This Page Intentionally Left Blank
J.A.H. Oates

Lime and Limestone
This Page Intentionally Left Blank
Preface

The Lime and Limestone Industries are dynamic industries, with new production methods, new products and new uses continually being developed. They are particularly interesting and challenging, because of the wide variety of products made, and the even wider range of applications.

Both industries are being profoundly affected by the general requirement to improve environmental performance. On the one hand, this presents a challenge, which is leading to heavy capital investment, mergers and even closures. On the other hand, it presents new opportunities to supply environmental control products.

Another major development, which affects both producers and customers, is the widespread reduction of manning levels. While this increases productivity and profitability, it places greater pressures on everyone to cope with less technical assistance than in the past. In consequence, there is a need to develop and broaden individual expertise, and to have improved access to up-to-date information.

One of the aims of producing this book is to present an integrated perspective of the Lime and Limestone Industries, and to indicate how they have been, and still are being shaped by customer-led requirements.

- It describes the many complex interactions, relating to product quality, that exist between suppliers and customers, both within and outside the Industries. This should help production personnel in the Industries to appreciate the impact of their actions and decisions on their customers.

- For users of lime and limestone products, it seeks to give an understanding of the factors which affect product quality and the ways in which the products interact with the processes in which they are used. It also indicates how the Lime and Limestone Industries control product quality, and what actions might be taken to tailor quality for a particular application.

- It may also provide a basis for constructive dialogue between suppliers and customers, thereby facilitating the development of new and improved products.

The formation of the European Union is leading to the preparation of a large number of application-specific Standards, specifying both product quality and test methods. Combining the diverse products and practices used in so many countries, each with its own traditions, is proving to be both demanding and stimulating. While many relevant CEN Standards have already been published, many others are still in preparation at the time of going to press.
The structure of the book and of individual chapters has been designed to present the information in a logical way that gives as coherent an account of the Industries as possible. Some chapters, such as quarrying and the processing of limestone, have much in common with other segments of industry. In such cases, the text has been kept relatively short and reference has been made to more specialist publications. In other chapters, such as the production of lime, and its use in building and construction, the subjects are so broad that it is beyond the scope of this publication to do them justice. In such cases, a brief description has been given, supplemented by a relatively large number of references for further reading. Annex 2 contains a list of journals and reference books of interest to the reader wishing to up-date, or broaden his knowledge of a particular subject.

During the past four decades that the author has been involved with both Industries, there have been many profound changes. No doubt the rate of change will accelerate, bringing new challenges and opportunities. If this work can, in some small way, help those involved to meet those challenges and to exploit the opportunities, it will have achieved its objective.

Buxton, Derbyshire, England

March, 1998
Acknowledgements

My first and foremost acknowledgement is to my wife Yvonne, without whose encouragement, tolerance and forbearance over the past three years, this book would never have been completed.

I also owe a great debt of gratitude to my former colleagues and friends at Buxton Lime Industries Ltd. (until 1990, the lime business of ICI plc) for their help and advice throughout. They are too numerous to mention by name, but have personally received my heartfelt thanks. I could not have written this book without their support.

I would like to acknowledge the invaluable contributions of the following experts: Mr. D.D. Brumhead, geology and exploration; Mr. D. Rockliff of Tilcon, aggregates; Mr. P.J. Jackson, formerly of Rugby Cement, cement and mortar; Mr. R.H. Llewelyn and his colleagues at the Agricultural Development and Advisory Service, agriculture; Messrs. E. Perry and P. Richards of Redland Aggregates, dolomitic lime; Messrs. A.D. Russel and W. Harrison, formerly of the Building Research Establishment, mortar; Mr. J. Saunders, formerly of Celcon and Ryarsh Brick, aircrete and sandlime bricks; Mr N.H. Groocock, formerly of Severn Trent Water, water treatment, and Mr. R. Collins of National Power, flue gas desulfurisation.

Messrs. A.S. Anthony and F. Leitch of the British Lime Association and Dr. B. Oppermann and Mr. N. Peschen of the Bundesverband der Deutschen Kalkindustrie provided invaluable assistance with general information and contacts. Messrs A.R. Mears and B. Feldmann of the British Standards Institution helped to ensure that I was fully informed of recent developments in British and European Standards.

I particularly welcomed the contributions, help and encouragement from scores of people throughout the world (in the Lime and Limestone Industries, as well as suppliers to and customers of those Industries), who generously shared their knowledge and expertise, and provided diagrams and photographs. I hope that the finished product does justice to their inputs.

