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Preface 

The origin of this book can be traced back at least in part to the fact that the im- 
portance and practicality of amination reactions as a tool for obtaining target com- 
pounds is nowadays fully acknowledged by chemists in synthetic organic, medicinal, 
agricultural and natural product chemistry, as well as by the pharmaceutical and 
agricultural industries. This prominence is due to the explosive development during 
the past decade of novel and more efficient amination methods. These provide a great 
improvement with respect to the classical methods such as those based on the attack 
of a nucleophilic nitrogen atom to an electrophilic carbon, which are hampered by 
the difficult access to the electrophilic precursors - particularly when multifunctional 
derivatives are taken into consideration - and by the frequently recurring difficult 
reaction conditions. 

This book is intended to provide an overview of several areas of research in which 
amination plays a key role, and to introduce the reader to new concepts that have 
been developed quite recently for generating new C - N bonds. As the pharmaceu- 
tical and chemical industries move rapidly away from the development of racemic 
compounds, the access to synthetic routes that lead efficiently to enantiomerically 
pure materials is becoming increasingly important. For this reason, most of the con- 
tributions in this book refer to asymmetric synthesis. However, no attempt has been 
made to present a comprehensive work, and important areas such as asymmetric 
hydroxyamination [ 11 have not been dealt with. Furthermore, it may be worth men- 
tioning that viable, useful and comprehensive sources of information about the meth- 
odological approaches to electrophilic amination developed since 1985 have already 
been reported [2], and that a chapter in Houben-Weyl reviewing several aspects of 
the asymmetric electrophilic amination [3] compiles important contributions up to 
1995. 

In order to provide - whenever possible - new perspectives in the different areas 
treated in the book, the authors have been recruited among internationally recog- 
nized experts in their specific fields. 

This book is arranged in seven chapters which cover the following aspects of 
amination - even if the order of the contributions is somewhat arbitrary. Chapter 1 
(K. A. Jdrgensen) deals with modem aspects of allylic amination reactions for pre- 
paring fundamental building blocks which have either distinct important properties 
or can be used for further transformations in organic synthesis. Two approaches - the 
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nucleophilic allylic substitution and the direct allylic amination of simple alkenes - 
are described. Considering the potential importance of electrophilic amination of 
alkenes, progress and steps being taken to carry out indirect amination of organo- 
metallics derived from hydroboration and hydrozirconation of alkenes are also de- 
scribed in Chapter 2 (E. Fernandez and J.H. Brown). In Chapter 3, J.-P. Genet, C. 
Greck and D. Lavergne provide an exhaustive overview of modem methods (up to 
1998) based on the stereoselective electrophilic amination of chiral carbon nucleo- 
philes for making a- and p-amino acid derivatives. Chapter 4 (H. Kunz, H. Tietgen 
and M. Schultz-Kukula) also addresses the synthesis of a- and p-amino acids with 
high enantiomeric purity, but a different approach based on the reaction of carbohy- 
drate-derived prochiral imines with nucleophiles is used. More about the use of 
organometallics is to be found in the following two chapters. Thus, Chapter 5 
(E. Carreira, C.S. Tomooka and H. Iikura) focuses on the various methods that 
have been reported for the synthesis of metal nitride complexes. These complexes 
have an intriguing array of reactivity and structure, and display a host of desirable 
properties in material sciences, medicine and chemical synthesis. The nitrogen atom 
transfer from a nitrido complex is reviewed in Chapter 6 by M. Komatsu and S. 
Minakata, with special emphasis on enantioselective transformations in aziridina- 
tion reactions using nitridomanganese complexes. A fairly new approach to C - N 
bond formation - the transition metal-catalyzed synthesis of arylamines - is the aim 
of Chapter 7, in which J. F. Hartwig provides an exhaustive account of the palladium- 
catalyzed amination of aryl halides and sulfonates for use in complex synthetic pro- 
blems. The breakthrough required to convey efficiency and high performance is the 
catalyst design, and many new challenges remain for the synthetic chemist in this 
area. 

Complete reference citations have been provided since, as it is increasingly re- 
cognized, they are a requirement for manuscripts and proposals. 

It is my sincere hope that this book will provide synthetic chemists with new 
opportunities for achieving their synthetic goals. For those students who are reading 
the book in order to enhance their synthetic “toolkit”, I hope they will enjoy the 
variety of these new reactions which span from stoichiometric to catalytic, from 
natural product-based protocols to synthetic strategies employing organometallic 
complexes. 

