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Preface

The origin of this book can be traced back at least in part to the fact that the im-
portance and practicality of amination reactions as a tool for obtaining target com-
pounds is nowadays fully acknowledged by chemists in synthetic organic, medicinal,
agricultural and natural product chemistry, as well as by the pharmaceutical and
agricultural industries. This prominence is due to the explosive development during
the past decade of novel and more efficient amination methods. These provide a great
improvement with respect to the classical methods such as those based on the attack
of a nucleophilic nitrogen atom to an electrophilic carbon, which are hampered by
the difficult access to the electrophilic precursors — particularly when multifunctional
derivatives are taken into consideration — and by the frequently recurring difficult
reaction conditions.

This book is intended to provide an overview of several areas of research in which
amination plays a key role, and to introduce the reader to new concepts that have
been developed quite recently for generating new C — N bonds. As the pharmaceu-
tical and chemical industries move rapidly away from the development of racemic
compounds, the access to synthetic routes that lead efficiently to enantiomerically
pure materials is becoming increasingly important. For this reason, most of the con-
tributions in this book refer to asymmetric synthesis. However, no attempt has been
made to present a comprehensive work, and important areas such as asymmetric
hydroxyamination [1] have not been dealt with. Furthermore, it may be worth men-
tioning that viable, useful and comprehensive sources of information about the meth-
odological approaches to electrophilic amination developed since 1985 have already
been reported [2], and that a chapter in Houben-Weyl reviewing several aspects of
the asymmetric electrophilic amination [3] compiles important contributions up to
1995.

In order to provide ~ whenever possible — new perspectives in the different areas
treated in the book, the authors have been recruited among internationally recog-
nized experts in their specific fields.

This book is arranged in seven chapters which cover the following aspects of
amination — even if the order of the contributions is somewhat arbitrary. Chapter 1
(K. A. Jgrgensen) deals with modern aspects of allylic amination reactions for pre-
paring fundamental building blocks which have either distinct important properties
or can be used for further transformations in organic synthesis. Two approaches — the



VI Preface

nucleophilic allylic substitution and the direct allylic amination of simple alkenes —
are described. Considering the potential importance of electrophilic amination of
alkenes, progress and steps being taken to carry out indirect amination of organo-
metallics derived from hydroboration and hydrozirconation of alkenes are also de-
scribed in Chapter 2 (E. Fernandez and J.H. Brown). In Chapter 3, J.-P. Genet, C.
Greck and D. Lavergne provide an exhaustive overview of modern methods (up to
1998) based on the stereoselective electrophilic amination of chiral carbon nucleo-
philes for making o- and B-amino acid derivatives. Chapter 4 (H. Kunz, H. Tietgen
and M. Schultz-Kukula) also addresses the synthesis of - and f-amino acids with
high enantiomeric purity, but a different approach based on the reaction of carbohy-
drate-derived prochiral imines with nucleophiles is used. More about the use of
organometallics is to be found in the following two chapters. Thus, Chapter 5
(E. Carreira, C.S. Tomooka and H. likura) focuses on the various methods that
have been reported for the synthesis of metal nitride complexes. These complexes
have an intriguing array of reactivity and structure, and display a host of desirable
properties in material sciences, medicine and chemical synthesis. The nitrogen atom
transfer from a nitrido complex is reviewed in Chapter 6 by M. Komatsu and S.
Minakata, with special emphasis on enantioselective transformations in aziridina-
tion reactions using nitridomanganese complexes. A fairly new approach to C — N
bond formation — the transition metal-catalyzed synthesis of arylamines — is the aim
of Chapter 7, in which J. F. Hartwig provides an exhaustive account of the palladium-
catalyzed amination of aryl halides and sulfonates for use in complex synthetic pro-
blems. The breakthrough required to convey efficiency and high performance is the
catalyst design, and many new challenges remain for the synthetic chemist in this
area.

Complete reference citations have been provided since, as it is increasingly re-
cognized, they are a requirement for manuscripts and proposals.

It is my sincere hope that this book will provide synthetic chemists with new
opportunities for achieving their synthetic goals. For those students who are reading
the book in order to enhance their synthetic “toolkit”, I hope they will enjoy the
variety of these new reactions which span from stoichiometric to catalytic, from
natural product-based protocols to synthetic strategies employing organometallic
complexes.

I gratefully acknowledge the work done by all authors in presenting up-to-date and
well-referenced contributions. Without their effort this volume would not have been
possible. Furthermore, it was a pleasure to contribute with the Wiley-VCH “crew” in
Weinheim, who not only did an excellent job in producing the book, but also helped
me in a competent manner in all phases of its preparation. Finally, I am grateful to Dr.
Golitz and to Dr. Eckerle who originally encouraged the idea of creating a book about
Modern Amination Methods.

