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Foreword 

Almost a century has elapsed between Willstatters ‘visionary’ speculation about a 
molecule made of two interlocked rings - a catenane - and the todays outspread- 
ing molecular chemistry concerned with topology. 

After the very early achievements due to the real pioneers of chemical topol- 
ogy who forty years ago first acceeded to that intriguing molecule that is a cate- 
nane (by statistical threading approach Wasserman, 1960 or by a directed 
approach: Luttringhaus and Schill, 1964), this peculiar field of research concerned 
with molecules whose prime feature rests without doubt on beauty and non trivial 
spacial arrangement, has in the beginning of the 80’s literaly exploded with the 
apparition of various templated approaches. 

Creative imagination led chemists to use as templates either transition metals, 7c 
donor-acceptor effects or hydrogen bondings in order to build up around a central 
core or by multi-fragment interactions, more and more complex molecules, from 
the plain [2]-catenanes to higher entwined and complex molecular edifices like 
knots, doubly interlocked or poly-catenanes. Step by step, with an ever increasing 
rate and more and more sophisticated targets, the actual achievements realized by 
molecular chemists today go far beyond Willstiitters original early dream. 

But if in the beginning such molecules were mainly perceived as synthetic 
challenges, they were soon connected to nature and reality with the discovery in 
the early 60’s of catenated or knotted DNA. 

Unexpectedly, this field of research, actively supported by rigorous mathemati- 
cal theories, glided furtively from pure curiosity towards much more concrete and 
tangible domains. 

After numerous answers were brought to the synthetic challenge itself, there 
arose ever more insistently the quest for functions and properties of such special 
compounds. Already, even if still far from real applications, one can imagine, 
based on interlocked, threaded or knotted multi-component molecules, new organ- 
ic materials, specific polymers, molecular devices or machines able to process and 
transfer energy, electrons or information. 

We hope that the present book which gathers articles from very different scien- 
tific horizons will allow the reader to gain an overview on a fascinating broad 
area of science and to appreciate the long way covered in only a few decades. 



VI Foreword 

We would particularly like to thank each of the authors for making time in 
their busy schedules to contribute a chapter to this book. 

Jean-Pierre Sauvage, Christiane Dietrich-Buchecker 
Strasbourg, September 1998 
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1 Chemical Topology - Statistical Musings 

E . Was sennan 

Chemical topology was undoubtedly discussed for decades before serious labora- 
tory efforts began. When cyclic compounds were known, the imagination could 
play with conjectures about catenanes and knotted rings. In 1961, on a visit to 
V. Prelog at the ETH, he told me about a conversation with L. Ruzicka many 
years earlier. Ruzicka mentioned that R.M. Willstatter had discussed the possibili- 
ty of interlocked rings in a talk in Zurich before 1912 [l]. The awareness of these 
three chemists, major contributors to our knowledge of small- and medium-sized 
rings ( 5  30 carbon atoms), suggests that the concept of catenated cycles had been 
in the air for many years. 

The broad landscape of chemical topology and topoisomerism has been sum- 
marized in comprehensive reviews [2-51. The accomplishments of Schill, Walba, 
Sauvage, Stoddart, and others are landmarks in organic synthesis. This chapter de- 
scribes a personal odyssey in which the focus is on statistical approaches - tinged 
by polymer science in their continual reference to the flexibility of chains. Some 
early laboratory efforts, and the technical considerations which led to them, are 
discussed, as is more recent activity. 

1.1 Catenanes 

I was introduced to interlocked rings in 1956 by M.S. Newman, a seminar 
speaker at Harvard. In informal discussion after the talk he described the proposal 
of a graduate student at Ohio State, L. Friedman, for a many-step synthesis of a 
catenane. The final reaction was cleavage of the two bonds connecting the linked 
and chemically bound rings. 

I was intrigued. Mulling over the problem later that evening, and considering 
the need both to form and to detect catenanes, a statistical approach seemed at- 
tractive. Synthesis of a C30 ring from a linear precursor in the presence of an inert 
C20 cyclic compound should enable threading of some of the smaller rings before 
cyclization. A Cs0 product would indicate the presence of an interlocked system. 
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figure 1. Experimental route to a 34,34-catenane. 