With the help of the above-mentioned people, and others who have assisted with producing diagrams, typing and proof-reading, I have endeavoured to produce a text that is as comprehensive, accurate and up-to-date as possible. However, the responsibility for any omissions or errors is mine alone. Finally, I would like to thank the publishers for having the courage to commission me, and faith in my ability to deliver the required product.

Tony Oates
Contents

1.1 Introduction 1
1.1 General 1
1.2 Importance of Lime and Limestone 1
1.3 History [1.1–1.3] 3
1.4 References 5

Part 1 Production of Limestone

2 Formation, Classification and Occurrence of Limestone 9
2.1 Formation of Limestone 9
2.2 Classification of Limestones 14
2.3 Occurrence of Limestones 16
2.4 References 17

3 Physical and Chemical Properties of Limestone 18
3.1 Physical Properties 18
3.2 Chemical Properties 20
3.3 Impurities 22
3.4 References 24

4 Prospecting and Quarrying 26
4.1 Introduction 26
4.2 Prospecting 26
4.3 Quarrying 29
4.4 Loading 34
4.5 Hauling 35
4.6 Current Trends in Quarrying 35
4.7 Dimension Stone 36
4.8 References 36

5 Processing and Dispatch of Limestone 38
5.1 Introduction 38
5.2 Crushing 39
5.3 Pulverising and Grinding 44
5.4 Production of Precipitated Calcium Carbonate 44
5.5 Sizing 44
5.6 Benefication 49
5.7 Storage and Loading Out 50
5.8 Transport 51
Part 2 Uses and Specifications of Limestone

7 Overview and Economic Aspects of the Limestone Market 63
7.1 General 63
7.2 Market Overview 64
7.3 Economic Aspects 66
7.4 References 67

8 Construction and Building 68
8.1 Introduction 68
8.2 Specifications and Test Methods 68
8.3 Aggregates for Concrete 69
8.4 Sand for Mortars 73
8.5 Unbound Aggregates for Roads 74
8.6 Aggregates for Asphalts 77
8.7 Other Applications 78
8.8 CEN Standards for Aggregates 79
8.9 References 79

9 Use of Limestone in Cement Production 81
9.1 Introduction 81
9.2 Portland Cement Production 81
9.3 Composite Cements 84
9.4 Masonry Cements 84
9.5 Calcium Aluminate Cements 85
9.6 References 85

