Roger Arthur Sheldon, Herman van Bekkum

Fine Chemicals through Heterogeneous Catalysis

WILEY-VCH
Weinheim · New York · Chichester
Brisbane · Singapore · Toronto
R. A. Sheldon, H. van Bekkum

Fine Chemicals through Heterogeneous Catalysis

WILEY-VCH
Other Titles of Interest

B. Cornils / W. A. Herrmann
Applied Homogeneous Catalysis with Organometallic Compounds
2 Volumes
1996. XXXVI, 1246 pages with 1000 figures and 100 tables.
Hardcover. ISBN 3-527-29286-1
Softcover. ISBN 3-527-29594-1

B. Cornils / W. A. Herrmann / R. Schlögl / C.-H. Wong
Catalysis from A to Z
2000. XVIII, 640 pages with more than 300 figures and 14 tables.
Hardcover. ISBN 3-537-29855-X

B. Cornils / W. A. Herrmann
Aqueous Phase Organometallic Catalysis
1998. XVI, 631 pages with 180 figures and 76 tables.
Hardcover. ISBN 3-527-29478-3

M. Beller / C. Bolm
Transition Metals for Organic Synthesis
2 Volumes
1998. LVIII, 1062 pages with 733 figures and 75 tables.
Hardcover. ISBN 3-527-29501-1
Roger Arthur Sheldon, Herman van Bekkum

Fine Chemicals through Heterogeneous Catalysis

WILEY-VCH
Weinheim · New York · Chichester
Brisbane · Singapore · Toronto
This book was carefully produced. Nevertheless, authors and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.
Preface

The subject of this book is the application of heterogeneous catalysis in organic synthesis with emphasis on transformations of relevance to fine chemicals manufacture. Both gas and liquid phase reactions are included although the latter are more numerous, analogous to fine chemicals manufacture where substrates and products often have low volatility and/or thermal stability, necessitating operation in the liquid phase. The subject is divided on the basis of the major types of catalytic conversions employed in organic synthesis: acid and base catalysis, hydrogenation and dehydrogenation, oxidation and C-C bond formation.

Heterogeneous catalysis has a long history, dating back to the early studies of alcohol dehydration over alumina and alcohol oxidation over platinum metal in the nineteenth century. Another milestone was the discovery, by the organic chemists Sabatier and Senderens, of catalytic hydrogenations at the beginning of the twentieth century. The high potential of catalysts as „molecular marriage brokers and divorce lawyers“ gradually became apparent and, following the advent of petrochemicals in the nineteen twenties, heterogeneous catalysis by solid acids and supported metals was widely applied in oil refining and petrochemicals. In contrast, fine chemicals manufacture was dominated by synthetic organic chemists who adhered to „stoichiometric“ methodologies. But „times are a changing“. The pressure of environmental legislation has, in the last decade, provided an important stimulus for the development of clean, catalytic methodologies. And heterogeneous catalysts have the added benefit of ease of separation and reuse.

This book is directed towards chemists engaged in organic synthesis, and catalysis, both in industrial and academic laboratories, who are concerned with research and development as well as education. Our primary aim is to cultivate a deeper understanding and, hence, promote a greater utilization of heterogeneous catalysis in organic synthesis. To this end, an international group of recognized authorities in the field of heterogeneous catalysis has been gathered together.

A general introduction to the subject is followed by a discussion of basic principles regarding types of catalyst and their preparation and characterization and types of catalytic reactors. Chapter 3 deals with the different types of solid acids. In the following chapters (4-6) various (solid) acid-catalyzed transforma-
tions are reviewed, *e. g.* aromatic substitutions and rearrangements and isomerizations. Solid base-catalyzed processes, *e. g.* aldol and related condensations are discussed in Chapter 7. Subsequent chapters deal with catalytic hydrogenation and dehydrogenation (Chapter 8), catalytic oxidation (Chapter 9) and catalytic C-C bond formation (Chapter 10), culminating in a future outlook (Chapter 11).

Each chapter contains an extensive bibliography covering the principal literature through the end of 1999.

Finally, the editors would like to express their sincere thanks to their friends and colleagues who have contributed such fine chapters to this book. We gratefully acknowledge the invaluable assistance of Mrs. Mieke van der Kooij in coordinating the traffic of manuscripts between contributors, editors and publisher. We also thank Wim Jongeleen for the cover illustration. Finally, we thank Dr. Anette Eckerle and Dr. Roland Kessinger of Wiley-VCH for their help in preparing this book.

Summer 2000

Roger Sheldon

Herman van Bekkum
Contents

1 Introduction .. 1
 1.1 What are Fine Chemicals? 1
 1.2 The Environmental Factor 2
 1.3 The Development of Organic Synthesis and Catalysis 3
 1.4 Why Heterogeneous Catalysis? 4
 1.5 Types of Catalysts and Reactions 5
 1.5.1 Solid-Acid Catalysis 5
 1.5.2 Solid-Base Catalysis 6
 1.5.3 Catalytic Hydrogenation 6
 1.5.4 Catalytic Oxidations 6
 1.5.5 Catalytic C-C Bond Formation 7
 1.6 Alternative Approaches 8
 1.7 Heterogeneous Catalysis in Multi-step Synthesis: Vanillin 8

2 Basic Principles/General 13
 2.1 General Considerations and Types of Catalyst 13
 2.1.1 Introduction 13
 2.1.2 Catalytically Active Surface Area 14
 2.1.3 Reactors Employed in the Fine-chemical Industry ... 14
 2.1.4 Slurry-phase Catalysts 16
 2.1.5 Fixed-bed Catalysts 18
 2.1.6 Integration of the Catalyst and the Reactor 18
 2.1.7 Solid Catalysts Employed in the Fine-chemical Industry 19
 2.1.8 Metal Catalysts 19
 2.1.9 Solid-Acid Catalysts 24
 2.2 Preparation of Solid Catalysts 26
 2.2.1 Demands on Solid Catalysts 26
 2.2.2 Preparation Procedures [2] 28
 2.2.3 Conclusions ... 33
 2.3 Characterization of Solid Catalysts 35
 2.3.1 Total Surface Area and Pore-size Distribution ... 36
 2.3.2 Catalytically Active Surface Area Per Unit Weight of Catalyst 39
Contents

2.3.3 Extent of Reduction of Metal Catalysts .. 41
2.3.4 Solid-acid Catalysts ... 42
2.3.5 Dispersion of Active Component(s) Over the Support 42
2.3.6 Conclusions .. 43
2.4 Reactors ... 45
2.4.1 Introduction .. 45
2.4.2 Three-phase Catalytic Reactions (G–L–S) 46
2.4.3 Characteristics of Three-phase Catalytic Reactors for Fine-chemicals Production ... 47
2.4.3.1 Reactors with Moving Catalyst .. 48
2.4.3.2 Reactors with a Fixed Bed of Catalyst 49
2.4.3.3 Comparison–Reactor Choice .. 50
2.4.4 Design Aspects of Stirred Tank Batch Reactor 53
2.4.5 Scale-up of Stirred-Tank Batch Reactors–Runaway Reactions 56