At Bell Laboratories the following year, I manipulated space-filling models and 
found that a ring 2 2 2 4  was required for a polymethylene chain to pass through. 
Larger rings were preferred as they should be more likely to have sufficiently 
open conformations. The acyloin condensation of an Q,O diester offered a partic- 
ularly efficient route to carbocycles. With the largest reported diacid containing 34 
carbon atoms, these considerations pointed to a 34,34-catenane as the goal. The 
experimental route is given in Figure 1 [6]. 

After chromatographic removal of 3, the cleavage of the catenane, 4, to 3 and 
1 was critical evidence of the structure. Numerous blank experiments excluded 
other possibilities. Figure 1 essentially describes a double-labeling experiment; 
deuterium for one ring and the acyloin function for the other, the labels detected 
by their infrared absorption [6]. The few milligrams of purified 3 could not be 
crystallized. The name ‘catenane’ was based on the Latin ‘catena’ for ‘chain’. 

The stability of the catenated link under laboratory conditions, e.g. chromatog- 
raphy, is essentially demonstrated in Figure 1. Simple calculations of the probabil- 
ity of tunneling of one C-C bond through another gave unobservably small 
values. Although expected, the evidence for the robust structure was reassuring. 

More information on threading was reported by Harrison and Harrison in some 
elegant studies. They demonstrated that a polymethylene could thread a C30 ring 
bound to a Memfield resin to form a hooplane or rotaxane when the ends were 
capped [7]. Using a mixture of rings alkane chains were found to thread C24 and 
larger cycles with a probability which increased with ring size. Values of -1% 
were found near C30 [8]. The low probability of threading [6, 71 made the forma- 
tion of multiply-threaded polymeric systems unlikely [9-1 l]. Attempts at synthe- 
sis were made by Luttringhaus et al. [12] and by Lemal [13]. They constructed 
systems in which the closure of a second ring would have led to catenanes in 
high yield. 
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1.2 Olefin Metathesis 

Another route to catenated structures became possible via the olefin metathesis 
reaction of Calderon et al. [14, 151. With cyclododecene, oligomers up to CIg2 
could be identified by mass spectrometry [16]. The original suggested mechanism 
involved a transient metal-complexed cyclobutane [ 14, 151. With oligomers aris- 
ing from repeated metathesis, twisting of the intermediate rings and another meta- 
thesis defines a Mobius-strip approach to catenated and knotted rings [17]. The 
mass spectral evidence [ 171 was consistent with catenanes. 

Shortly after these reports, mechanistic studies by Grubbs [ 181 established that 
metal-carbenes 5 and metalocyclobutane 6 are the critical intermediates, as shown 
in Scheme 1. 

5 6 Scheme 1 

This route provides access to catenanes (and knotted rings) without having to 
thread closed cycles, sharing an important feature of the Mobius path. The more 
complex ring structures arise from the tangling motions of the pendant chain be- 
fore formation of the fowmembered ring 6 (Scheme 2). 

More generally, the metathesis reaction provides a laboratory analog of an im- 
portant theorem in topology. Any linked or knotted structure can be converted to 
simple cycles (unknots) by selective interconversion of overcrossings and under- 

? 
I 1  
L 

I 
‘i Scheme 2 
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0 
0 

Scheme 3 

crossings - Scheme 3 [18]. Conversely, unknots of adequate size can be con- 
verted into any other linked or knotted species. 

The metalocarbene, containing one carbon of a potential double bond, is a cata- 
lyst for the reversible breaking of an olefinic bond. Once broken the conversion 
of an overcrossing to an undercrossing is a change of conformation. Reforming 
the bond can freeze this new arrangement - Scheme 4. 

The mass spectra [17] give a grossly simplified picture of the complex mixture 
which can result from a ring-opening polymerization. Knotted isomers can have 
almost identical mass spectra, dominated by the parent ion. With the reversibility 
of metathesis, the polyolefin mixture near equilibrium is expected to contain a 
large variety of knotted and linked species. 