I gratefully acknowledge the work done by all authors in presenting up-to-date and 
well-referenced contributions. Without their effort this volume would not have been 
possible. Furthermore, it was a pleasure to contribute with the Wiley-VCH “crew” in 
Weinheim, who not only did an excellent job in producing the book, but also helped 
me in a competent manner in all phases of its preparation. Finally, I am grateful to Dr. 
Golitz and to Dr. Eckerle who originally encouraged the idea of creating a book about 
Modern Amination Methods. 

Bologna, January 2000 Alfred0 Ricci 
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1 Modem Allylic Amination Methods 

Karl An ke r J$ rg ensen 

1.1 Introduction 

One of the challenges in organic chemistry is to prepare fundamental molecular 
building blocks which either have distinct important properties, or can be used 
for further transformations in organic synthesis. Ally1 amines 1 can be used as funda- 
mental building blocks in organic chemistry, and their synthesis is an important 
industrial and synthetic goal. They can be incorporated in natural products, but often 
the allyl amine moiety is transfornfed to a range of products by functionalization, 
reduction or oxidation of the double bond. 

1 

The synthetic methods for the preparation of allyl amines can be divided into 
several types of reactions [l]. In the present chaptgr, the focus will be on the for- 
mation of allyl amines by reaction of substrates having an allylic bond which can be 
broken. Two approaches will be covered and these are outlined in Scheme 1 : the first 
method (a) is the synthesis of allyl amines by nucleophilic allylic substitution of 
compounds having an allyl functionality; the second method (b) is the direct allylic 
amination of simple alkenes. 



(b) + R’NX - 
Scheme 1 

Other types of allylic amination reactions include a variety of indirect approaches 
such as reduction of a,p-unsaturated imines and oximes, rearrangement of aziridines, 
and elimination of water from vicinal amino alcohols. However, these reactions will 
not be considered in this chapter [2]. 

The present chapter on modem allylic amination methods will be restricted mainly 
to an overview of some of the major developments for the transformation of allylic 
compounds into allyl amines according to reaction types (a) and (b) in Scheme 1, and 
an attempt is made to cover the literature up to August 1999. 

The reaction type (a) in Scheme 1 for the allylic amination reaction uses substrates 
which have an allylic C-X (X = heteroatom, halide) bond and is mainly nucleophi- 
lic amination of functionalized alkenes, whereas reaction type (b) is a direct allylic 
amination of an allcene, based on electrophilic amination of nonfunctionalized al- 
kenes and involves a cleavage of a C-H bond. 

1.2 Nucleophilic Amination of Functionalized Alkenes 

Nucleophilic amination of alkenes functionalized by an allylic C-X (x = hetero- 
atoms, halides) as outlined in Eq. (1) is a simple and direct procedure for the syn- 
thesis of allyl amines, since very efficient methods for the selective allylic h c -  
tionalization of alkenes are available. 

X = heteroatom. halide 
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1.2.1 Amination of Ally1 Alcohols 

The Mitsunobu reaction is an attractive procedure for the transformation of an allyl 
alcohol into an allyl amine [3]. The reaction can be carried out under very mild 
conditions with a variety of amine nucleophiles. Recently, this method has been 
used for the preparation of configurationally pure primary allyl amine 4 (Q. 2) 
by the reaction of allyl alcohols 2 with diisopropyl azodicarboxylate (DIAD) and 
triphenyl phosphine, followed by phthalimide (PhthNH) as the ammonia synthon 
giving 3 [4]. Reaction of 3 with hydrazine or methyl amine gave allyl amine 4. 
An advantage of this reaction sequence is the almost complete conservation of al- 
kene geometry, both under the Mitsunobu coupling conditions and after the depro- 
tection of the amino group. Use of iminocarbonate as the nitrogen nucleophile donor 
gives a mixture of trans- and cis-products. 

DIADPh3P R' 
HzNNHz 

NPhth 76-88 %- 

PhthNH 

OH 76-98%* 

2 3 4 

Several examples of reactions of allyl alcohols under Mitsunobu reaction condi- 
tions using diethyl azodicarboxylate (DEAD) and triphenyl phosphine giving allyl 
amines are known. An example is the reaction of the steroid 5 with azide nucleo- 
philes under Mitsunobu reaction conditions, giving the corresponding azide 6 in 
63 % yield (Eq. (3)) [5] .  The reaction is regioselective with inversion of the config- 
uration and no S,21 substitution is observed. 

The nucleophilic addition to allyl alcohols under Mitsunobu reaction conditions is 
normally regioselective with no allylic rearrangement during the reaction [6].  
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The Overman rearrangement, a thermal [3,3]-sigmatropic rearrangement of allylic 
trichloroacetimidates, is an attractive procedure for the preparation of allyl amines 
from allyl alcohols (Eq. (4)) [7]. 