3 Solid-acid Catalysts–General ... 61
3.1 Acidic Clays .. 61
3.1.1 Introduction .. 61
3.1.2 Structure .. 62
3.1.3 Main Properties and Catalytic Applications 63
3.1.4 Pillared Interlayer Clays (PILC) ... 71
3.1.5 Conclusions .. 76
3.2 Zeolites as Catalysts .. 80
3.2.1 Introduction .. 80
3.2.2 Acid Zeolites ... 83
3.2.2.1 Framework Composition ... 83
3.2.2.2 Extra-framework Composition ... 84
3.2.3 Basicity in Zeolites ... 85
3.2.3.1 Basic Zeolites–Framework Composition 85
3.2.3.2 Basic Zeolites–Extra-framework Composition 86
3.2.4 Redox Molecular Sieves .. 86
3.2.4.1 Oxidation Sites in Framework Positions 86
3.2.4.2 Oxidation Sites in Extra-framework Positions 88
3.2.5 Conclusions .. 88
3.3 Sulfonated Polysiloxanes ... 92
3.3.1 Motivation and Expected Advantages 92
3.3.2 Synthetic Approaches .. 92
3.3.2.1 Grafting of Silanes to Silica ... 93
3.3.2.2 Copolycondensation and Sol–Gel Processing 94
3.3.2.3 Sulfonation of Arylsiloxanes .. 94
3.3.2.4 Oxidation of Sulfur-functionalized Siloxanes 95
3.3.3 Characterization of the Polysiloxanes 95
3.3.3.1 General ... 95
3.3.3.2 Analytical Determination of Capacity 96
3.3.3.3 NMR Spectroscopy .. 96
3.3.3.4 Thermal Stability ... 98
3.3.4 Applications and Reactions .. 98
3.3.5 Summary ... 99
3.4 Silica-occluded Heteropolyacids 100
3.4.1 Introduction ... 100
3.4.2 Preparation of Silica-occluded Heteropolyacid 101
3.4.3 Liquid-phase Organic Reactions over Silica-occluded \(\text{H}_3\text{PW}_{12}\text{O}_{40} \) ... 102
3.4.3.1 Hydrolysis of Ethyl Acetate 102
3.4.3.2 Hydration of Isobutene .. 103
3.4.3.3 Alkylation of Phenol .. 103
3.5 Hybrid Sulfonated Mesoporous Systems 106
3.5.1 Amorphous Solid Sulfonic Acids 106
3.5.1.1 Organic Resin–Silica Composites 106
3.5.1.2 Modification of Silica via Si–C Bonds 107
3.5.1.3 Sol–Gel Preparation ... 109
3.5.2 Ordered Sulfonic Acid Catalysts 109
3.5.2.1 Immobilization of Sulfonic Acids via Grafting and Coating 110
3.5.2.2 Sol–Gel Synthesis with Structure-directing Agents 112
3.5.2.3 Organic Catalyst with Ordered Solid Sulfonic Acids 113
3.6 The Use of Nafion and Nafion–Silica Composites in Solid Acid Catalysis ... 116
3.6.1 Introduction ... 116
3.6.2 The Ion-exchange Resin Nafion 116
3.6.3 Nafion in Catalysis .. 117
3.6.4 Nafion–Silica Composites ... 117
3.6.5 Nafion–Silica Composites in Catalysis 118
3.6.5.1 Friedel–Crafts Alkylation 118
3.6.5.2 Friedel–Crafts Acylation ... 118
3.6.5.3 Fries Rearrangement ... 119
3.6.5.4 Dimerization of \(\alpha \)-Methylstyrene 119
3.6.5.5 Esterification Reactions ... 119
3.6.6 Conclusions .. 120