A molecular biology analog of Scheme 4 is the ability of topoisomerases to in- 
terchange different knots in DNA [19]. 

1.3 Knots 

In reference 1 we noted that a cycloalkane with >50 carbon atoms could exist as 
a (chiral) trefoil, and one with >72 carbon atoms as a figure-of-eight. The mini- 
mum values are for a ‘tight’ knot, one with little flexibility. These numbers were 
obtained from models and the examination was not extended to larger molecules. 
In the intervening years the ability to synthesize more complex systems has 
greatly improved. A dramatic demonstration of this progress was the directed syn- 
thesis of a trefoil by c. Dietrich-Buchecker and J.-P. Sauvage in 1989 [20]. 
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and sixfold knots. 

To examine the possibilities for knotted isomers in larger rings we note that 
two 5-fold knots (Figure 2) require -83 and -92 methylenes; the three 6-fold 
-100, -102, and -105. Thus a Cloo cycloalkane might exist as one of -5 isomeric 
knots. 

This sparse set of choices becomes richer with larger rings. With more cross- 
ings, n, the number of possible knots increases exponentially [21]. There are 21 
for n=8, 165 for n=10, and 2176 for n=12 [22]. Models indicate that many 12- 
fold knots should be stable in a cycloalkane of -C200. The rapid increase in the 
number of possible knots between Cloo ( -5) and C200 (-3000) results from the 
dependence of allowed values of n on ring size. 

One can excise -4 carbon atoms, and the loop in the shape of a lock-washer 
which pivots around them, to convert an n-crossing knot into an n-2 knot. Some 
30 carbon atoms are removed in this transformation. Examples would be the con- 
version of the 6-fold knots (Figure 2) into the figure-of-eight, removing 28, 30, or 
33 carbon atoms. In general we expect the allowed n for tight knots to increase 
approximately linearly with the size of the ring. 

There are >lo6 knots for n = 16 [23] and by extrapolation there will be >lo7 
for n=18. Thus a ring of -300 carbon atoms has the potential for tens of millions 
of knotted isomers, most of which will be chiral. The laboratory tests of these 
conjectures are left as an exercise for the reader. 
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2 A Knot Theoretic Approach 
to Molecular Chirality 

Erica Flapan 

This chapter will begin by explaining some topological techniques to prove that a 
knot, link, or embedded graph cannot be deformed to its mirror image. We shall 
explain how to use these topological techniques to prove that the graphs of many 
of the recently synthesized chemical knots and links cannot be deformed to their 
mirror images. Then we present an alternative approach to analyzing whether a 
molecular structure can be deformed to its mirror image, by using a molecular 
cell complex rather than a molecular graph to represent a molecule. We will pre- 
sent examples of molecular cell complexes, and explain how to prove that an em- 
bedded cell complex cannot be deformed to its mirror image. Finally, we give ex- 
amples of chiral molecules whose molecular cell complexes cannot be deformed 
to their mirror images yet whose molecular graphs can be deformed to their mir- 
ror images. Thus in these examples, the topology of the molecule is more accu- 
rately represented by a molecular cell complex than by a molecular graph. 