3 8 

Ph 

[3,3]-sigmatropic 
rearrangement 

9 

The first step in this reaction is formation of the allyl trichloroacetimide 8 formed 
from allyl alcohol 3 by reaction with trichloroacetonitrile. The allyl amides 9 are 
formed by the [3,3]-sigmatropic rearrangement of 8, followed by hydrolysis. The 
reaction proceeds with good yield for primary and secondary amides; however, 
for products where the amide nitrogen is bound to a tertiary carbon atom the yields 
are generally low. 

Overman has suggested a cyclic six-membered transition state 10 for the reaction 
[8]. The experimental result for the formation of substituted alkenes is similar to that 
observed for other [3,3]-sigmatropic rearrangements. Furthermore, the preferred 
formation of the trans-isomer of the di- and trisubstituted alkenes is consistent 
with transition state 10. The activation parameters for the [3,3]-sigmatropic rearran- 
gements are similar to related rearrangement reactions. 

10 

The rearrangement reaction can be catalyzed by various metal salts, and salts such 
as homogeneous solutions of palladium(II) and mercury(I1) complexes have 
emerged as relatively good catalysts [9]. Based on the catalytic properties of soluble 
palladium(II) salts, attempts to perform enantioselective rearrangement reactions 
were performed. The used of a cationic palladium catalyst with a chiral nitrogen 
ligand led to the first enantioselective version of the Overman rearrangement 
(Eq. (5))  [9]. The [3,3]-sigmatropic rearrangement of 11 catalyzed by the chird 
palladium complex 13 gave 12 in 69 % yield and up to 55 % enantiomeric excess 
(ee). 



1.2 Nucleophilic Amination of Functionalized Alkenes 5 

Ar 
NAr 13 

5 mol Yo 

11 

2 0  

12 
55 YO ee 

The enantioselectivity of the rearrangement reaction of allylic imidates has been 
improved significantly by the introduction of chiral ferrocenyl oxazoline catalysts 
such as 14 [ 101. The use of 14 as catalyst for the reaction of a series of different Z- and 
E-imidates similar to 11 gave the amides in good yield and with ees higher than 90 % 
for several of the substrates studied and the chiral ferrocenyl oxazoline catalysts are 
until know the best catalysts for this rearrangement reaction. It is notable that an 
exchange of the bridging trifluoroacetate group with an iodine-bridging complex 
leads to a complex which is inactive, while the chloride-bridging complex is a 
poor catalyst in terms of reaction rate, but gives the same enantioselectivity as 
14 [lOa]. Furthermore, it should be pointed out that the ferrocenyl trimethylsilyl 
substituent is also of utmost importance for the enantioselectivity as the ee of the 
reaction is reduced significantly by removal of this substituent [ lOa]. Overman et 
al. have also investigated other planar - chiral cyclopalladated ferrcenyl amines 
and imines as chiral catalyst for the allylic imindate rearrangement reactions [lob]. 

14 
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Several other chiral ligands have also been introduced for the rearrangement re- 
action [ 111. The use of a tridenate ligand containing an (R)-phenyloxazoline as the 
chiral unit gave in combination with palladium(II) up to 83 % ee for one substrate 
[ 1 la], while Hayashi et al. have investigated the rearrangement reaction catalyzed by 
a series of different chiral palladium complexes including bisoxazolines and P,N 
chelating ligands ((S)-(+)-2-(2-diphenylphosphino)phenyl)-4-(benzyl)ox~oline) 
with the latter giving up to 81 % ee of the allyl amide; however, the yields were 
often low [ 1 lb]. 

One problem with the metal-catalyzed Overman reaction is the basicity of the 
imidates. However, this problem has also been solved be Overman et al. by the 
introduction of the less basic allylic N-benzoylbenzimidates. The application of 
these allylic N-benzoylbenzimidates and palladium(II) chloride as the catalyst im- 
proved both the yield, selectivity and rate for the formation of the allyl amines [9]. 

The palladium(I1)-catalyzed rearrangement of allyl imidates for the formation of 
allyl amines has also been investigated for chiral imidates (Eq. (6)) [12]. The chiral 
imidate 15 undergoes a palladium(I1)-catalyzed rearrangement to 16, which was 
applied for the synthesis of (R)-N-(trichloracety1)norleucinol 17 as presented in 
Eq. (6). 

15 16 17 

Several applications of the Overman rearrangement for different type of substrates 
have been published and some examples can be found in [ 131. 

