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I xiii 

High pressure chemistry is an area that has developed a vigorous activity over the 
past decades. Although most of the earlier work was mainly performed in the area 
of organic chemistry, a major contribution from inorganic chemists over the past 
two to three decades resulted in the development of sophisticated instrumentation 
that enables the study of fast chemical reactions under high pressure. More re- 
cently, the application of supercritical fluids has received much attention especially 
in chemical industry. Numerous reviews have reported on the progress made in 
these areas over the past years. 

The monograph consists of fourteen contributions bascd on oral presentations 
at the European High Pressure Research Group Meeting held at Kloster Banz, 
Germany, in September 2000. The theme of the meeting was High Pressure 
Chemistry. It covers contributions from high pressure inorganic and organic 
chemistry, as well as the application of supercritical fluids in chemical synthesis 
and processes. The monograph is subdivided into three sections. The first three 
chapters are devoted to basic principles involved in the application of high pressure 
techniques in inorganic and organic chemistry. The subsequent eight chapters are 
devoted to mechanistic and synthetic applications of high pressure in inorganic, 
organometallic, organic, and supramolecular chemistry. The final three chapters 
are devoted to chemical reactions in supercritical fluids and cover catalytx re- 
actions, applications in the fine chemical industry and the application of super 
critical water. All in all, the individual chapters reveal the present status of high 
pressure chemistry and its application in a variety of areas. 

The editors appreciate the co-operative support they received from the individual 
authors of the chapters, as well as the effective interaction with Wiley-VCH. The 
efforts of numerous scientific coworkers and the financial support from many 
funding agencies have all contributed to bringing high pressure chemistry to 
where it stands at present. May we all in future benefit from these developments 
and stimulate further activities of the next generation in this area of chemistry. 

Rudi van Eldik 
University of Erlangen-Niirnberg 

Frank-Gerrit Klarner 
University of Essen 
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1 

Effect of Pressure on Inorganic Reactions: 

Introduction and Mechanistic Applications 

Rudi van €Idib: and Colin D. Hubbard 

I. I 

Introduction 

Chemistry literature is to a large extent concerned with preparative work and the 
structural and spectroscopic characterization of reaction products. The velocity of 
the reactions and efficiency of product formation as manifested in the reaction 
yield, are also of importance in synthetic studies, particularly when the products 
are of direct use or are intermediates in commercially relevant activities. The ki- 
netics of reactions can be very informative in combination with other information 
for revealing the details of the reaction mechanism. Once a chemical reaction 
mechanism is fully understood, the insight gained can be used to tune the chemi- 
cal process in any desired direction. The evidence for a particular mechanism is 
often circumstantial, and therefore kineticists try to employ the widest set of ex- 
perimental variables available in an effort to interpret the resulting kinetic data in 
the least equivocal manner possible. 

The value of the mechanistic information that emerges from kinetics measure- 
ments over a series of elevated pressures for solution reactions in inorganic and 
organic chemistry has been realized for some time [ l - 3 ) .  However, many inor- 
ganic reactions are too fast to follow using conventional instrumentation. Hence 
the momentum regarding investigations at high pressures vis-a-vis organic re- 
actions was delayed somewhat until adaptation of rapid reaction techniques for 
operation at high pressures had been achieved, mostly in the period from 1975 to 
1985. This fertile period has been recorded in reviews, in conference proceedings, 
and in monographs, and readers may obtain a thorough background and sense 
of historical development by consulting this literature [4-111. Even until quite re- 
cently, suitable instrumentation was not widely available. 

The purpose of this chapter is to familiarize the reader with the current status 
of activities in the application of hydrostatic pressure to mechanistic studies in the 
areas of inorganic and organometallic chemistry, as well as in the blossoming field 
of bioinorganic chemistry. Although the basic principles involved in high pressure 
kinetics for reactions in general have been the subject of many reports [12-141, 
some essential aspects and the most frequently used methods will be presented 
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here to form a basis for the subsequent chapters dealing with the effect of pressure 
on particular types of reactions in inorganic and organic chemistry. 

The parameter that is derived from high pressure kinetic experiments in solution 
is the difference in partial molar volume between the activated complex of transi- 
tion state theory and the reactant state, and is known as the volume of activation. 
AVf . If the particular reaction is reversible and the system experimentally acces- 
sible, AVf for the reverse reaction can also be obtained and the difference between 
these two quantities results in the reaction volume, AVO. The latter quantity may 
also be determined by measuring the equilibrium constant ( K )  for the reaction as a 
function of pressure, or from the partial molar volumes of the reactants and prod- 
ucts, derived from solution density measurements. The volume of activation itself 
is determined from measurements of the reaction rate constant k at different 
hydrostatic pressures p at a given absolute temperature T, since (? In k/?p), = 