10 The Use of Limestone in Agriculture 86
10.1 Introduction 86
10.2 Arable Land and Pasture 86
10.3 Fertilisers 90
10.4 Animal Feedstuffs 91
10.5 Poultry Grits 91
10.6 Neutralising Acid Rainfall 91
10.7 References 93
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Use of Limestone in Refining Metals</td>
<td>94</td>
</tr>
<tr>
<td>11.1</td>
<td>The Production of Iron</td>
<td>94</td>
</tr>
<tr>
<td>11.2</td>
<td>Open Hearth Steelmaking</td>
<td>97</td>
</tr>
<tr>
<td>11.3</td>
<td>Smelting</td>
<td>98</td>
</tr>
<tr>
<td>11.4</td>
<td>The Production of Alumina</td>
<td>98</td>
</tr>
<tr>
<td>11.5</td>
<td>References</td>
<td>99</td>
</tr>
<tr>
<td>12</td>
<td>Other Uses of Limestone</td>
<td>100</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>100</td>
</tr>
<tr>
<td>12.2</td>
<td>Glass Manufacture</td>
<td>100</td>
</tr>
<tr>
<td>12.3</td>
<td>Ceramics</td>
<td>102</td>
</tr>
<tr>
<td>12.4</td>
<td>Mineral Wool</td>
<td>102</td>
</tr>
<tr>
<td>12.5</td>
<td>Acid Gas Removal</td>
<td>102</td>
</tr>
<tr>
<td>12.6</td>
<td>Sulfite Process for Paper Pulp</td>
<td>108</td>
</tr>
<tr>
<td>12.7</td>
<td>Production of Organic Chemicals</td>
<td>108</td>
</tr>
<tr>
<td>12.8</td>
<td>“Rock Dust” for Mines</td>
<td>108</td>
</tr>
<tr>
<td>12.9</td>
<td>Fillers and Extenders</td>
<td>109</td>
</tr>
<tr>
<td>12.10</td>
<td>Water Treatment</td>
<td>109</td>
</tr>
<tr>
<td>12.11</td>
<td>Sodium Dichromate</td>
<td>112</td>
</tr>
<tr>
<td>12.12</td>
<td>Calcium Zirconate</td>
<td>112</td>
</tr>
<tr>
<td>12.13</td>
<td>References</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Part 3 Production of Quicklime</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Physical and Chemical Properties of Quicklime</td>
<td>117</td>
</tr>
<tr>
<td>13.1</td>
<td>Physical Properties</td>
<td>117</td>
</tr>
<tr>
<td>13.2</td>
<td>Chemical Properties</td>
<td>119</td>
</tr>
<tr>
<td>13.3</td>
<td>References</td>
<td>123</td>
</tr>
<tr>
<td>14</td>
<td>Raw Materials for Lime Burning</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>(Limestone, Fuel and Refractories)</td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>General</td>
<td>124</td>
</tr>
<tr>
<td>14.2</td>
<td>Limestone</td>
<td>124</td>
</tr>
<tr>
<td>14.3</td>
<td>Fuel</td>
<td>128</td>
</tr>
<tr>
<td>14.4</td>
<td>Refractory Linings</td>
<td>136</td>
</tr>
<tr>
<td>14.5</td>
<td>References</td>
<td>138</td>
</tr>
<tr>
<td>15</td>
<td>Calcination of Limestone</td>
<td>139</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>139</td>
</tr>
<tr>
<td>15.2</td>
<td>The Chemical Reactions</td>
<td>139</td>
</tr>
<tr>
<td>15.3</td>
<td>Kinetics of Calcination</td>
<td>141</td>
</tr>
<tr>
<td>15.4</td>
<td>Sintering of High-calcium Quicklime</td>
<td>147</td>
</tr>
<tr>
<td>15.5</td>
<td>Sintering of Calcined Dolomite</td>
<td>150</td>
</tr>
<tr>
<td>15.6</td>
<td>Steam Injection</td>
<td>151</td>
</tr>
<tr>
<td>15.7</td>
<td>Re-carbonation</td>
<td>151</td>
</tr>
</tbody>
</table>
XII Contents

15.8 Calcination of Finely Divided Limestones 152
15.9 References 153

16 Production of Quicklime 155
16.1 Introduction 155
16.2 Principles of Lime Burning 155
16.3 Development of Lime Kilns 158
16.4 Modern Kilns 162
16.5 Selection of Lime Kilns 180
16.6 Kiln Control 181
16.7 Mass and Heat Balances 183
16.8 Instrumentation 186
16.9 Production of Calcined Dolomite 188
16.10 Production of Hydraulic Limes 189
16.11 References 189

17 Processing Storage and Transport of Quicklime 192
17.1 Processing 192
17.2 Production of Ground Quicklime 195
17.3 Storage, Handling and Transport 196
17.4 References 198

18 Sampling and Testing of Quicklime 199
18.1 Introduction 199
18.2 Precautions 199
18.3 Sampling 200
18.4 Sample Preparation 201
18.5 Packing and Marking of Samples 201
18.6 Physical Testing 201
18.7 Chemical Analysis 201
18.8 Absorption of Moisture and Carbon Dioxide from the Atmosphere 202
18.9 References 204

Part 4 Production of Slaked Lime

19 Physical and Chemical Properties of Slaked Lime 207
19.1 Physical Properties 207
19.2 Chemical Properties 208
19.3 References 211

20 Production of Hydrated Lime 212
20.1 Introduction 212
20.2 Physico-chemical Aspects of Hydration 212
20.3 Raw Materials 214
20.4 Design of Hydrating Plants 215
20.5 Control of Hydrating Plant 219
Contents

20.6 Production of High Surface Area Hydrated Limes 219
2.7 Performance Criteria for Hydrated Limes 221
20.8 Dolomitic Hydrated Limes 222
20.9 Hydraulic Limes 223
20.10 Carbide Lime 224
20.11 Air Slaked Lime 224
20.12 References 224

21 Handling and Storage of Hydrated Lime 226
21.1 General 226
21.2 Bagged Hydrate 226
21.3 Bulk Hydrate 227
21.4 Conveying and Dosing 227
21.5 Production of Milk of Lime 228
21.6 References 228