2.1 Topological Chirality of Knots and Links 

Topologists became interested in chirality with the development of knot theory, 
which itself grew out of chemistry. In the late nineteenth century, Lord Kelvin de- 
veloped the theory that atoms were vortex rings which were knotted or linked in 
different ways according to what element they were [l]. Motivated by this theory, 
Peter Guthrie Tait created tables of different knots and links with the hope of 
building a periodic table [2]. Tait defined a knot to be a simple closed curve in 3- 
space, and a link to be one or more disjoint simple closed curves in 3-space. He 
defined two knots or links to be topologically equivalent if one can be deformed 
to the other, where a deformation of a knot or link does not permit the knot or 
link to pass through itself. In order to provide a list of topologically distinct knots 
and links, Tait tried to determine whether or not each knot and link could be de- 
formed to its mirror image. 
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Ever since Tait’s seminal papers on knot theory [ 2 ] ,  topologists have been inter- 
ested in which knots and links are topologically distinct from their mirror image. 
Nonetheless, the word ‘chirality’ was not used to describe knots and links until 
the 1980s. Prior to that time, topologists utilized Tait’s terminology which defined 
a knot or link to be amphichirul if it could be deformed to its mirror image. 
There was no specific word to refer to a knot or a link which was not amphicheir- 
al. As a result of the increase in communication between topologists and chemists 
since the early 1980s, the term topologically achiral is now commonly used as a 
synonym for amphicheiral, and knots or links which are not amphicheiral are said 
to be topologically chiral. Note that for molecular graphs the word ‘achiral’ can 
have different meanings depending on how flexible the graph is. In order to make 
it clear that the knots and links we are considering are completely flexible, we 
always speak of topological achirality rather than simply achirality. 

For a knot or link which has few crossings, it may not be too difficult to see 
how to deform it to its mirror image. For example, Figure 1 illustrates how the 
figure eight knot can be deformed to its mirror image. To get from the first pic- 
ture in Figure 1 to the second picture, you rotate the knot by 180” about a verti- 
cal axis. Then to get to the third picture, you flip the long string over the knotted 
arc without moving the knotted arc. This final picture is the mirror image of the 
first picture, where the mirror is in the plane of the paper. This means that the 
mirror has the effect of interchanging all of the overcrossings and undercrossings. 

In most cases, simply examining a knot or link is not sufficient to determine 
whether or not it is topologically chiral. If we cannot find a deformation of it to 
its mirror image this does not necessarily mean that such a deformation does not 
exist. Perhaps if we just kept trying we would eventually find the deformation, or 
perhaps the knot or link is actually topologically chiral. In order to avoid this un- 
certainty, topologists have developed techniques to recognize when knots and 
links are topologically chiral. One important technique is to make use of one of 
the collection of link polynomials which have recently been created. We project 
our knot or link onto a plane in such a way that at most two points of the knot or 
link are projected down to the same point. Then we indicate each undercrossing 
by drawing a gap where one strand is meant to go under another strand. For ex- 
ample, Figure 1 illustrates several projections of the figure eight knot. We orient a 
knot by drawing an arrow to indicate in which direction we shall traverse the 
knot. A link is oriented by putting an arrow on every component of the link. 

There are several link polynomials which are convenient to use, notably the 
Jones polynomial [3], the Kauffman polynomial [4], and the 2-variable HOMFLY 
polynomial [5]. These polynomials are all easy to explain and somewhat similar 
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in flavor, so we present only one, the HOMFLY polynomial named after five of 
the authors who discovered it, Hoste, Ocneanu, Millet, Freyd, Lickorish, and Yet- 
ter. It was also independently discovered by Przytycki and Traczyk [6]. This poly- 
nomial is sometimes simply called the P-polynomial. All the link polynomials are 
actually Laurent polynomials, which means that the variables in the polynomials 
can be raised to negative as well as positive powers. 

Before we define the P-polynomial we need to clarify our terminology. Recall 
that the word ‘link’ refers to one or more simple closed curves, so when it is con- 
venient, we shall use the word ‘link’ to mean a knot or link. The unknot is 
defined as any simple closed curve which can be deformed into a plane, and the 
unlink is defined as any collection of one or more simple closed curves which can 
be deformed into the plane. We begin by fixing a particular projection of an 
oriented link L. The P-polynomial of L will be defined in terns of the crossings 
of this oriented projection. We want to distinguish two different types of oriented 
crossings which we will call positive crossings and negative crossings. These two 
types of crossings are illustrated in Figure 2. Every crossing can be rotated to 
look like one of the two crossings in Figure 2. Furthermore, no matter how a pos- 
itive crossing is rotated, it will never become a negative crossing, and no matter 
how a negative crossing is rotated, it will never become a positive crossing. 

x S Figure 2. A positive crossing and a 
POsnlve Crwrslng Negative closslng negative crossing. 