1.2.2 Amination of Allyl Halides 

The second approach for the nucleophilic amination reactions to be considered here 
will be reactions of allyl halides and allyl acetates leading to allyl amines. Allyl 
halides are normally very reactive in S,2 reactions, but the direct coupling of allyl 
halides with nitrogen nucleophiles has been performed with limited success [4], as 
di- and trialkylated by products often predominate. The application of the Gabriel 
synthesis can to a certain extent eliminate the problem with polyalkylation of amines 
using, e.g., the stabilized phthalimide anion 19 as the nucleophile. The allyl amine 20 
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can thus be prepared in good yield from alkyl halides 18 by reaction with potassium 
phthalimide 19 (Eq. (7)) [14]. 

18 19 20 

A problem with the use of the phthalimide anion as the nucleophile is the removal 
of phthaloyl group from the product [15]. Therefore, several attempts have been 
made to develop reagents with a more labile protecting group than the phthali- 
mide. Compounds 21 and 22 are among some of the reagents investigated. By ap- 
plication of 21 and 22, better yields of some primary allyl amines were obtained, 
compared to the traditional method using the phthalimide [16.] The advantage of 
21 and 22 as the nitrogen donor for the formation of allyl amines is that the sub- 
stituents at the nitrogen atom can easily be removed with gaseous hydrogen chloride 
after alkylation. However, the substrate tolerance is low, and the reagents are some- 
what exotic. 

3 
Eto.P-N-SiMe3 
Em’ H 

21 22 

The use of the stabilized anion of di-t-butyl iminocarbonate ((Boc),NH) 24 is 
more promising in allylic amination reaction. It reacts under mild conditions 
with a variety of primary and secondary halides and mesylates 23, giving the allyl 
amines 25 in high yields (Eq. (8)) [17]. The use of 24 as the nitrogen donor in the 
amination reaction has the great advantage compared to the palladium-catalyzed 
amination with the same reagent, that cis-alkenes react without scrambling of the 
double bond, an important aspect considering the isomerization sometimes ob- 
served using palladium-catalyzed substitution. 
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5 mol % Lil 

23 24 25 

1.2.2.1 Amination of Ally1 Halides, Acetates, etc. Catalyzed by Metal Complexes 

In 1965, Tsuji et al. observed that palladium could catalyze the allylic alkylation 
reaction [18]. This discovery, which is a very attractive way to expand the scope 
of the allylic amination reactions mentioned above, has stimulated an intense re- 
search in this field, and even though complexes of nickel, platinum, rhodium, 
iron, ruthenium, molybdenum, cobalt, and tungsten have been found also to catalyze 
the alkylation, palladium complexes have received by far the greatest attention [19]. 

As a spin off, the allylic alkylation reaction, allylic amination reactions can now be 
carried out in high yield and selectivity and the palladium-catalyzed allylic amina- 
tion reaction is now a cornerstone reaction in organic chemistry [la,19]. The palla- 
dium-catalyzed allylic amination is generally accepted to proceed via a palladium R- 

allyl complex 27 (Scheme 2). The E-ally1 complex intermediate 27 is formed by a 
nucleophilic attack on 26 by palladium and in a second step the amine attacks di- 
rectly the allylic ligand leading to retention of configuration in the product 28 
[19c,d]. It has been observed that the unsymmetrical allyl systems are attacked 
by the amine nucleophile at the less substituted carbon atom, although there 
have been observations of reactions on nonsymmetrical substrates with low regios- 
electivity. 
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26 

I 

Pd 

27 

\ /  
N 

* R’J+A2 

Pd(O), 
28 

Scheme 2 

In the palladium-catalyzed allylic amination reaction, primary and secondary 
amines can be used as nucleophiles, whereas ammonia does not react. Therefore, 
many ammonia synthons have been developed, and a variety of protected primary 
ally1 amines can now be prepared using azide, sulphonamide, phthalimide, di-t-butyl 
iminocarbonate ((Boc),NLi), and dialkyl N-(tert-butoxycarbony1)phosphoramide 
anions as the nucleophile [20]. An example of the use of ((Boc),NLi) 30 as the 
amine nucleophile in the palladium-catalyzed allylic amination reaction is shown 
in Eq. (9). This reaction also illustrates the problem with the regioselectivity in 
the reaction as a mixture of the products 31-33 are obtained [21]. 

4 mol % Pd(dba)2 
5.5 mol Yo diphos 

-oAc + (BOC)# Li’ * 

29 30 

(9 )  

31 32 
40 % 47 % 

33 
7 Yo 