4 Solid-acid Catalysts–Aromatic Substitution 123
4.1 Nitration of Aromatic Compounds 123
4.1.1 Introduction ... 123
4.1.2 Reaction Mechanism .. 123
4.1.3 Commercial Manufacture of Nitroaromatic Compounds 124
4.1.4 Solid-acid-based Nitration .. 125
4.1.5 Liquid-phase Reactions .. 126
4.1.6 Vapor-phase Reactions .. 128
4.1.7 Conclusion .. 130
4.2 Halogenation over Solid Catalysts 133
4.2.1 Introduction ... 133
4.2.2 Halogenation and Halogenating Agents 134
4.2.3 Halogenation over Solid Catalysts 135
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.4 Fluorination using Solid Catalysts</td>
<td>141</td>
</tr>
<tr>
<td>4.2.5 Chlorination using Solid Catalysts</td>
<td>143</td>
</tr>
<tr>
<td>4.2.6 Bromination Using Solid Catalysts</td>
<td>145</td>
</tr>
<tr>
<td>4.2.7 Iodination Using Solid Catalysts</td>
<td>146</td>
</tr>
<tr>
<td>4.2.8 Conclusions</td>
<td>147</td>
</tr>
<tr>
<td>4.3 Friedel–Crafts Alkylation</td>
<td>151</td>
</tr>
<tr>
<td>4.3.1 Introduction</td>
<td>151</td>
</tr>
<tr>
<td>4.3.2 Dialkylation of Benzene and Polynuclear Aromatics</td>
<td>152</td>
</tr>
<tr>
<td>4.3.3 Production of 1,3,5-Trialkylbenzene</td>
<td>157</td>
</tr>
<tr>
<td>4.3.4 Conclusions</td>
<td>158</td>
</tr>
<tr>
<td>4.4 Friedel–Crafts Acylation</td>
<td>161</td>
</tr>
<tr>
<td>4.4.1 Overview</td>
<td>161</td>
</tr>
<tr>
<td>4.4.2 Reactivity</td>
<td>161</td>
</tr>
<tr>
<td>4.4.2.1 Introduction</td>
<td>161</td>
</tr>
<tr>
<td>4.4.2.2 Acylation Using Zeolites</td>
<td>163</td>
</tr>
<tr>
<td>4.4.2.3 Acylation Using Other Catalysts</td>
<td>166</td>
</tr>
<tr>
<td>4.4.2.4 The Special Case of the Fries Rearrangement</td>
<td>168</td>
</tr>
<tr>
<td>4.4.3 Deactivation</td>
<td>169</td>
</tr>
<tr>
<td>4.4.4 Industrial Processes</td>
<td>169</td>
</tr>
<tr>
<td>4.4.5 Perspectives and Conclusions</td>
<td>170</td>
</tr>
<tr>
<td>4.5 Hydroxyalkylations</td>
<td>173</td>
</tr>
<tr>
<td>4.5.1 Overview</td>
<td>173</td>
</tr>
<tr>
<td>4.5.2 Main Results</td>
<td>174</td>
</tr>
<tr>
<td>4.5.3 Conclusion and Perspectives</td>
<td>177</td>
</tr>
<tr>
<td>4.6 The Fischer Indole Synthesis</td>
<td>178</td>
</tr>
<tr>
<td>4.6.1 Introduction</td>
<td>178</td>
</tr>
<tr>
<td>4.6.2 Heterogeneous Catalysis</td>
<td>178</td>
</tr>
<tr>
<td>4.6.3 Zeolites as Catalysts</td>
<td>179</td>
</tr>
<tr>
<td>5 Solid-acid Catalysis: Rearrangement and Isomerization</td>
<td>185</td>
</tr>
<tr>
<td>5.1 Beckmann Rearrangement</td>
<td>185</td>
</tr>
<tr>
<td>5.1.1 Introduction</td>
<td>185</td>
</tr>
<tr>
<td>5.1.2 Catalysts for Beckmann Rearrangements</td>
<td>186</td>
</tr>
<tr>
<td>5.1.2.1 Non-zeolitic Oxide Catalysts</td>
<td>186</td>
</tr>
<tr>
<td>5.1.2.2 Zeolite Catalysts</td>
<td>187</td>
</tr>
<tr>
<td>5.1.3 Mechanistic Considerations</td>
<td>193</td>
</tr>
<tr>
<td>5.1.3.1 Reaction Pathway</td>
<td>193</td>
</tr>
<tr>
<td>5.1.3.2 Influence of Acid Type</td>
<td>195</td>
</tr>
<tr>
<td>5.1.3.3 Influence of Acid Strength</td>
<td>195</td>
</tr>
<tr>
<td>5.1.4 Deactivation and Regeneration</td>
<td>199</td>
</tr>
<tr>
<td>5.1.4.1 Deactivation</td>
<td>199</td>
</tr>
<tr>
<td>5.1.4.2 Regeneration</td>
<td>200</td>
</tr>
<tr>
<td>5.1.5 Influence of Reaction Conditions</td>
<td>200</td>
</tr>
<tr>
<td>5.1.5.1 Vapor Phase and Liquid Phase</td>
<td>200</td>
</tr>
<tr>
<td>5.1.5.2 Co-feed Effects</td>
<td>201</td>
</tr>
<tr>
<td>5.1.5.3 Temperature Effects</td>
<td>202</td>
</tr>
</tbody>
</table>
Contents