22 Production of Milk of Lime and Lime Putty 229
22.1 Introduction 229
22.3 Slaking Practices 231
22.4 Slaker Design 232
22.5 Dispersion of Hydrated Lime 235
22.6 Lime Putties 235
22.7 Performance Criteria for Milks of Lime and Lime Putties 236
22.8 Ultra-fine Milks of Lime 236
22.9 Carbide Lime 238
22.10 References 239

23 Handling and Storage of Milk of Lime and Lime Putty 240
23.1 Milk of Lime 240
23.2 Lime Putty 242
23.3 References 243

24 Sampling and Testing of Slaked Lime 244
24.1 Introduction 244
24.2 Precautions 244
24.3 Sampling 244
24.4 Sample Preparation 245
24.5 Packing and Marking of Samples 245
24.6 Physical Testing 246
24.7 Chemical Analysis 246
24.8 References 248

Part 5 Uses and Specifications of Lime Products

25 Overview and Economic Aspects of the Lime Market 251
25.1 General 251
Contents

25.2 Market Overview 251
25.3 Economic Aspects 255
25.4 References 257

26 Construction and Building 258
26.1 Introduction 258
26.2 Historical 258
26.3 Lime Treatment of Soils 259
26.4 Hydraulic Road Binders 269
26.5 Hot Mix Asphalt (see also section 8.6) 270
26.6 Masonry Mortars 270
26.7 External Rendering 278
26.8 Internal Plastering 280
26.9 Hydraulic Limes 282
26.10 Sandlime Bricks 285
26.11 Autoclaved Aerated Concrete 288
26.12 Calcium Silicate Products 295
26.13 References 296

27 The Use of Lime in Iron and Steelmaking 299
27.1 Introduction 299
27.2 Production of Sinter 299
27.3 Treatment of Pig Iron 301
27.4 Basic Oxygen Steelmaking 302
27.5 The Electric Arc Process 309
27.6 Secondary Steelmaking Processes 311
27.7 References 313

28 Water and Sewage Treatment 314
28.1 Drinking Water 314
28.2 Boiler Feed Water 322
28.3 Waste Water (Other than Sewage) 323
28.4 Sewage Treatment 329
28.5 References 332

29 Gaseous Effluents 333
29.1 Introduction 333
29.2 Wet Scrubbing 334
29.3 Semi-dry Scrubbing 337
29.4 High Temperature Dry Injection 338
29.5 Low Temperature Dry Injection 339
29.6 Reduction of Dioxins and Furans 342
29.7 Reduction of Heavy Metals 342
29.8 Disposal of Solid Residues 343
29.9 References 343
30 Agriculture, Food and Food By-products 344
 30.1 Introduction 344
 30.2 Arable Land and Pasture 344
 30.3 Miscellaneous Agricultural Uses 346
 30.4 Sugar 347
 30.5 Pesticides 348
 30.6 Leather 348
 30.7 Glue and Gelatin 349
 30.8 Dairy Products 349
 30.9 Fruit Industry 349
 30.10 References 349

31 Use of Quick and Slaked Lime in the Production of Chemicals 351
 31.1 Introduction 351
 31.2 Precipitated Calcium Carbonate (PCC) 352
 31.3 Calcium Hypochlorite Bleaches 354
 31.4 Calcium Carbide 355
 31.5 Calcium Phosphates 356
 31.6 Calcium Chloride 358
 31.7 Calcium Bromide 358
 31.8 Calcium Hexacyanoferrate 359
 31.9 Calcium Silicon 359
 31.10 Calcium Dichromate 359
 31.11 Calcium Tungstate 359
 31.12 Calcium Citrate 360
 31.13 Calcium Soaps 360
 31.14 Calcium Lactate 361
 31.15 Calcium Tartrate 361
 31.17 Potassium Carbonate 362
 31.18 Sodium Chloride 362
 31.19 Sodium Carbonate 362
 31.20 Sodium Hydroxide 364
 31.21 Alkene Oxides (the Chlorohydrin Process) 364
 31.22 Diacetone Alcohol 365
 31.23 Hydroxypivalic Acid Neopentyl Glycol Ester (HPN) 365
 31.24 Pentaerythritol 365
 31.25 Anthraquinone Dyes and Intermediates 365
 31.26 Trichloroethylene 365
 31.27 Strontium Carbonate 366

32 Other Uses of Quick and Slaked Lime 368
 32.1 Introduction 368
 32.2 Magnesium Hydroxide 368
 32.3 Dead-burned Dolomite [32.2] 370
 32.4 Silica, Silicon Carbide and Zirconia Refractories 370
 32.5 Calcium Oxide Refractory 370
 32.6 Glass 370
Contents