The P-polynomial is defined recursively. This means that we compute the P- 
polynomial of an oriented link in terms of the polynomials of simpler oriented 
links, which in turn are computed in terms of the polynomials of oriented links 
which are simpler still, and so on until we get a collection of unknots each of 
whose polynomial is known to equal 1. 

The P-polynomial P(L) has variables m and 1 and is formally defined from the 
oriented projection of L by using the following two axioms. 

Axiom 1. P(unknot) = 1, 
Axiom 2. Suppose L,, G, and are oriented link projections which are identi- 

cal except near a single crossing where they differ by a positive, negative, or null 
crossing respectively (these three possibilities are illustrated in Figure 3). Then we 
have 1P(L+) + Z-’P(L-) + rnP(L0) = 0. 

x s >c 
L+ L- L O  

Figure 3. L,, L-, and Lo are identical except at this 
crossing. 
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From its definition, the P-polynomial appears to depend on the particular pro- 
jection of the link which we are working with. However, when this polynomial 
was defined it was proven that given any oriented link, no matter how it is de- 
formed or projected, the link will always have the same P-polynomial [5, 61. This 
means that two oriented links which are topologically equivalent have the same 
P-polynomial. In particular, if an oriented link can be deformed to its mirror im- 
age then it and its mirror image will have the same P-polynomial. 

We illustrate how to compute the P-polynomial by evaluating a couple of 
examples. First let & consist of the oriented unlink of two components which 
is illustrated in Figure 4. Then L+ and L- are as shown in the figure. Now we 
use the second axiom of the definition of the P-polynomial, together with the 
observation that both L+ and L- are topologically equivalent to the unknot, in 
order to obtain the equation I + I-' + mP(b) = 0. Hence, we conclude that 
P(&) = -m-'(Z + PI. 

L+ L- Lo  Figure 4. L,, L, and Lo. 

We shall use this result to enable us to compute the P-polynomial of the 
oriented link, illustrated as L- in Figure 5. This link is known as the Hopf link. 
We choose the upper crossing to change so that we have L+ and as indicated 
in the figure. 

ca @o @) Figure5 Wecomputethe 
P-polynomial of the oriented Hopf link 

- 
L+ L- L O  which is represented by L-. 

Now we see that can be deformed to the unknot and L+ can be deformed to 
the link whose polynomial we computed previously. So we substitute these oly P -  nomials into the equation of Axiom 2, in order to get the equation l(-m- ( I  + 

+ z-'P(L-) + m = 0. n u s ,  after some simplification, we get P(LJ = l3m-' + 
Im-' - tm. 

It can be seen from these simple examples that computing the P-polynomial of 
any complicated oriented link will be quite cumbersome. However, there are a 
number of excellent computer programs which will compute all of the link poly- 
nomials for any oriented link which can be drawn with up to about 50 crossings 
(for example, the program KNOTTHEORY by COMPUTER written by M. 
Ochiai, and available through anonymous fip [7]). 

Notice that the orientation of a link may affect its polynomial. For example, 
the Hopf link in Figure 6 has one component which is oriented in a different di- 
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@ID Figure 6. A Hopf link with a different orientation from that of L- in Figure 5 .  

rection from the Hopf link which is illustrated as L- in Figure 5 .  The P-polyno- 
mid of this new Hopf link turns out to equal r3m-' + l-'m-' - l-'m. The roles 
of l and I-' in this polynomial have been reversed relative to the P-polynomial of 
the Hopf link illustrated as L- in Figure 5 .  

In contrast with links, we can see as follows that the orientation of a knot has 
no effect on its polynomial. Suppose that L is a knot. Then reversing the orienta- 
tion of L results in reversing all of the arrows in the diagram. In particular, it re- 
verses the direction of both arrows occurring at any crossing. As can be seen 
from the positive crossing illustrated in Figure 7, a positive crossing remains posi- 
tive after both arrows are reversed. Reversing the arrows simply has the effect of 
rotating the crossing by 180". Similarly, negative crossings and null crossings re- 
main unchanged by reversing all of the arrows of a diagram. Thus the P-polyno- 
mial of a knot L is independent of the orientation of the knot. 