5.1.6 Concluding Remarks ... 202
5.2 The Benzamine Rearrangement .. 205
5.2.1 Introduction ... 205
5.2.2 Rearrangement of Aniline and m-Phenylendiamine 205
5.2.3 Rearrangement of Other Benzenes 207
5.2.4 Mechanism of the Rearrangement 208
5.2.5 Outlook ... 209
5.3 The Fries Rearrangement ... 211
5.3.1 The Fries Rearrangement of Phenyl Acetate, and Related Reactions ... 212
5.3.1.1 Gas-Phase Reactions .. 212
5.3.1.2 Liquid-Phase Reactions .. 213
5.3.2 Other Fries Reactions ... 214
5.3.3 Conclusion .. 215
5.4 Rearrangement of Epoxides .. 217
5.4.1 Catalysts .. 217
5.4.2 Reactor Concepts ... 219
5.4.3 Isomerization of Small Aliphatic Epoxides 219
5.4.4 Isomerization of Styrene Oxide and Derivatives 220
5.4.5 Rearrangement of Glycidic Acid Ester 222
5.4.6 Isomerization of a-Pinene Oxide 223
5.4.7 Isomerization of Isophorone Oxide 226
5.4.8 Rearrangement of Oxaspiro Compounds 227
5.4.8.1 Rearrangement of 1,5-Dioxaspiro(2,6)octane 227
5.4.8.2 Rearrangement of 4,4,5,8-Tetramethyl-1-oxaspiro-(2,5)octane 227
5.4.9 Conclusions ... 229
5.5 The Pinacol Rearrangement ... 232
5.5.1 Introduction ... 232
5.5.2 Solid Acids in the Pinacol Rearrangement 234
5.5.2.1 The Use of Alumina .. 234
5.5.2.2 Application of Molecular Sieves 235
5.5.2.3 Transformation on Resin Sulfonic Acids 237
5.5.2.4 The Use of Clay Catalysts .. 238
5.5.2.5 Miscellaneous Solid Acids ... 239
5.5.3 Conclusions ... 240
5.6 Terpene Rearrangement/Isomerization 242
5.6.1 Introduction ... 242
5.6.2 Isomerization of pinene (1) .. 242
5.6.2.1 Preparation of camphene (2) 242
5.6.2.2 Other Reactions of Pinene 244
5.6.3 Rearrangement/Isomerization of Other Terpenes 244
5.6.4 Rearrangement of Terpene Epoxides 245
5.6.5 Conclusion ... 246
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.6</td>
<td>Amination of Di- and Polyhydroxy Compounds to Acyclic Amines</td>
<td>253</td>
</tr>
<tr>
<td>6.2</td>
<td>Alkylation of Carbohydrates</td>
<td>257</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Introduction</td>
<td>257</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Synthetic Routes</td>
<td>257</td>
</tr>
<tr>
<td>6.2.2.1</td>
<td>Fischer Synthesis</td>
<td>257</td>
</tr>
<tr>
<td>6.2.2.2</td>
<td>Koenigs-Knorr Route</td>
<td>258</td>
</tr>
<tr>
<td>6.2.2.3</td>
<td>Direct Alkylation</td>
<td>259</td>
</tr>
<tr>
<td>6.2.2.4</td>
<td>Reaction with Trichloroacetamide</td>
<td>259</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Catalysts for the Synthesis of Alkylglycosides</td>
<td>266</td>
</tr>
<tr>
<td>6.2.3.1</td>
<td>Homogeneous Catalysts</td>
<td>260</td>
</tr>
<tr>
<td>6.2.3.2</td>
<td>Heterogeneous Catalysts</td>
<td>261</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Conclusions</td>
<td>273</td>
</tr>
<tr>
<td>6.3</td>
<td>Heterocyclic Synthesis</td>
<td>275</td>
</tr>
<tr>
<td>6.4</td>
<td>Heterogeneous Catalysis of Diels–Alder Reactions</td>
<td>284</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Introduction</td>
<td>284</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Catalysts</td>
<td>284</td>
</tr>
<tr>
<td>6.4.2.1</td>
<td>Zeolites</td>
<td>284</td>
</tr>
<tr>
<td>6.4.2.2</td>
<td>Clays</td>
<td>286</td>
</tr>
<tr>
<td>6.4.2.3</td>
<td>Alumina and Silica</td>
<td>288</td>
</tr>
<tr>
<td>6.4.2.4</td>
<td>Polymer-supported Lewis Acids</td>
<td>291</td>
</tr>
<tr>
<td>6.4.2.5</td>
<td>Miscellaneous Heterogeneous Catalysts</td>
<td>291</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Concluding Remarks</td>
<td>292</td>
</tr>
<tr>
<td>6.5</td>
<td>Dehydration of Alcohols</td>
<td>295</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Introduction</td>
<td>295</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Dehydration of Monohydric Alcohols</td>
<td>295</td>
</tr>
<tr>
<td>6.5.2.1</td>
<td>Synthesis of Alkenes</td>
<td>295</td>
</tr>
<tr>
<td>6.5.2.2</td>
<td>Preparation of α, β-Unsaturated Carbonyl Compounds</td>
<td>299</td>
</tr>
<tr>
<td>6.5.2.3</td>
<td>Synthesis of Ethers</td>
<td>299</td>
</tr>
<tr>
<td>6.5.2.4</td>
<td>Dehydration of Methanol to Produce Hydrocarbons</td>
<td>300</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Dehydration of Diols</td>
<td>301</td>
</tr>
<tr>
<td>6.5.3.1</td>
<td>Dehydration to Form Carbonyl Compounds</td>
<td>301</td>
</tr>
<tr>
<td>6.5.3.2</td>
<td>Synthesis of Dienes</td>
<td>301</td>
</tr>
<tr>
<td>6.5.3.3</td>
<td>Cyclodehydration</td>
<td>301</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Dehydration of Polyols</td>
<td>302</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Conclusions</td>
<td>304</td>
</tr>
</tbody>
</table>
7 Solid-base Catalysis 309
 7.1 Zeolites and Related Materials in Knoevenagel Condensations and Michael Additions 309
 7.1.1 Introduction 309
 7.1.1.1 The Knoevenagel Condensation 309
 7.1.1.2 The Michael Addition 311
 7.1.2 Zeolites as Catalysts 312
 7.1.2.1 Basicity in Alkali Cation-exchanged Zeolites 313
 7.1.2.2 Metal Species and Oxide Clusters Encapsulated in Zeolites 315
 7.1.3 Knoevenagel and Michael Reactions on Basic Zeolites and Mesoporous Aluminosilicates for the Production of Fine Chemicals 318
 7.1.3.1 Exchanged and Over-exchanged Mesoporous Materials 318
 7.1.3.2 Knoevenagel and Michael Reactions on Cation-exchanged Zeolites 321
 7.1.4 Conclusions 323
 7.2 Aldol Condensations Catalyzed by Hydrotalcites 327
 7.2.1 Introduction 327
 7.2.1.1 Thermodynamics of Aldolization 327
 7.2.1.2 Structure and Surface Properties of Hydrotalcites and Calcined Hydrotalcites 328
 7.2.1.3 Aldolizations on Calcined Hydrotalcites 330
 7.2.1.4 Aldolizations on Hydrotalcites First Calcined then Rehydrated 332
 7.2.1.5 Aldolizations on Other Solid Catalysts 335
 7.3 Introduction 338
 7.3.1 Preparation of Materials 339
 7.3.2 Reactions Catalyzed by Organic Bases Attached to Mesoporous Silicas 342
 7.3.3.1 Knoevenagel Reaction 342
 7.3.3.2 Michael Additions 344
 7.3.3.3 The Aldol Reaction 345
 7.3.3.4 Monoglyceride Synthesis 346
 7.3.4 Discussion of the Different Approaches 346
 7.3.5 Conclusions 347

8 Catalytic Hydrogenation and Dehydrogenation 351
 8.1 Alkynes 351
 8.1.1 General 351
 8.1.2 Structure and Bonding 351
 8.1.3 Hydrogenation, General Observations 351
 8.1.4 The Choice of Active Metal 352
 8.1.5 Palladium-based Catalysts 355
 8.1.6 The Use of Promoters 356
 8.1.7 Illustrative Reactions 356
 8.1.8 Acetylenic Alcohols (Carbinols) 358
Contents