Bologna, January 2000 Alfredo Ricci
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1 Modern Allylic Amination Methods

Karl Anker Jprgensen

1.1 Introduction

One of the challenges in organic chemistry is to prepare fundamental molecular
building blocks which either have distinct important properties, or can be used
for further transformations in organic synthesis. Allyl amines 1 can be used as funda-
mental building blocks in organic chemistry, and their synthesis is an important
industrial and synthetic goal. They can be incorporated in natural products, but often
the allyl amine moiety is transfornfed to a range of products by functionalization,
reduction or oxidation of the double bond.

The synthetic methods for the preparation of allyl amines can be divided into
several types of reactions [1]. In the present chapter, the focus will be on the for-
mation of allyl amines by reaction of substrates having an allylic bond which can be
broken. Two approaches will be covered and these are outlined in Scheme 1: the first
method (a) is the synthesis of allyl amines by nucleophilic allylic substitution of
compounds having an allyl functionality; the second method (b) is the direct allylic
amination of simple alkenes.
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Scheme 1

Other types of allylic amination reactions include a variety of indirect approaches
such as reduction of o,-unsaturated imines and oximes, rearrangement of aziridines,
and elimination of water from vicinal amino alcohols. However, these reactions will
not be considered in this chapter [2].

The present chapter on modern allylic amination methods will be restricted mainly
to an overview of some of the major developments for the transformation of allylic
compounds into allyl amines according to reaction types (a) and (b) in Scheme 1, and
an attempt is made to cover the literature up to August 1999.

The reaction type (a) in Scheme 1 for the allylic amination reaction uses substrates
which have an allylic C—X (X = heteroatom, halide) bond and is mainly nucleophi-
lic amination of functionalized alkenes, whereas reaction type (b) is a direct allylic
amination of an alkene, based on electrophilic amination of nonfunctionalized al-
kenes and involves a cleavage of a C—H bond.

1.2 Nucleophilic Amination of Functionalized Alkenes

Nucleophilic amination of alkenes functionalized by an allylic C—-X (x = hetero-
atoms, halides) as outlined in Eq. (1) is a simple and direct procedure for the syn-
thesis of allyl amines, since very efficient methods for the selective allylic func-
tionalization of alkenes are available.

X y |

X = heteroatom, halide



1.2 Nucleophilic Amination of Functionalized Alkenes 3

1.2.1 Amination of Allyl Alcohols

The Mitsunobu reaction is an attractive procedure for the transformation of an allyl
alcohol into an allyl amine [3]. The reaction can be carried out under very mild
conditions with a variety of amine nucleophiles. Recently, this method has been
used for the preparation of configurationally pure primary allyl amine 4 (Eq. 2)
by the reaction of allyl alcohols 2 with diisopropyl azodicarboxylate (DIAD) and
triphenyl phosphine, followed by phthalimide (PhthNH) as the ammonia synthon
giving 3 [4]. Reaction of 3 with hydrazine or methyl amine gave allyl amine 4.
An advantage of this reaction sequence is the almost complete conservation of al-
kene geometry, both under the Mitsunobu coupling conditions and after the depro-
tection of the amino group. Use of iminocarbonate as the nitrogen nucleophile donor
gives a mixture of trans- and cis-products,

R DIAD/PhsP R’ R
Jﬁ/\ PhthNH 'S/\ HaNNH, ziﬁ/\
2 2 R NH 2
R " OH 2o osm R I NPhth e I N ()
2 3 ]

Several examples of reactions of ally! alcohols under Mitsunobu reaction condi-
tions using diethyl azodicarboxylate (DEAD) and triphenyl phosphine giving allyl
amines are known. An example is the reaction of the steroid § with azide nucleo-
philes under Mitsunobu reaction conditions, giving the corresponding azide 6 in
63 % yield (Eq. (3)) [S]. The reaction is regioselective with inversion of the config-
uration and no Sy2/ substitution is observed.

CgH17 CaHq7
DEAD/PhgP
HNa/
63 %
HO N3"‘

The nucleophilic addition to allyl alcohols under Mitsunobu reaction conditions is
normally regioselective with no allylic rearrangement during the reaction [6].
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The Overman rearrangement, a thermal [3,3]-sigmatropic rearrangement of allylic
trichloroacetimidates, is an attractive procedure for the preparation of allyl amines
from allyl alcohols (Eq. (4)) [7].