-AV#/RT (R is the ideal gas constant), an equation was developed within transi- 
tion state theory based upon the analogous equilibrium constant relationship, 
( 3  In K/Sp), = -AVo/RT. The former equation, upon integration. can be em- 
ployed to determine AVz from a plot of In k versus p .  Providing the pressure is no 
higher than 200 MPa, in the vast majority of cases AV# is pressure independent 
and the plot is linear. A nonlinear behaviour is usually encountered when dealing 
with a compressible solvent where both the reaction and activation volume become 
pressure sensitive. For such cases often encountered in organic systems (see 
Chapter 2), where it is necessary to consider the pressure dependence of AV#,  i.e. 
to extrapolate the data to ambient pressure, there are various treatments available 
for processing the primary data [5, 151. In this introductory chapter the focus will 
be on reactions in which there is a negligible or absence of pressure dependence of 
the volume of activation. In general, volume of activation data quoted in this report 
will refer to ambient conditions, i.e. close to room temperature, and readers are 
advised to consult the cited literature for more detailed information on the exact 
experimental conditions employed. 

Equilibrium and kinetic parameters obtained as a function of temperature per- 
mit the drawing of diagrams illustrating the Gibbs free energy (C),  enthalpy (H) 
and entropy (S) changes in proceeding in the sequence reactant state/transition 
state/product state, and including intermediates when they are formed. Corre- 
spondingly, a volume diagram or volume profile can chart the respective volume 
changes along the reaction coordinate, and when appropriate actual partial molar 
volumes are known, on an absolute rather than a relative basis, something that 
cannot realized for G, H or S. Hence if reactants A and B form a product AB and 
no intermediates are formed, i.e. there is a single step reaction, a volume profile in 
which the reaction volume is, for example, negative and the volume of activation is 
such that the transition state is almost halfway between reactant and product 
states, is depicted in Fig. 1.1. 

As shown in Fig. 1.1, other forms of the volume profile are possible depending 
on the particular character of the system. Thus, in principle, a volume profile rep- 
resents a simple and lucid way of describing a reaction and diagnosing the mech- 
anism, but with the caveat that mechanistic diagnosis is uncomplicated when only 
intrinsic changes (changes in bond lengths, bond angles for example) occur. In 
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I Reactants , Transitionstate , Products 

Reaction Coordinate 
Fig. 1.1. Volume profile for the overall reaction A + B -+ AB. The activated complex is [A----B)# 

many actual reactions, when charged species are produced or neutralized during 
the reaction, or increases or decreases in polarity occur, then there is also a change 
in the volume occupied by the solvent molecules surrounding the system by virtue 
of an increase or decrease in (at least) the first solvation layer. Volume reduction of 
solvent from this source is known as electrostriction. Thus the facile interpretation 
of measured values of AVO or AV# can be compromised by the existence of the two 
contributions which are difficult to quantify. The intrinsic and solvational con- 
tributions to AVf can schematically be visualized as shown in Fig. 1.2. 

A B (A---B)* A- B 

o+o-m-m 
Forward reaction: A + B - A B  AViZtr = - 
Reverse reaction: A B  - A + B AVittr = + 

o+ 0-00 -m 
Forward reaction: A' + B- - A 8  AV:,,, = 
Reverse reaction: AB - A+ + B- AV&,, = - 

Overall volume effect: AV = AVintr + AVsolv * * * 

Fig. 1.2. Intrinsic and solvational contributions to  the volume of activation. 
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Clearly a reaction accelerated by pressure has a negative volume of activation 
and one retarded by pressure. a positive volume of activation. Most inorganic re- 
actions that have been studied yield AVc values within the range of ' 30 to -30 
cm'  mol-'. which corresponds to retardation and acceleration respectively of a 
factor of about 4 at 100 MPa (1 kbar) compared to 0.1 MPa (atmospheric pressure;. 
In the absence of solvational contributions. positive AVf values are indicative of 
the commencement of bond breakage. whereas negative AVc values are indicative 
of reactions in which a bond is beginning to be established upon reaching the 
transition state. Further classification of reaction types will be presented later. 

A brief account of experimental methods follows with illustrations in some cases. 
Thereafter thermal reactions grouped by reaction type from inorganic, organo- 
metallic and bioinorganic chemistry will be described from the perspective of the 
mechanistic insight gained from the application of high pressure techniques. A 
section on photo- and radiation-induced chemical reactions is also included. At this 
stage readers are referred to more detailed reports on water cxchange processes 
in Chapter 4, application of electrochemical techniques in Chapter 5. and photo- 
chemical processes in Chapter 6. 