8.1.9 Selectivity and Stereochemistry .. 359
8.1.10 Alternative Metal Formulations .. 361
8.2 Aldehydes and Ketones ... 363
8.2.1 Introduction ... 363
8.2.2 Aromatic Aldehydes and Ketones .. 363
8.2.3 Aliphatic Ketones and Aldehydes .. 364
8.2.4 Stereochemistry ... 365
8.2.5 Amides ... 365
8.2.6 Anhydrides .. 365
8.2.7 Selective Hydrogenation of α,β-Unsaturated Aldehydes 365
8.2.8 Reaction Pathway ... 366
8.2.9 Cinnamaldehyde Hydrogenation .. 367
8.2.10 Unpromoted Catalysts ... 367
8.2.11 Promoters ... 367
8.2.12 Citral Hydrogenation ... 368
8.2.13 Pitfalls .. 369
8.3 Carboxylic Acids and Derivatives ... 370
8.3.1 Development of Hydrogenation Catalysts of Carboxylic acids and its Properties .. 370
8.3.2 Application of Cr-ZrO₂ Catalyst to Wide Variety of Carboxylic Acids .. 373
8.3.3 Hydrogenation of Aliphatic Carboxylic Acids 374
8.3.4 Application of Cr₂O₃ Catalysts to Different Aliphatic Carboxylic Acids .. 376
8.3.5 Mechanistic Considerations .. 376
8.3.6 The Commercial Process ... 378
8.3.7 Future Prospects for Hydrogenation of Carboxylic Acids 379
8.4 Carbohydrates .. 380
8.4.1 Introduction .. 380
8.4.2 Hydrogenation of the Carbonyl Group 380
8.4.3 Reductive Amination .. 384
8.4.4 Dehydrogenation .. 386
8.4.5 Conclusion ... 386
8.5 Aromatic Nitro Compounds .. 389
8.5.1 Introduction .. 389
8.5.2 The Reaction Network ... 389
8.5.3 Practical Aspects .. 390
8.5.3.1 Catalysts ... 390
8.5.3.2 Reaction Medium and Modifiers .. 392
8.5.3.3 Reaction Conditions ... 392
8.5.3.4 Safety Aspects ... 393
8.5.3.5 Hydrogenation Equipment ... 395
8.5.4 Chemoselective Hydrogenation of Functionalized Nitro Arenes 396
8.5.4.1 Main Problems, and Overview of the State of the Art 396
8.5.4.2 New Catalyst Systems for the Hydrogenation of a Nitro Group in the Presence of Reducible Functional Groups 398
8.5.4.3 Accumulation of Hydroxylamine .. 400
8.5.4.4 Partial Hydrogenation of Nitroarenes ... 401
8.5.5 Mechanistic Concepts in the Hydrogenation of Nitroarenes 401
8.5.5.1 General .. 401
8.5.5.2 Mode of Action of Modifiers ... 402
8.5.6 Alternative Commercial Methods of Reduction 403
8.5.6.1 Béchamp Reduction ... 403
8.5.6.2 Sulfide Reduction .. 403
8.5.6.3 Comparison of Reduction Methods ... 404
8.5.7 Conclusions and Recommendations ... 405
8.6 Catalytic Hydrogenation of Aromatic Rings .. 407
8.6.1 Introduction .. 407
8.6.2 Intermediates and Mechanism .. 407
8.6.3 Hydrogenation of Benzene Derivatives ... 408
8.6.4 Hydrogenation of Polycyclic Aromatic Ring Systems 409
8.6.5 Hydrogenation of Nitrogen-containing Aromatic Ring Systems 410
8.6.6 Hydrogenation of Oxygen- and Sulfur-containing Aromatic Ring Systems ... 411
8.6.7 Concluding Remarks .. 412
8.7 Hydrogenolysis of C-O, C-N and C-X Bonds .. 415
8.7.1 Hydrogenolysis of C-O Bonds .. 415
8.7.1.1 Alcohols .. 415
8.7.1.2 Phenols .. 415
8.7.1.3 Ethers .. 416
8.7.1.4 Oxiranes .. 416
8.7.1.5 Oxolanes .. 416
8.7.1.6 Acetals ... 416
8.7.1.7 Acid Anhydrides .. 416
8.7.1.8 Esters .. 417
8.7.1.9 Benzyl Compounds .. 417
8.7.1.10 N-Benzylxloxy Compounds ... 418
8.7.1.11 Transfer Hydrogenolysis ... 418
8.7.2 Hydrogenolysis of C-N Bonds .. 419
8.7.2.1 Amines .. 420
8.7.2.2 Aziridines ... 420
8.7.2.3 Benzylc C-N Bonds ... 420
8.7.2.4 Selective Hydrogenolysis of Benzylic C-O and C-N Bonds 420
8.7.2.5 Transfer Hydrogenolysis .. 422
8.7.3 Hydrogenolysis of C-X Bonds .. 422
8.7.3.1 Alkyl Halides .. 422
8.7.3.2 Aromatic Halides ... 423
8.8 Dehydrogenation .. 427
8.8.1 Thermodynamics ... 427
8.8.2 Reaction Conditions ... 430
8.8.3 Catalysts .. 431
8.8.4 Dehydrogenation to Aromatic or Heteroaromatic Compounds 432
8.8.5 Dehydrogenation of Alcohols to Aldehydes or Ketones 435
8.8.6 Conclusion ... 436
8.9 Meerwein–Ponndorf–Verley Reduction, Oppenauer Oxidation, and Related Reactions 438
8.9.1 Introduction .. 438
8.9.2 MPVO Reactions Catalyzed by Metal Oxides 439
8.9.2.1 Alumina .. 439
8.9.2.2 Zirconia and Immobilized Zirconium Complexes 440
8.9.2.3 Magnesium Oxide, Magnesium Phosphates, and Mg-Al Hydrotalcites .. 441
8.9.3 MPVO Reactions Catalyzed by Mesoporous Materials 442
8.9.4 MPVO Reactions Catalyzed by Zeolites 443
8.9.5 Conclusions ... 446
8.10 Enantioselective Hydrogenation with Solid Catalysts 449
8.10.1 Introduction and Scope 449
8.10.2 Strategies for Developing Solid Enantioselective Catalysts 449
8.10.2.1 Metal on a Chiral Support 449
8.10.2.2 Metal Modified by a Soluble Chiral Compound 450
8.10.2.3 Chiral Metal Surface 451
8.10.3 Hydrogenation of Ketones 451
8.10.3.1 β-Functionalized Ketones 451
8.10.3.2 α-Functionalized Ketones 453
8.10.3.3 Simple Ketones ... 456
8.10.4 Hydrogenation of Functionalized Olefins 457
8.10.4.1 α,β-Unsaturated Carboxylic Acids 457
8.10.4.2 α,β-Unsaturated Ketones 458
8.10.5 Hydrogenation of C=N Bonds 458
8.11 Selective N-Alkylation of Amines with Alcohols over γ-Alumina ... 461
8.11.1 Introduction ... 461
8.11.1.1 Reductive Amination 461
8.11.1.2 Dehydroamination [12] 462
8.11.1.3 Dehydrative Amination 462
8.11.2 Experimental .. 463
8.11.3 Methanol as Alkylating Agent 464
8.11.4 Influence of the Structure of the Alkylating Agent 466
8.11.5 Ether as Alkylating Agent 468
8.11.6 Chirality ... 469
8.11.7 Conclusion ... 470