Figure 7. A positive crossing in a knot is independent of the 
orientation of the h o t .  X - 

The link polynomials can be quite helpful if we wish to show that a specific 
oriented link is topologically chiral. So far we have only defined topological chir- 
ality for unoriented links. We now define an oriented link L to be topologically 
achiral if there is deformation taking the oriented link L to the mirror image of L 
with the corresponding orientation. An oriented link which is not topologically 
achiral is said to be topologicully chiral. The theorem below, which follows from 
[5] and [6],  tells us how to use the P-polynomial to prove that an oriented link is 
topologically chiral. For knots, we saw that the P-polynomial is independent of 
the choice of orientation. So we do not have to specify a knot's orientation in or- 
der to compute its polynomial. Thus the theorem tells us how to use the P-poly- 
nomial to prove that an unoriented knot is topologically chiral. 

Theorem. Let L be an oriented link with P-polynomial P(L). Let P(L) degote 
the polynomial obtained from P(L) by interchanging I and r'. If P(L)# P(L) 
then the oriented link L is topologically chiral. If K is a knot and P(K)#P(K) 
then the unoriented knot K is topologically chiralt5, 61. 

In order to see how to apply this theorem we can consider the oriented Hopf link 
which was illustrated in Figure 5 .  We determined above that the P-polynomial of 
this oriented Hopf link L is P ( L )  = 13rn-' + lm-' - lm. If we interchange l and 
1-' we will obtain the polynomial F(L)  = l-3m-' + ZF'm-' - l-'m. Since P ( L )  # 
P(L),  the theorem tells us that the oriented Hopf link is topologically chiral. This 
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Figure 8. An oriented Hopf link is topo- 03 a logically chiral. 

means that there is no deformation which takes the Hopf link on the left side of 
Figure 8 to the Hopf link on the right side of Figure 8. 

On the other hand, as an unoriented link the Hopf link is topologically achiral. 
This can be seen in Figure 9. In order to go from the first to the second picture 
we turn over the right hand component of the link. We can see that the second 
diagram is the mirror image of the first where the mirror is in the plane of the pa- 
per. However, for the oriented Hopf link of Figure 8, turning over one component 
would have the effect of reversing the orientation of the corresponding component 
of the mirror image. 

Figure 9. By turning over one com- 
ponent we obtain the mirror image of the 03 .--* a unorientedHopf link. 

For knots, we can apply the theorem without having to worry about the orienta- 
tions. For example, the right handed trefoil knot, which is drawn in Figure 10, 
has P-polynomial P(L)  = -Z4 + Z-2m2 - 21-* regardless of how it is oriented. 
This polynomial is clearly not symmetric with respect to Z and Z-', so we can im- 
mediately conclude that the trefoil knot is topologically chiral. With the help of 
one of the computer programs to compute link polynomials, we can use the 
above theorem to recognize many topologically chiral knots and oriented links. 

8 Figure 10. A trefoil knot is topologically chiral. 

Note that the theorem does not detect all topologically chiral knots and orien- 
ted links, because there are topologically chiral knots and oriented links whose P- 
polynomials are nonetheless symmetric with respect to Z and 1-'. For example, 
consider the knot which is illustrated in Figure 11. This knot is known by knot 
theorists as 9~ because this is the forty second knot with 9 crossings listed in the 
standard knot tables (see the tables in Rolfsen's book [9]). Using a computer pro- 
gram we find that the P-polynomial of the knot 942 is P(942) = (-2Z-2 - 3-2Z2) 
+ rn2(Z-2 + 4 + t 2 )  - m4. Observe that this polynomial is symmetric with respect 
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to 1 and 1-'. So we cannot apply the theorem. However, using more sophisticated 
techniques it is possible to show that this knot is topologically chiral. 