I 

1.2 
Determination of  Volumes of Activation 

The scope of activity in the overall field in question may be gauged by the number 
of pertinent papers published or the number of volume parameters reported. Up to 
1978 about 170 of the latter values had been published. while in the subsequent 
two decades approximately 1000 and 1600 values of the activation volume. respec- 
tively. have been reported [8, 16, 171. The most frequently used method of rnon- 
itoring a rcaction in coordination chemistry is by following changes in the UV:Vis 
spectrum either with a conventional spcctrophotometer or with a stopped-flow in- 
strument. For conventional time range reactions (reaction times longer than a few 
minutes) using Uy/Vis spectroscopy, a two-window cell (Fig. 1.3) and a pressuriz- 
able cuvette (pill-box) (Fig. 1.4) may be used for high pressure measurements 1181. 
The advantage of the pill-box cuvette is that pressure can be transmitted through 
the compression of the movable, closcly fitting cylindrical parts: it can be easily 
filled using a syringe needle techniquc. after which the two cylindrical parts are 
turned 180" to seal the cuvette. When the cell is pressurized. the two cylindrical 
parts move closer together as a result of the compression of the solvent used in the 
sample solution within the cell. and therefore the pressure from the pressurizing 
medium is transmitted to the sample solution. The cell is pressurized with a pres- 
sure generating system which typically consists of the components shown in Fig. 
1.5. An hydraulic pump is used to gcnerate an oil pressure. which is then trans- 
mitted by the separator to the pressurizing medium (for instance water) used 
within the optical cell. Compression and expansion can be controlled with the 
series of mechanical valves and monitored with a pressure gauge. 

The type of high pressure cell in Fig. 1.3 can also be used to construct a three- 
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I 

Fig. 1.3. Schematic view o f  a two-window high-pressure cell: 
1 - pressure plug; 2 - O-ring; 3 - reaction compartment; 4 - 
A- and O-ring; 5 - sapphire window; 6 - pressure connection. 

or four-window cell which may be used for flash photolysis and pulse radiolysis 
applications. Technical details of these cells and methods of use may be found in 
recent literature [ 18-20]. 

The development of high pressure stopped-flow instruments opened up the 
possibility to study reactions in the millisecond and second time range as a func- 
tion of pressure [21-271. A stopped-flow instrument is designed to enable the rapid 

Hole 

\ 

Slot 

. -. 

Fig. 1.4. Schematic presentation of a "pill-box'' optical cell for 
measurements in  a high pressure optical cell. The slot and hole 
allow the pill-box cell to  be filled and extra liquid to  be released 
on closing the cell. 
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oil reservoir 

reservoir filled with I 
high-pressure I 
cell compartment 
with optical 
windows and 

n-heptane 

valve 

&-I pill-box cell 1 

teflon membrane in a steel cylinder, 
used for pressure transmission 
and for separatlon of oil and n-heptane 

o vacuum pump 

Fig. 1.5. Typical system to generate high pressure. 

mixing of two solutions containing the reactants, followed by the monitoring of 
the reaction progress when mixing is completed. Two high pressure versions of 
stopped-flow instruments are shown in Figs 1.6 and 1.7, with the difference that in 
the first case (Fig. 1.6) the activation of the syringes occurs by means of a motor 
inside the high pressure cell, whereas in the second case (Fig. 1.7) the syringes 
are activated from outside the cell. Activation of the sample syringes causes a flow 
of the two reagent solutions through a mixing jet and optical path into a receiver 
syringe, which is followed by the activation of the optical detection system that 
then monitors the reaction progress of the rapidly mixed reagents occurring in the 
optical path. The deadtime of the mixing process is between 2 and 10 ms. 

A second important method for determining AV# is by application of N M R  
spectroscopy. Progress in NMR instrumentation from electromagnets to super- 
conducting magnets and higher field strengths has largely been matched by de- 
velopments in construction of suitable high pressure probes for newer instruments 
in individual laboratories [29-38). Investigations of solvent exchange (see Chapter 
4) and electron self-exchange reactions have been the principal beneficiaries of 
progress in high pressure NMR techniques. A typical example of an NMR high 
pressure probe developed in our laboratories, is shown schematically in Fig. 1.8. 
The operation principle of both these high pressure probes is that the NMR sam- 
ple tube is placed within a high pressure cell and is pressurized with a suitable 
fluid by a movable stopper that transmits the pressure from the pressurizing fluid 
to the sample solution by moving down the NMR tube, which is controlled by the 
compressibility of the solvent used in the sample solution. With the aid of these 
high pressure probes practically all possible NMR measurements can be per- 
formed as a function of pressure up to 200-300 MPa (i.e. 2 to 3 kbar) at  a fixed 
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~. ~ _ _ _ ~  

Fig. 1.6. Schematic representation of a high 
pressure stopped-flow unit: 1 - lid to  overall 
unit; 2 - outer vessel; 3 - window holder; 4 - 
quartz windows; 5 - electric motor; 6 - motor 
actuator; 7 - stopped-flow unit positioning 

rod; 8 - syringe-driving plate; 9 - drive syringe 
(inner); 10 - drive syringe (outer); 11 - block 
holding windows, mixer and syringe 
attachment points; 12 - mixing jet; 13 - stop 
syringe (outer); 14 - stop syringe (inner). 

temperature. The only restriction is that the sample tube within the high pressure 
probe cannot be spun. 