9 Oxidation .. 473
9.1 Epoxidation ... 473
9.1.1 Introduction .. 473
9.1.2 Mechanistic Considerations 474
9.1.3 Historical Development and Overview of Catalysts 475
9.1.4 Titanium(IV)-on-silica .. 477
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1.5</td>
<td>Mixed Oxides by the Sol–Gel Method</td>
<td>478</td>
</tr>
<tr>
<td>9.1.6</td>
<td>Framework-substituted Molecular Sieves</td>
<td>479</td>
</tr>
<tr>
<td>9.1.7</td>
<td>Hydrotalcites</td>
<td>480</td>
</tr>
<tr>
<td>9.1.8</td>
<td>Immobilization of Homogeneous Complexes</td>
<td>481</td>
</tr>
<tr>
<td>9.1.9</td>
<td>Heterogeneous Catalysts for Asymmetric Epoxidation</td>
<td>483</td>
</tr>
<tr>
<td>9.1.10</td>
<td>Comparison of the Different Catalytic Systems</td>
<td>483</td>
</tr>
<tr>
<td>9.1.11</td>
<td>Concluding Remarks</td>
<td>487</td>
</tr>
<tr>
<td>9.2</td>
<td>Oxidation of Alcohols and Aldehydes on Metal Catalysts</td>
<td>491</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Introduction</td>
<td>491</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Physicochemical and Engineering Aspects</td>
<td>491</td>
</tr>
<tr>
<td>9.2.2.1</td>
<td>Reaction Mechanism</td>
<td>491</td>
</tr>
<tr>
<td>9.2.2.2</td>
<td>Catalyst Deactivation</td>
<td>493</td>
</tr>
<tr>
<td>9.2.2.3</td>
<td>Role of Metal Promoters</td>
<td>495</td>
</tr>
<tr>
<td>9.2.2.4</td>
<td>Role of Organic Modifiers</td>
<td>495</td>
</tr>
<tr>
<td>9.2.2.5</td>
<td>Reactors and Reaction Conditions</td>
<td>496</td>
</tr>
<tr>
<td>9.2.2.6</td>
<td>Preparation of Metal Catalysts</td>
<td>496</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Selected Examples of Alcohol Oxidation Processes</td>
<td>497</td>
</tr>
<tr>
<td>9.2.3.1</td>
<td>Oxidation of Aldehydes</td>
<td>497</td>
</tr>
<tr>
<td>9.2.3.2</td>
<td>Oxidation of Primary Alcohols</td>
<td>499</td>
</tr>
<tr>
<td>9.2.3.3</td>
<td>Oxidation of Secondary Alcohols</td>
<td>502</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Concluding Remarks</td>
<td>503</td>
</tr>
<tr>
<td>9.3</td>
<td>Oxidation of Carbohydrates on Metal Catalysts</td>
<td>507</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Introduction</td>
<td>507</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Mechanistic and Engineering Aspects</td>
<td>508</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Selected Examples of Carbohydrate Oxidation Processes</td>
<td>509</td>
</tr>
<tr>
<td>9.3.3.1</td>
<td>Oxidation of Aldoses to Aldonic Acids</td>
<td>509</td>
</tr>
<tr>
<td>9.3.3.2</td>
<td>Oxidation of Primary Alcohol Functions</td>
<td>511</td>
</tr>
<tr>
<td>9.3.3.3</td>
<td>Oxidation of Secondary Alcohol Functions</td>
<td>514</td>
</tr>
<tr>
<td>9.3.3.4</td>
<td>Oxidative Cleavage of Vicinal Diols</td>
<td>515</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Concluding Remarks</td>
<td>515</td>
</tr>
<tr>
<td>9.4</td>
<td>Allylic and Benzylic Oxidation</td>
<td>519</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Introduction</td>
<td>519</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Palladium-catalyzed Allylic Oxidations</td>
<td>519</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Palladium-catalyzed Benzylic Oxidations</td>
<td>522</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Metal-substituted Molecular Sieves as Catalysts for Allylic and Benzylic Oxidations</td>
<td>523</td>
</tr>
<tr>
<td>9.4.5</td>
<td>Concluding Remarks</td>
<td>524</td>
</tr>
<tr>
<td>9.5</td>
<td>Ammoxidation of Aromatic Side-chains</td>
<td>527</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Introduction</td>
<td>527</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Catalysts, General Reaction Conditions, Reaction Mechanism</td>
<td>528</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Ammoxidation of Toluene and Alkylbenzenes</td>
<td>531</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Ammoxidation of Substituted Toluenes</td>
<td>532</td>
</tr>
<tr>
<td>9.5.4.1</td>
<td>Methyl-substituted Toluenes</td>
<td>532</td>
</tr>
<tr>
<td>9.5.4.2</td>
<td>Halogen-substituted Toluenes</td>
<td>532</td>
</tr>
<tr>
<td>9.5.4.3</td>
<td>Hydroxy- and Alkoxy-substituted Toluenes</td>
<td>533</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Ammoxidation of Heterocyclic Compounds</td>
<td>534</td>
</tr>
</tbody>
</table>
List of Contributors

A. Abbadi
AraChem Contract Research & Custom Synthesis
P.O. Box 2021
6020 AA Budel
The Netherlands

D. J. Ager
Richmond Chemical Corporation
4285 Mumford Drive
Hoffman Estates, IL 60195
USA

A. Baiker
Laboratory of Technical Chemistry
ETH-Zentrum
Universitätstrasse 6
8092 Zürich
Switzerland

S. Bailey
Synetix
P.O. Box 1
Belasis Avenue
Billingham
Cleveland TS23 1LB
UK

U. Barsnick
Technische Chemie und Heterogene Katalyse
Technische Hochschule Aachen
Worringerweg 1
52056 Aachen
Germany

M. Bartók
University of Szeged
Department of Organic Chemistry
Dóm tér 8
6720 Szeged
Hungary

J.-M. Basset
Laboratoire COMS CPE Lyon
UMR CNRS 9986
43 bd du 11 novembre 1918
69616 Villeurbanne Cedex
France

A. E. W. Beers
Section Industrial Catalysis
Delft ChemTech
Delft University of Technology
Julianalaan 136
2628 BL Delft
The Netherlands
XX List of Distributors

H. van Bekkum
Delft University of Technology
Organic Chemistry and Catalysis
Julianalaan 136
2628 BL Delft
The Netherlands

M. Besson
Institut de Recherche sur la Catalyse-CNRS
2 Avenue Albert Einstein
69626 Villeurbanne Cédex
France

H.U. Blaser
Solvias AG
WRO-1055.6.28
Klybeckstrasse 191
Postfach
4002 Basel
Switzerland

D. Brunel
Laboratoire de Matériaux Catalytiques et Catalyse en Chimie Organique
UMR-CNRS-5618
Ecole Nationale Supérieure de Chimie
8, rue de l'Ecole Normale
34296 Montpellier Cedex 05
France

M. Campanati
University of Bologna
Department of Industrial Chemistry
Catalysis Section
Viale Risorgimento 4
40136 Bologna
Italy

M.G. Clerici
EniTecnologie SpA
Via F. Maritano 26
20097 San Donato Milanese (MI)
Italy

C. Copéret
Laboratoire COMS CPE Lyon
UMR CNRS 9986
43, Bd du 11 novembre 1918
69616 Villeurbanne Cedex
France

A. Corma
Instituto de Tecnología Química – UPV-CSIC
Universidad Politécnica de Valencia
Avenida de los Naranjos s/n
46022 Valencia
Spain

E. J. Creyghton
Shell International Chemicals B. V.
CTCAT/3
Badhuisweg 3
1031 CM Amsterdam
The Netherlands

A. E. van Diepen
Delft University of Technology
Section Industrial Catalysis
Julianalaan 136
2628 BL Delft
The Netherlands

A. J. van Dijlen
U-Cat. b.v.
Utrecht University
Room East 807
Hugo R. Kruybuilding
Padualaan 8
3584 CH Utrecht
The Netherlands

J. G. Donkervoort
Engelhard de Meern B. V.
Chemical Catalyst Group
Strijkviertel 67
3454 PK de Meern
The Netherlands
List of Distributors