32.7 Whiteware Pottery and Vitreous Enamel 371
32.8 Calcium Aluminate Cement 371
32.9 Flotation of Metal Ores 371
32.10 Refining of Non-ferrous Metals 372
32.11 Lime as a Fluxing Agent 373
32.12 Casting and Drawing Lubrication 373
32.13 Drilling Muds 374
32.14 Oil-well Cement 374
32.15 Oil Additives and Lubricating Greases 375
32.16 Paper and Pulp 375
32.17 Pigments and Paints 375
32.18 Lime Treatment of Contaminated Land 376
32.19 Destruction of Organic Wastes 377
32.20 Briquetting of Fuels 377
32.21 Soda Lime 378
32.22 Use as a Desiccant 378
32.23 Use as a Non-explosive Demolition Agent 378
32.24 Self-heating Food Containers 379
32.25 References 379

Part 6 Safety, Health and Environment

33 Control of the Environmental Effects of Lime and Limestone Production 383
33.1 Introduction 383
33.2 Standards 384
33.3 Dust 384
33.4 Sulfur Dioxide 389
33.5 Oxides of Nitrogen (NOx) 390
33.6 Oxides of Carbon 391
33.7 Dioxins, Furans and Heavy Metals 392
33.8 General Noise 392
33.9 Blasting Noise and Vibration 393
33.10 Discharges to Water 394
33.11 Solid Wastes 394
33.12 References 394

34 Toxicology and Occupational Health 396
34.1 Toxicology 396
34.2 Precautionary Measures 397
34.3 First Aid Treatment [34.2] 398
34.4 Occupational Health 399
34.5 References 400
Annexes

Annex 1 Glossary of Terms 403
Annex 2 General References 425
Annex 3 Appendices 432
 Appendix A. A Reactivity Test for Quicklime Used in Aircrete Production 432
 Appendix B. Calculation of Free Lime in Hydrated Lime 434
 Appendix C. Units and Conversion Factors 435

Index 439
1 Introduction

1.1 General

- *Limestone* is a naturally occurring mineral that consists principally of calcium carbonate. Part of the calcium carbonate may have been converted to dolomite by replacement with magnesium carbonate as a secondary component (up to 46% by weight). Many limestones are remarkably pure, with less than 5% of non-carbonate impurities. Limestone is found in many forms and is classified in terms of its origin, chemical composition, structure, and geological formation. It occurs widely throughout the world, and is an essential raw material for many industries.

- *Quicklime* is produced by the thermal dissociation of limestone. Its principal component is calcium oxide. Its quality depends on many factors including physical properties, reactivity to water and chemical composition. As the most readily available and cost-effective alkali, quicklime plays an essential part in a wide range of industrial processes.

- *Slaked lime* is produced by reacting, or “slaking” quicklime with water, and consists mainly of calcium hydroxide. The term includes *hydrated lime* (dry calcium hydroxide powder), *milk of lime* and *lime putty* (dispersions of calcium hydroxide particles in water). Slaked lime is widely used in aqueous systems as a low-cost alkali.

The generic term, *lime* includes quicklime and slaked lime, and is synonymous with the term *lime products*. “Lime” is, however, sometimes used incorrectly to describe limestone products (e.g. agricultural lime): *this is a frequent cause of confusion*.

Because the quarrying of limestone and the production of quick- and slaked lime are long-established industries, they have generated many traditional terms. These are explained in the Glossary of Terms (Annex 1).

1.2 Importance of Lime and Limestone

1.2.1 Limestone

Because limestone deposits are widely distributed throughout the world, a high proportion of humanity has ready access to the material. No reliable figures
appear to have been published for the world-wide use of limestone, but the author estimates that it is about 4,500 million tonnes per annum (tpa).

In most countries, the major uses of limestone are as an aggregate in construction and building and as the primary raw material for the production of cement.

The amount of limestone used in construction and building varies widely from one locality to another and depends on its availability and cost relative to other aggregates, such as gravel and crushed hard rocks. In the USA, for example, limestone sales amounted to about 800 million tonnes in 1994 — about 72% of the crushed rock sales.

The proportion of limestone quarried that is used in construction and building is also affected by availability and cost. In many countries, the level is around 40 to 50%, whereas in the USA and the UK, where limestone is widely available and relatively inexpensive, the level is over 70%.