R CI,CCN R NH Ph
NaH HN" Yo
RZJ\K\OH RZJ\(\O)J\C% . — (4)
R3 Quant. 3 [3,3]-sigmatropic R2>‘\(
rearrangement
RS
3 8 9

The first step in this reaction is formation of the allyl trichloroacetimide 8 formed
from allyl alcohol 3 by reaction with trichloroacetonitrile. The allyl amides 9 are
formed by the [3,3]-sigmatropic rearrangement of 8, followed by hydrolysis. The
reaction proceeds with good yield for primary and secondary amides; however,
for products where the amide nitrogen is bound to a tertiary carbon atom the yields
are generally low.

Overman has suggested a cyclic six-membered transition state 10 for the reaction
[8]. The experimental result for the formation of substituted alkenes is similar to that
observed for other {3,3]-sigmatropic rearrangements. Furthermore, the preferred
formation of the trans-isomer of the di- and trisubstituted alkenes is consistent
with transition state 10. The activation parameters for the [3,3]-sigmatropic rearran-
gements are similar to related rearrangement reactions.

R'ccl; H

R27h ;I—ZLH

HN- | ‘0
R3
10

The rearrangement reaction can be catalyzed by various metal salts, and salts such
as homogeneous solutions of palladium(ll) and mercury(Il) complexes have
emerged as relatively good catalysts [9]. Based on the catalytic properties of soluble
palladium(II) salts, attempts to perform enantioselective rearrangement reactions
were performed. The used of a cationic palladium catalyst with a chiral nitrogen
ligand led to the first enantioselective version of the Overman rearrangement
(Eq. (5)) [9]. The [3,3]-sigmatropic rearrangement of 11 catalyzed by the chiral
palladium complex 13 gave 12 in 69 % yield and up to 55 % enantiomeric excess

(ee).
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Ar
NAr 13

)k 5 mol % ArN’go

/\/\/\o Ar ——
69 % F
11 12 5
55 % ee ( )
—| 2®
Me Pd <D
2
13

The enantioselectivity of the rearrangement reaction of allylic imidates has been
improved significantly by the introduction of chiral ferrocenyl oxazoline catalysts
such as 14 [10]. The use of 14 as catalyst for the reaction of a series of different Z- and
E-imidates similar to 11 gave the amides in good yield and with ees higher than 90 %
for several of the substrates studied and the chiral ferrocenyl oxazoline catalysts are
until know the best catalysts for this rearrangement reaction. It is notable that an
exchange of the bridging trifluoroacetate group with an iodine-bridging complex
leads to a complex which is inactive, while the chloride-bridging complex is a
poor catalyst in terms of reaction rate, but gives the same enantioselectivity as
14 [10a]. Furthermore, it should be pointed out that the ferrocenyl trimethylsilyl
substituent is also of utmost importance for the enantioselectivity as the ee of the
reaction is reduced significantly by removal of this substituent [10a]. Overman et
al. have also investigated other planar—chiral cyclopalladated ferrcenyl amines
and imines as chiral catalyst for the allylic imindate rearrangement reactions {10b].

0 .

+Bu r(; /! S|M63
Pd {, Fe

Fscoco;rHJJZﬂ@

14
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Several other chiral ligands have also been introduced for the rearrangement re-
action [11]. The use of a tridenate ligand containing an (R)-phenyloxazoline as the
chiral unit gave in combination with palladium(II) up to 83 % ee for one substrate
[11a], while Hayashi et al. have investigated the rearrangement reaction catalyzed by
a series of different chiral palladium complexes including bisoxazolines and PN
chelating ligands (($)-(+)-2-(2-diphenylphosphino)phenyl)-4-(benzyl)oxazoline)
with the latter giving up to 81 % ee of the allyl amide; however, the yields were
often low [11b].

One problem with the metal-catalyzed Overman reaction is the basicity of the
imidates. However, this problem has also been solved be Overman et al. by the
introduction of the less basic allylic N-benzoylbenzimidates. The application of
these allylic N-benzoylbenzimidates and palladium(II) chloride as the catalyst im-
proved both the yield, selectivity and rate for the formation of the allyl amines [9].

The palladium(II)-catalyzed rearrangement of allyl imidates for the formation of
allyl amines has also been investigated for chiral imidates (Eq. (6)) [12]. The chiral
imidate 15 undergoes a palladium(Il)-catalyzed rearrangement to 16, which was
applied for the synthesis of (R)-N-(trichloracetyl)norleucino! 17 as presented in
Eq. (6).

CClj CCls
/g )\ H CCls
07 NH Pd%‘z(PT?N)z 0o N’ H
z mol% i (o] N -
OW Bu OW Bu —— : (6)
S 85 % 4 (" Bu
15 16 17

Several applications of the Overman rearrangement for different type of substrates
have been published and some examples can be found in [13].