R. S. Downing
Boekenroodeweg 7
2111 HJ Aerdenhout
The Netherlands

A. Eisenstadt
IMI (TAMI) Institute for R&D Ltd.
P.O. Box 10140
Haifa Bay 26111
Israel

F. Fache
Institut de Recherches sur la Catalyse
Laboratoire de Catalyse et Synthèse Organique
Université Claude Bernard Lyon I, CPE
43, Bd du 11 novembre 1918
69622 Villeurbanne Cedex
France

F. Figueras
Institut de Recherches sur la Catalyse du CNRS
2 Avenue Albert Einstein
69626 Villeurbanne Cedex
France

P. Gallezot
Institut de Recherches sur la Catalyse-CNRS
2 Avenue Albert Einstein
69626 Villeurbanne Cedex
France

J. M. Garces
The Dow Chemical Company
Corporate R & D, Catalysis.
Bldg. 1776
Midland, MI 48674
USA

J. W. Geus
U-Cat. b.v.
Utrecht University
Room East 807
Hugo R. Kruytbuiding
Padualaan 8
3583 CH Utrecht
The Netherlands

K. Griffin
Johnson Matthey Plc
Process Catalyst
Orchard Road
Royston, Herts SG8 5HE
UK

M. Guisnet
Université de Poitiers
Catalyse en Chimie Organique – CNRS
- DO350 – UMR 6503
40, Avenue du Recteur Pineau
86022 Poitiers Cedex
France

W. F. Hölderich
Technische Chemie und Heterogene Katalyse
Technische Hochschule Aachen
Worringenweg 1
52056 Aachen
Germany

S. Iborra
Instituto de Tecnología Química – UPV-CSIC
Universidad Politécnica de Valencia
Avenida de los Naranjos s/n
46022 Valencia
Spain

Y. Izumi
Sugiyama Jogakuen University
Department of Human Environment
17-3, Hoshigaoka, Motomachi,
Chikusa-ku
Nagoya 464-8662
Japan
List of Distributors

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. A. Jacobs</td>
<td>Centrum voor Oppervlaktechemie en Katalyse, Katholieke Universiteit Leuven, Kardinaal Mercierlaan 92, 3001 Heverlee, Belgium</td>
</tr>
<tr>
<td>F. Kapteijn</td>
<td>Section Industrial Catalysis, Delft ChemTech, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands</td>
</tr>
<tr>
<td>F. King</td>
<td>Synetix, P.O. Box 1, Belasis Avenue, Billingham, Cleveland TS23 ILB, UK</td>
</tr>
<tr>
<td>A. Kogelbauer</td>
<td>Department of Chemical Engineering and Chemical Technology, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK</td>
</tr>
<tr>
<td>H. W. Kouwenhoven</td>
<td>Laboratorium fürTechnische Chemie, ETH-Zentrum, 8092 Zürich, Switzerland</td>
</tr>
<tr>
<td>E. G. M. Kuijpers</td>
<td>Engelhard de Meern B. V., Chemical Catalyst Group, Strijkviertel 67, 3454 PK De Meern, The Netherlands</td>
</tr>
<tr>
<td>P. J. Kunkeler</td>
<td>Akzo PQ Silica, Ankerkade 111, 6222 NL Maastricht, The Netherlands</td>
</tr>
<tr>
<td>G. S. Lee</td>
<td>The Dow Chemical Company, Corporate R&D, Catalysis, Bldg. 1776, Midland, MI 48674, USA</td>
</tr>
<tr>
<td>M. Lemaire</td>
<td>CPE/UCBL/CNRS, Bat. 308, 43, Bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France</td>
</tr>
<tr>
<td>J. Lopez</td>
<td>Institut de Recherches sur la Catalyse du CNRS, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France</td>
</tr>
<tr>
<td>B. Lücke</td>
<td>Institut für Angewandte Chemie, Berlin-Adlershof e. V., Richard-Wilstätter-Str. 12, 12489 Berlin, Germany</td>
</tr>
<tr>
<td>D. J. Macquarrie</td>
<td>Centre for Clean Technology, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK</td>
</tr>
<tr>
<td>T. Mallat</td>
<td>Laboratory of Technical Chemistry, ETH-Zentrum, Universitätstrasse 6, 8092 Zürich, Switzerland</td>
</tr>
</tbody>
</table>
A. Martin
Institut für Angewandte Chemie
Berlin-Adlershof e. V.
Richard-Wilstätter-Str. 12
12489 Berlin
Germany

C. H. McAteer
Reilly Industries, Inc.
1500 South Tibbs Avenue
P.O. Box 42912
Indianapolis, Indiana 46222
USA

G. R. Meima
Corporate R&D
Dow Benelux N. V.
P.O. Box 48
4530 AA Terneuzen
The Netherlands

P. Méthivier
Rhodia
Centre de Recherches de Lyon
85, Ave. des Frères Perret – B. P. 62
69192 Saint Fons Cedex
France

G. J. Meuzelaar
Stockholm University
Department of Organic Chemistry
Arrhenius Laboratory
10691 Stockholm
Sweden

J. C. Mol
University of Amsterdam
Faculteit of Chemistry
Institute of Molecular Chemistry
Nieuwe Achtergracht 166
1018 WV Amsterdam
The Netherlands

A. Molnár
University of Szeged
Department of Organic Chemistry
Dóm tér 8
6720 Szeged
Hungary

J. A. Moulijn
Section Industrial Catalysis
DelftChemTech
Delft University of Technology
Julianalaan 136
2628 BL Delft
The Netherlands

T. A. Nijhuis
Section Industrial Catalysis
Delft ChemTech
Delft University of Technology
Julianalaan 136
2628 BL Delft
The Netherlands

F. Notheisz
University of Szeged
Department of Organic Chemistry
Dóm tér 8
6720 Szeged
Hungary

Dr. Peter Panster
Degussa-Huels AG
Sivento Division – R&D and Applied Technology Chemical Catalysts
Rodenbacher Chaussee 4
P.O. Box 1345
63403 Hanau
Germany

G. Pérot
Université de Poitiers
Catalyse en Chimie Organique – CNRS
DO350 – UMR 6503
40, Avenue du Recteur Pineau
86022 Poitiers Cedex
France
XXIV List of Distributors

R. Prins
ETH Zürich
Laboratorium für Technische Chemie
8092 Zürich
Switzerland

P. Ratnasamy
National Chemical Laboratory
Pune 411008
India

W. Van Rhijn
Centrum voor Oppervlaktechemie en Katalyse
Katholieke Universiteit Leuven
Kardinaal Mercierlaan 92
3001 Heverlee
Belgium