While limestone is not an essential raw material for the production of cement, it is generally the cheapest source of calcium oxide. On the basis of the global production of cement, the limestone used in its production probably amounts to about 1,500 million tpa, or one third of the total extracted.

Some limestones contain over 95% CaCO₃. Such “chemical grade” materials are particularly suitable for lime production, flue gas desulphurisation and a range of other processes. The quantities involved, however, amount at most to a few percent of the total extracted.

Very finely divided limestones (whiting) and precipitated calcium carbonate are used as fillers. While the tonnages involved are minute when compared with the total, they are very high added-value products that play important roles in a wide range of industries.

The main market outlets for limestone products are outlined in chapter 7 and are described in more detail in chapters 8 to 12.

1.2.2 Lime

As mentioned in section 1.1, lime is the least expensive and most widely-used alkali. The global production of lime products is believed to be over 200 million tpa. This amount includes an estimated production in China of about 20 million tpa (although much higher rates for that country have been quoted).

Lime is one of the most heavily used chemicals. In the USA, for example, about 15 million tpa of lime are produced, making it the fifth largest-selling chemical on a tonnage basis (the four chemicals with larger sales are sulphuric acid at 40 million tpa, nitrogen at 36 million tpa, with oxygen and ethylene both at 17 million tpa).

In most industrialised countries, the major uses of lime products are in steel-making, and the construction and building industry. In the European Union, for example, some 38 and 36%, respectively is used in those industries.

The remaining lime is used in a large number of industries. The main market outlets are outlined in chapter 25 and described in more detail in chapters 26 to 32.
1.3 History [1.1–1.3]

1.3.1 Limestone

Limestone has undoubtedly been used since the Stone Age, although primitive man probably found uses for it before that time. The first records relate to the Egyptian Second Dynasty (some 5,800 years ago), when it was employed in the construction of the Giza Pyramids. Marble, a highly crystalline form of limestone, was used by the Greeks shortly after this period for statues and the decoration of buildings. Limestone was widely used by the Romans for building roads.

Over the centuries, limestone has been used extensively as an aggregate in building and construction. It has been used as aggregate in lime-based concrete since Roman times, and, more recently, in cement-based concrete. Although limestone cannot readily be dressed, it has been used extensively in building in both the rough-hewn form and as cut dimension stone.

The benefits of “liming” soils with marls and soft chalks was known to the Romans in the first century A.D. Pliny reported that the Ubians, north of Mainz, used “white earth” (a calcarious marl) to fertilise their fields.

The high purity of some limestones has been exploited for many centuries by the lime-burning, glass-production, and metals-refining industries. The development of Portland cement in the 19th century caused a major expansion in the demand for limestone, both as a raw material and as an aggregate. This expansion permitted the exploitation of some of the softer and/or less pure deposits such as chalk and marl.

1.3.2 Lime

Some of the earliest evidence for the use of lime dates back some 10,000 years. Excavations in Cajenu in Eastern Turkey, uncovered a Terrazzo floor, which had been laid with lime mortar. That site dated from 7,000 to 14,000 years ago. In some cases, the lime had been used in conjunction with gypsum (CaSO₄ · 2H₂O), which raises the question as to whether the lime had been used as a binder in its own right, or had arisen as a result of contamination of the gypsum with calcium carbonate.

Nevertheless, there is firm evidence of the use of lime in the Near East, dating from about 8,000 years ago, and in Lepenski Vir, in the former Yugoslavia, a floor, dated 6,000 B.C., was excavated in the 1960s. That consisted of a type of mortar made from lime, sand, clay and water.

Lime stabilisation of clay was used in Tibet, over 5,000 years ago, in the construction of the pyramids of Shersi. It was also used in conjunction with limestone by the Egyptians in the construction of the pyramids and by the Chinese when building the Great Wall.

By about 1,000 B.C., there is evidence of the wide-spread use of quick- and hydrated lime for building by many civilisations, including the Greeks, Egyptians, Romans, Incas, Mayas, Chinese, and Mogul Indians.
Perhaps the earliest excavated lime kiln was at Khafaje in Mesopotamia which was dated at about 2450 B.C. A battery of six lime kilns, excavated at a legionary site at Iversheim, Germany, showed that the Romans produced lime in quantity on military sites. The production of lime in kilns was mentioned by Cato in 184 B.C. Pliny the Elder (ca. 17 A.D.), in his “Chapters on Chemical Subjects” described the production, slaking and uses of lime, and stressed the importance of chemical purity.