The temperature-jump technique [39, 401 is frequently used to study the kinetics 
of rapidly equilibrating processes in solution on a microsecond time scale. This 
technique can only be applied to equilibria that are sensitive to temperature, such 
that a rapid temperature jump of a few degrees will result in a relaxation of the 
system to the new temperature, a process that can be followed on a micro- or milli- 
second time scale. 
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Fig. 1.7. Schematic representation of the commercially 
available Hi-Tech HPSF-56 high pressure stopped-flow unit [28] 

Electrochemical methods have also been adopted for application of high pressure 
[41-431 (see Chapter 5). Correlations emerging from these investigations have val- 
uable application in the interpretation of partial molar volume changes associated 
with electron transfer reactions (see Sect. 1.3.4). A potential future interest is in 
reactions carried out at elevated pressures in a supercritical fluid medium; in view 
of this a special optical cell has been developed for studying organometallic re- 
actions initiated by flash photolysis in supercritical fluids [20] (see Chapters 12 to 
14). 

The principles and instrumentation outlined above have been applied to numer- 
ous types of reactions in inorganic chemistry. A systematic treatment of the differ- 
ent reaction types and specific examples to illustrate the role of high pressure 
measurements in such studies, now follows. 
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15 

16 

17 

1 8  

1 9  

2 0  

21 

2 2  
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24 

Fig. 1.8. 13 - capacitor holder; 14 - aluminum tube; 
high-pressure NMR (400 MHz) measurements: 15 - upper plug; 16 - sample tube; 17 - 
1 - O-ring; 2 - probe jacket; 3 - thermal saddle coil; 18 - Macor; 19 - TiA16V4 vessel; 
insulation; 4 - polyvinyl chloride; 5 - O-ring; 20 - lower plug; 21 - lower pressure screw; 
6 - O-ring; 7 - semi-rigid coaxial cable; 22 - capacitor; 23 - coaxial cable; 24 - 
8 - connection to thermostat; 9 - titanium capacitor holder. 
tube; 10 - lid; 11 - screw; 12 - capacitor; 

Design features of a probe head for 
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1.3 
Thermal-Induced Reactions 

In this section of our presentation we will focus on different types of reactions in 
inorganic chemistry that occur thermally. In Sect. 1.4 we will present an account of 
radiation-induced inorganic reactions. Photo-induced inorganic reactions are dealt 
with in Chapter 6. 

1.3.1 
Ligand Substitution Reactions 

Ligand substitution reactions of metal complexes have been the topic of many 
mechanistic studies in coordination chemistry because of the fundamental role of 
such reactions in many chemical, biological and catalytic processes. For a general 
ligand substitution reaction as shown in Eq. (1.1), 

where X is the leaving group, Y the entering ligand, and L,, the spectator ligand(s) 
(charges are omitted for clarity), there are basically three simple pathways: (i) the 
dissociative (D) process with an intermediate of lower coordination number; (ii) 
the associative (A) process with an intermediate of higher coordination number; 
(iii) the interchange (1) process, in which no intermediate of lower or higher coor- 
dination number is involved. The interchange of the ligands X and Y can be more 
dissociative ( I d )  or more associative (Ia) in nature, depending on whether bond 
breakage or bond formation is more important, respectively. These mechanisms 
are outlined schematically in Fig. 1.9, 

Such ligand substitution reactions should exhibit very characteristic AV + values 
depending on the degree of bond breakage or bond formation in the transition 
state. The most simple type of ligand substitution reaction involves the symmetri- 
cal exchange of coordinated solvent or ligand with bulk solvent or ligand mole- 
cules, respectively. 

[M(S),]"+ + S' --f [M(S),-,(S')]"' + S 

Exchange of a unidentate solvent molecule (S) between the first coordination 
sphere of a solvated metal ion (M"+) and the bulk solvent (Eq. (1.2)) has been 
studied for cations of many elements of the Periodic Table. The incoming solvent 
molecule S" is denoted with an Q to distinguish it from the initially coordinated 
molecule with which it exchanges. Such reactions are very important and a knowl- 
edge of the kinetic and associated activation parameters represents important 
background to the understanding and tuning of substitution of a solvent by other 
ligands 144). The focus has frequently been; but by no means exclusively, on water 
as solvent. There is no reaction volume and the solvent exchange process is as- 
sumed to have zero solvational change. Thus A V f  should be a direct measure of 
the intrinsic volume changes that occur, such that a continuous spectrum of tran- 