We can also use link polynomials to prove that certain unoriented links are to- 
pologically chiral. For example, let L denote the (4,2)-torus link which is illu- 
strated on the left in Figure 12. This is called a torus link because it can be em- 
bedded on a torus (i.e. the surface of a doughnut) without any self-intersections. 
It is a (4,2)-torus link, because, when it lies on the torus, it twists four times 
around the torus in one direction, while wrapping two times around the torus the 
other way. Let L' denote the oriented link that we get by putting an arbitrary ori- 
entation on each component of the (4,2)-torus link, for example, as we have done 
in Fi ure 12. Now the P-polynomial of L' is P(L') = -1"m-l - l-3m-1 + mlP5 - 
r n 3 1 - 8  + 3 rn 1-3. 

L L' 

Figure 12. The unoriented and oriented (4,2)-torus link. 

We create the link L*, the mirror image of the unoriented link L, by switching 
all of the crossings of L. Since L* has two components, there are four ways to 
orient L*. Two of these orientations for L* are illustrated as L1 and in Figure 
13. There are two additional ways of orienting L*, however, each one of these 
will reverse the direction of both arrows at each crossing relative to one of the 
oriented links in Figure 13 and so will have the same polynomial as L1 or &. We 
now compute the P-polynomial of each of the oriented links in Figure 13. These 
polynomials turn out to be P ( L  ) = -15m-' - 13m-' + m15 - m313 + 3m13 and 
P(&) = -m-'r3 - m-l - m 1 + m13. We prove that the unoriented (4,2)-torus -1 -4 

Figure 13. We orient the link L* in two different ways to get L1 and &. 
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link is topologically chiral by contradiction. Suppose that the link L could be de- 
formed to its mirror image. Hence the oriented (4,2)-torus link could be deformed 
to L* with some orientation. The P-polynomial of the oriented (4,2)-torus link L’ 
should therefore equal the P-polynomial of either L1 or Z+ As this is not the case, 
we can conclude that the unoriented (4,2)-torus link is topologically chiral. 

2.2 Topological Chirality of Embedded Graphs 

Stimulated by the development of the interdisciplinary field of topological chemis- 
try, topologists have extended some of the techniques from knot theory to the the- 
ory of graphs in 3-space. Graph theorists typically study graphs as abstract ob- 
jects made up of vertices and edges, while topologists study graphs which have a 
specified position in 3-space: Such a graph is viewed as a topological object in 3- 
space which can be deformed but cannot pass through itself. To make it clear that 
we are talking about graphs in 3-space rather than abstract graphs, we refer to 
such graphs as spatial graphs or embedded graphs. A molecular bond graph has 
a configuration in space and so is an example of an embedded graph. If we add a 
finite number of vertices to any knot or link, we have another example of an em- 
bedded graph. By analogy with knots and links, an embedded graph is said to be 
topologically achiral if it can be deformed to its mirror image, and otherwise it is 
said to be topologically chiral. 

A graph is said to be n-valent if every vertex of the graph has n edges coming 
out of it. Various results in knot theory have been extended to 3-valent and 4-va- 
lent embedded graphs. In particular, Kauffman [9] has developed a polynomial for 
a specific type of 4-valent embedded graphs known as rigid vertex graphs, and 
Yamada [lo] has developed a polynomial for 3-valent embedded graphs. These 
polynomials are related to link polynomials and can also be used to detect topolo- 
gical chirality for these specific types of embedded graphs. For arbitrary em- 
bedded graphs, Kauffman also has a method of associating a collection of knots 
and links to the embedded graph and using these knots and links to demonstrate 
the topological chirality of the embedded graph [9]. We shall explain Kauffman’s 
method in detail below. 

Let G be an embedded graph. Define T(G) to be the set of all knots and links 
which are contained in the embedded graph G. That is, T(G) contains every knot 
and link which can be obtained by joining two edges together at each vertex and 
disconnecting all other edges from that vertex. Performing this operation at all of 
the vertices may create a number of arcs which are not closed up, but T(G) does 
not include any of these arcs. 

For example, consider the embedded graph G illustrated in Figure 14. The total 
collection of arcs and simple closed curves that we get by performing this opera- 
tion at the vertices is illustrated in Figure 15, and the elements of the set T(G) are 
illustrated in Figure 16. 