The Romans employed hydraulic lime and lime-pozzolan mixtures in many construction projects, including the Appian Way. They developed the technology of lime burning and the use of mortar, cement and concrete, using lime as the binder. They built the first “lime factories”, which were operated by legionaries and managed by a “Magister Calcariarum”.

Lime was also well known to the Romans as a chemical reagent. In 350 B.C. Xenophon referred to the use of lime for bleaching linen. Almost all of the Mediterranean peoples were familiar with lime as a paint. Lime was used for tanning leather, and was mixed with organic substances to produce putty and glue. The Assyrians described the importance of lime in their recipes for glass. Lime was also used in glazes for pottery. A medical use of lime was recorded by Dioscorides in 75 A.D.

Little is known regarding the condition of the lime industry in medieval times, but a knowledge of its properties and its use for building purposes is reflected in the writings of the day. For example Trevisa (1398) wrote “Whyle lyme is colde in handlyng it conteyneth prevely wythin fyre and grete hete.” “Lyme Kilns” and “Lymbrenners” are also mentioned in many ancient church and municipal records.

Quicklime was used in the Middle Ages for offensive purposes in war — there are records that the English hurled it in their enemies’ faces at a naval battle in 1217. It was also used by alchemists for “causticising” the alkali metal carbonates in wood ashes and for other purposes, but it was so familiar a material that it was seldom thought to be worth recording. During the 1400s, the use of lime in building spread throughout Europe.

In the 1700s Joseph Black gave the first sound technical explanation of the calcination of limestone including the evolution of carbon dioxide. Lavoisier confirmed and developed Black’s explanation. In 1766 De Ramecourt published a detailed account of “the art of the lime burner”, which described the design, operation and economic aspects of limestone quarrying and lime burning.

Debray, in 1867, carried out the first measurements of the dissociation pressure of calcium carbonate. He heated Iceland Spar in a tube to the temperature of boiling mercury, sulphur, cadmium and zinc (357, 445, 767, 907 °C respectively). He found no decomposition at the first two, but measurable pressures at the boiling points of cadmium and zinc. The first exact measurements of the dissociation pressure were made by Le Chatelier in 1886.

In 1935 Searle [1.2] described some 40 designs of lime kiln. Since then, a large number of designs have been developed. A great variety of designs are still operated, but only a limited number continue to be commercially viable. The more important of these are described in chapter 16.
1.4 References

Part 1 Production of Limestone
2 Formation, Classification and Occurrence of Limestone

2.1 Formation of Limestone

2.1.1 Origins of Calcium Carbonate

The chemical components of calcium carbonate — dissolved calcium ions and carbon dioxide — are widely distributed. Calcium is the fifth most common element in the earth’s crust (after oxygen, silicon, aluminium and iron). It was extracted from early igneous rocks by the combined effects of erosion by the weather and corrosion by acidic gases (oxides of sulfur, oxides of nitrogen and carbon dioxide dissolved in rain water). Carbon dioxide makes up about 0.03% by volume of the earth’s atmosphere and is dissolved in both fresh and sea water. Combination of dissolved calcium ions and carbon dioxide resulted in the sedimentary deposition of calcium carbonate, which was subsequently converted into limestone rock. Early limestones (Precambrian — Table 2.1) are believed to have been deposited as precipitates of CaCO₃, and/or as a result of the biochemical activity of very simple organisms, such as bacteria.

<table>
<thead>
<tr>
<th>Era</th>
<th>Period</th>
<th>Maximum age x 10⁶ years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cenozoic</td>
<td>Quaternary</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Tertiary</td>
<td>75</td>
</tr>
<tr>
<td>Mesozoic</td>
<td>Cretaceous</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Jurassic</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Triassic</td>
<td>225</td>
</tr>
<tr>
<td>Palaeozoic</td>
<td>Permian</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Carboniferous</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Devonian</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Silurian</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>Ordovician</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Cambrian</td>
<td>600</td>
</tr>
<tr>
<td>Precambrian</td>
<td>—</td>
<td>> 600</td>
</tr>
</tbody>
</table>

2.1.2 Carbonate Sedimentation

The sedimentation of calcium carbonate occurs by two mechanisms — organic and inorganic. The organic route involves a wide variety of organisms, which build
shells, skeletons or secrete carbonate. The \textit{inorganic} route involves the direct precipitation (or crystallisation) of carbonate.