D. Roberge
Technische Chemie und Heterogene Katalyse
Technische Hochschule Aachen
Worrigerweg 1
52056 Aachen
Germany

E. F. V. Scriven
Reilly Industries, Inc.
1500 South Tibbs Avenue
P. O. Box 42912
Indianapolis, Indiana 46242-0912
USA

T. Setoyama
Mitsubishi Chemical Corporation
Yokohama Research Center
1000, Kamoshida, Aoba-ku
Yokohama 227
Japan

R. A. Sheldon
Delft University of Technology
Organic Chemistry and Catalysis
Julianaalaan 136
2628 BL Delft
The Netherlands

U. Siegrist
Solvias AG
WRO-1055.6.28
Klybeckstrasse 191
Postfach
4002 Basel
Switzerland

K. E. Simons
Johnson Matthey Plc
Process Catalyst
Orchard Road
Royston, Herts SG8 5HE
UK

A. P. Singh
National Chemical Laboratory
Pune 411008
India

H. Steiner
Solvias AG
WRO-1055.6.28
Klybeckstrasse 191
Postfach
4002 Basel
Switzerland

M. Studer
Solvias AG
WRO-1055.6.28
Klybeckstrasse 191
Postfach
4002 Basel
Switzerland
K. Swift
Quest International Ltd.
Willesborough Road
Ashford, Kent TN24 0LT
UK

T. Tatsumi
Yokohama National University
Catalysis Laboratory – Faculty of Engineering
Division of Materials Science & Chemical Engineering
79-5 Tokiwadai, Hodogaya-ku
Yokohama 240-8501
Japan

J. Thivolle-Cazat
Laboratoire COMS CPE Lyon
UMR CNRS 9986
43, Bd du 11 novembre 1918
69616 Villeurbanne Cedex
France

A. Vaccari
University of Bologna
Department of Industrial Chemistry
Catalysis Section
Viale Risorgimento 4
40136 Bologna
Italy

F. Valot
Institut de Recherches sur la Catalyse
Laboratoire de Catalyse et Synthèse Organique
Université Claude Bernard Lyon I, CPE
43, Bd du 11 novembre 1918
69622 Villeurbanne
France

M. C. A. van Vliet
Delft University of Technology
Organic Chemistry and Catalysis
Julianalaan 136
2628 BL Delft
The Netherlands

D. E. De Vos
Centrum voor Oppervlaktechemie en Katalyse
Katholieke Universiteit Leuven
Kardinaal Mercierlaan 92
3001 Heverlee
Belgium

J. C. van der Waal
Avantium
Julianalaan 136
2628 BL Delft
The Netherlands

Dr. Stefan Wieland
dmc (superscript: 2) – Degussa Metals Catalysts Cerdec AG
Fuel Cell Division – Research and Applied Technology
Rodenbacher Chaussee 4
P.O. Box 1351
63403 Hanau
Germany

T. Yokoyama
Mitsubishi Chemical Corporation
Yokohama Research Center
100, Kamoshida, Aoba-ku
Yokohama 227
Japan
This Page Intentionally Left Blank
1 Introduction

Roger Sheldon, H. van Bekkum

1.1 What are Fine Chemicals?

There are no universally accepted definitions of bulk, fine, and specialty chemicals, nor are these classifications based on any intrinsic properties. A substance that is currently viewed as a bulk chemical might well have been classified as a fine chemical at an earlier stage in its development. A useful working definition of a fine chemical is one with a price of more than 10 US dollars kg⁻¹ and a volume of less than 10,000 tons per annum on a worldwide basis. We make no distinction between fine chemicals, that are often intermediates, and specialty chemicals such as pharmaceuticals, pesticides, and flavors and fragrances. The type of technology used to manufacture these products is dictated more by volume than by product application.

From a chemical viewpoint fine chemicals are generally complex, multifunctional molecules and, consequently, are often of low volatility and limited thermal stability. This means that processes are generally performed in the liquid phase. Fine chemicals manufacture often involves multistep syntheses and is generally performed in a multipurpose equipment. This contrasts with the manufacture of bulk chemicals which usually involves continuous processing in dedicated plants. Hence, the emphasis in fine chemicals manufacture is on the development of processes that have broad scope and can be implemented in standard multipurpose equipment.
1.2 The Environmental Factor

It is now widely accepted that there is an urgent need for more environmentally acceptable processes in the chemical industry [1]. This trend towards what has become known as green chemistry [2,3] or sustainable technology necessitates a paradigm shift from traditional concepts of process efficiency, that focus exclusively on chemical yield, to one that assigns economic value to eliminating waste and avoiding the use of toxic and/or hazardous substances. Green chemistry eliminates waste at the source, i.e. it is primary pollution prevention rather than waste remediation (end-of-pipe solutions).

The sheer magnitude of the waste problem in the manufacture of chemicals is readily apparent from a consideration of the amount of waste produced per kg product, the so-called ‘E factor’ [4,5], in different segments of the chemical industry (Table 1).

These enormous quantities of waste consist primarily of inorganic salts, such as sodium chloride, sodium sulfate, and ammonium sulfate, formed in the reaction or in subsequent neutralization steps. The E factor increases dramatically on going downstream from bulk to fine chemicals and pharmaceuticals, partly because the production of the latter involves multistep syntheses and partly because of the use of stoichiometric (inorganic) reagents rather than catalytic methodologies. Although the absolute quantities are much smaller than in the synthesis of bulk chemicals, the need for greener, low-salt technologies is clearly more urgent in fine chemicals manufacture.

Comparisons of alternative processes solely on the basis of the amount of waste is obviously a gross oversimplification. An assessment of the environmental impact of a process should take both the amount and the nature of the waste into account. To this end the environmental quotient (EQ) was introduced [4]. It is obtained by multiplying the E factor by an arbitrarily assigned unfriendliness quotient, Q. For example, if an innocuous salt such as NaCl is assigned a Q value of 1 then heavy metal salts could be given a factor of, say, 100–1000 depending on their toxicity, ease of recycling, etc. The magnitude of Q is obviously debatable but it is clear that a quantitative assessment of the environmental impact of waste streams is, in principle, possible.

<table>
<thead>
<tr>
<th>Industry segment</th>
<th>Product tonnagea</th>
<th>E (kg waste/kg product)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk chemicals</td>
<td>< 10^4–10^6</td>
<td>< 1 → 5</td>
</tr>
<tr>
<td>Fine chemicals</td>
<td>10^2–10^4</td>
<td>5 → > 50</td>
</tr>
<tr>
<td>Pharmaceuticals</td>
<td>10–10^3</td>
<td>25 → > 100</td>
</tr>
</tbody>
</table>

*Depending on the product this could be the capacity of a single plant or the world-wide production.