1.2.2 Amination of Allyl Halides

The second approach for the nucleophilic amination reactions to be considered here
will be reactions of allyl halides and allyl acetates leading to allyl amines. Allyl
halides are normally very reactive in Sy2 reactions, but the direct coupling of allyl
halides with nitrogen nucleophiles has been performed with limited success [4], as
di- and trialkylated by products often predominate. The application of the Gabriel
synthesis can to a certain extent eliminate the problem with polyalkylation of amines
using, e.g., the stabilized phthalimide anion 19 as the nucleophile. The allyl amine 20
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can thus be prepared in good yield from alkyl halides 18 by reaction with potassium
phthalimide 19 (Eq. (7)) [14].

0
A N
Br + KN — o' \/\Nphth (7)
87 %
(0]
18 19 20

A problem with the use of the phthalimide anion as the nucleophile is the removal
of phthaloyl group from the product [15]. Therefore, several attempts have been
made to develop reagents with a more labile protecting group than the phthali-
mide. Compounds 21 and 22 are among some of the reagents investigated. By ap-
plication of 21 and 22, better yields of some primary allyl amines were obtained,
compared to the traditional method using the phthalimide [16.] The advantage of
21 and 22 as the nitrogen donor for the formation of allyl amines is that the sub-
stituents at the nitrogen atom can easily be removed with gaseous hydrogen chloride
after alkylation. However, the substrate tolerance is low, and the reagents are some-
what exotic.

The use of the stabilized anion of di-z-butyl iminocarbonate ((Boc),NH) 24 is
more promising in allylic amination reaction. It reacts under mild conditions
with a variety of primary and secondary halides and mesylates 23, giving the allyl
amines 25 in high yields (Eq. (8)) [17]. The use of 24 as the nitrogen donor in the
amination reaction has the great advantage compared to the palladium-catalyzed
amination with the same reagent, that cis-alkenes react without scrambling of the
double bond, an important aspect considering the isomerization sometimes ob-
served using palladium-catalyzed substitution.
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5 mol % Lil
2 eq. K2003
MM @ NN )
94 %
23 24 25

1.2.2.1 Amination of Allyl Halides, Acetates, etc. Catalyzed by Metal Complexes

In 1965, Tsuji et al. observed that palladium could catalyze the allylic alkylation
reaction [18]. This discovery, which is a very attractive way to expand the scope
of the allylic amination reactions mentioned above, has stimulated an intense re-
search in this field, and even though complexes of nickel, platinum, rhodium,
iron, ruthenium, molybdenum, cobalt, and tungsten have been found also to catalyze
the alkylation, palladium complexes have received by far the greatest attention [19].

As a spin off, the allylic alkylation reaction, allylic amination reactions can now be
carried out in high yield and selectivity and the palladium-catalyzed allylic amina-
tion reaction is now a cornerstone reaction in organic chemistry [1a,19]. The palla-
dium-catalyzed allylic amination is generally accepted to proceed via a palladium -
allyl complex 27 (Scheme 2). The m-allyl complex intermediate 27 is formed by a
nucleophilic attack on 26 by palladium and in a second step the amine attacks di-
rectly the allylic ligand leading to retention of configuration in the product 28
[19¢,d]. It has been observed that the unsymmetrical allyl systems are attacked
by the amine nucleophile at the less substituted carbon atom, although there
have been observations of reactions on nonsymmetrical substrates with low regios-
electivity.



Scheme 2

1.2 Nucleophilic Amination of Functionalized Alkenes

\.O
N
X / \j —‘®
/ —_—
R‘J\/\Rz Pa0) R1\\r/_az X@
Pd
26 27
SN
R1J\/\R2
Pd(0), Xe
28

In the palladium-catalyzed allylic amination reaction, primary and secondary
amines can be used as nucleophiles, whereas ammonia does not react. Therefore,
many ammonia synthons have been developed, and a variety of protected primary
allyl amines can now be prepared using azide, sulphonamide, phthalimide, di-t-butyl
iminocarbonate ((Boc),NLi), and dialkyl N-(tert-butoxycarbonyl)phosphoramide
anions as the nucleophile [20]. An example of the use of ((Boc),NLi) 30 as the
amine nucleophile in the palladium-catalyzed allylic amination reaction is shown
in Eq. (9). This reaction also illustrates the problem with the regioselectivity in
the reaction as a mixture of the products 31-33 are obtained [21].

4 mol % Pd(dba),
5.5 mol % diphos

A X"0Ac F (Boc)zl\p Li®

29 30
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