Most commercially viable deposits of carbonate were formed by the \textit{organic route}. Carbonate-secreting organisms (e.g., bivalves, gastropods, brachiopods, corals, sponges, bryozoans, echinoderms, ostracods, foraminifera and various algae) have existed in all of the world's seas. The factors which controlled the rate of carbonate production (calcium, magnesium and carbon dioxide concentrations, temperature, salinity, water depth and turbidity) resulted in most of the thick deposits being produced in shallow seas (i.e., in the photic zone) between 30$^\circ$ north and south of the equator. Such deposits may now be outside that band as a result of continental drift.

At least eight mechanisms can cause the surface layers of the sea to become super-saturated with respect to aragonite, calcite and dolomite \cite{2.11}. The rate of formation of dolomite, however, is very much slower than those of calcite and aragonite. As a result, while some organic species produce aragonite structures and others make calcite, none produce dolomite directly. The aragonite structures are generally very low in magnesium (typically less than 0.5 \% MgCO$_3$). Depending on the organism and on the chemistry of the water (principally the ratio of calcium to magnesium), calcite structures are generally either low in magnesium with less than 4 \% MgCO$_3$, or high with, typically, 11 to 19 \% MgCO$_3$.

The above process, coupled with the fact that most carbonate-secreting organisms only thrive in clear waters — remote from rivers carrying significant amounts of solids washed from the land — accounts for the remarkably high purities of many carbonate deposits, which often exceed 98 \% of calcium plus magnesium carbonates.

Carbonate sediments are also produced in a similar way by organisms in inland waters, but the resulting deposits are generally not as extensive, nor as commercially important as those produced in the marine environment.

\textit{Inorganic precipitation} of calcium carbonate occurs from both sea and inland waters (as used by geologists, "precipitation" refers to the relatively slow process of crystal growth on surfaces). This route has resulted in some commercially significant deposits, the most common of which are oolitic limestone and travertine (see section 2.2.1). Some minor dolomite sediments have been formed by direct precipitation from sea and lake waters.

\section{2.1.3 Sedimentary Environments}

Most carbonate sediments were formed in situ, in shallow water, accumulating where the grains were formed, or were subjected to limited transport, for example down a gently-sloping sub-tidal shelf. Descriptions of depositional environments can be found in the literature \cite{2.1, 2.2}. The major environments are illustrated in Figure 2.1.

The variety of environments (which includes beaches, tidal and sub-tidal flats, lagoons, reefs, shelves, slopes and deep basins) gave rise to many types of deposit, whose characteristics are related to the particular environment in which they were formed \cite{2.1-2.4}.
2.1 Formation of Limestone

Figure 2.1. Composite diagram of major carbonate depositional environments
(a) sub-aerial karst; (b) tidal flat; (c) lagoon; (d) barrier reef; (e) shelf; (f) shelf-margin reef;
(g) slope with reef mound (x); (h) deep basin

2.1.4 Diagenesis

Diagenesis is the conversion of sediments into rock by organic, physical and chemical processes. Six main processes have been identified for limestone [2.3] — microbial micritization, cementation, neomorphism, dissolution, compaction and dolomitization.

- **Microbial micritization.** Many organisms bore into carbonate deposits. The most important one is cyanobacteria, but others include cliona sponges, bivalves, polychaetes and fungi. The bore-holes become filled with a calcium carbonate structure called micrite, which typically forms an envelope around the skeletal grains.

- **Cementation** results from the passage of water, super-saturated with respect to calcite, through porous limestone deposits, leading to the growth of calcite crystals in the pores, thereby binding together the components of the deposit. The most common cement in medium- to coarse-grained limestones is *sparite*, or calcite spar (which fills interstitial spaces in fine-grained limestones). Silica, in the form of quartz crystals, also acts as a cement in some limestones.

- **Neomorphism** involves recrystallisation. As aragonite has a higher solubility in water than calcite, it progressively recrystallises over time to produce a very low-magnesium calcite. Calcite recrystallises into larger crystallites — in doing so, under many conditions, the magnesium in high-magnesium calcites slowly dissolves, leaving low-magnesium deposits (but see dolomitisation below).

- **Dissolution** generally occurs when unsaturated ground waters flow through deposits. On the surface it causes typical karst scenery. At greater depths, it produces caves, as well as secondary porosity. The latter increases the capacity of a deposit to act as a reservoir for oil, water, or gas.