recognized the salient points of AAS: The use of line
radiation sources, which make a high-resolution monochromator unnecessary, the princi-
ple of modulation, which makes the technique selective and eliminates the radiation
emitted by the atomizer, and the use of laminar flames of relatively low temperature to
atomize the sample. A patent for the technique was lodged at the end of 1953 and an
atomic absorption spectrometer was publicly demonstrated in Melbourne in March 1954.
However, during the exhibition the instrument aroused little interest.

The last changes to the specifications for the patent were submitted in October 1954
and immediately thereafter WALSH sent his first manuscript about AAS to Spectro-
chimica Acta, which was published at the beginning of 1955 [6135]. This paper was
followed by others from Walsh’s group [5010] and also from ALLAN [135] in New Zea-
land and DAVID [1426] in Australia. Nevertheless the technique was still looked upon as
a ‘scientific curiosity’ rather than a practical analytical technique.

In the meantime, Hilger and Watts had built an instrument, but since the radiation
source was not modulated it could not exploit the technique. Other manufacturers later
made the same mistake. WALSH [6137] recalls that ‘by 1958 there was no sign of any
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instrument manufacturer willing to produce the type of instrument which we thought
desirable.’

WALSH then decided to arrange for the production of appropriate equipment. The
necessary items were manufactured by three small companies in Melbourne and then
assembled by the user. ‘As it transpired,” he wrote {6137], ‘for the next few years the
members of our research group were increasingly involved in supporting the commercial
production in Australia of atomic absorption equipment. That a new type of Australian
industry was eventually created was, of course, cause for much satisfaction, but it was

inevitable that there was a substantial reduction in our research effort over a period of
several years.’

Figure 1-5. The Perkin-Elmer Model 303, the first spectrometer built exclusively for AAS.
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