INTRODUCTION TO RADIOLICAL PHYSICS AND RADIATION DOSIMETRY

FRANK HERBERT ATTIX
Professor of Medical Physics
University of Wisconsin Medical School
Madison, Wisconsin

WILEY-VCH Verlag GmbH & Co. KGaA
INTRODUCTION TO
RADIOLOGICAL PHYSICS
AND
RADIATION DOSIMETRY
INTRODUCTION TO
RADIOLOGICAL PHYSICS
AND
RADIATION DOSIMETRY

FRANK HERBERT ATTIX
Professor of Medical Physics
University of Wisconsin Medical School
Madison, Wisconsin
This book is dedicated to my parents
Ulysses Sheldon Attix and Alma Katherine Attix (nee Michelsen),
my wife Shirley Adeline Attix (nee Lohr),
my children Shelley Anne and Richard Haven,
and to radiological physics students everywhere
This Page Intentionally Left Blank
This book is intended as a text for an introductory course at the graduate or senior undergraduate level. At the University of Wisconsin this is a three-credit course: Medical Physics 501—Radiological Physics and Dosimetry, consisting of about 45 lectures and 15 problem discussion sessions, each 50 minutes in length. By moving along briskly and by scheduling the exams at other times, the material in the book can be adequately covered in one semester. The chapters are designed to be taught in sequence from 1 through 16.

The book is written on the assumption that the student has previously studied integral calculus and atomic or modern physics. Thus integrals are used without apology wherever necessary, and no introductory chapter to review atomic structure and elementary particles is provided. Chapter 1 in Johns and Cunningham's book The Physics of Radiology, 3rd or 4th edition, for example, can be used for remedial review if needed.

The present text is pragmatic and classical in approach, not necessarily developing equations from first principles, as is more often done by Anderson (1984) in his admirable book Absorption of Ionizing Radiation. Missing details and derivations that are relevant to interaction processes may be found there, or in the incomparable classic The Atomic Nucleus by Robley Evans, recently republished by Krieger.

A challenging problem in writing this book was how to limit its scope so that it would fit a coherent course that could be taught in one semester and would not reach an impractical and unpublishable length. It had to be in a single volume for convenient use as a text, as it was not intended to be a comprehensive reference like
the three-volume second edition of *Radiation Dosimetry*, edited by Attix, Roesch, and Tochilin. Although that treatise has been used for textbook purposes in some courses, it was never intended to be other than a reference. In limiting the scope of this text the following topic areas were largely omitted and are taught as separate courses in the University of Wisconsin Department of Medical Physics: radiotherapy physics, nuclear medicine, diagnostic radiological physics, health physics (radiation protection), and radiobiology. Other texts are used for those courses. Radiation-generating equipment is described in the courses on radiotherapy and diagnostic physics, as the design of such equipment is specific to its use.

What is included is a logical, rather than historical, development of radiological physics, leading into radiation dosimetry in its broadest sense. There is no such thing as a perfect sequence—one that always builds on material that has gone before and never has to reach ahead for some as yet untaught fact. However, the present order of chapters has evolved from several years of trial-and-error classroom testing and works quite well.

A few specifics deserve mentioning:

Extensive, but not exclusive, use is made of SI units. The older units in some instances offer advantages in convenience, and in any case they are not going to vanish down a “memory hole” into oblivion. The rad, rem, roentgen, curie, and erg will remain in the existing literature forever, and we should all be familiar with them. There is, moreover, no reason to restrain ourselves from using centimeters or grams when nature provides objects for which convenient-sized numbers will result. I believe that units should be working for us, not the other way around.

The recommendations of the International Commission on Radiation Units and Measurements (ICRU) are used as the primary basis for the radiological units in this book, as far as they go. However, additional quantities (e.g., collision kerma, energy transferred, net energy transferred) have been defined where they are needed in the logical development of radiological physics.

Several important concepts have been more clearly defined or expanded upon, such as radiation equilibrium, charged-particle equilibrium, transient charged-particle equilibrium, broadbeam attenuation, the reciprocity theorem (which has been extended to homogeneous but nonisotropic fields), and a rigorous derivation of the Kramers x-ray spectrum.

Relegating neutron dosimetry to the last chapter is probably the most arbitrary and least logical chapter assignment. Initially it was done when the course was taught in two halves, with the first half alone being prerequisite for radiotherapy physics. Time constraints and priorities dictated deferring all neutron considerations until the second half. Now that the course (and text) has been unified, that reason is gone, but the neutron chapter remains number 16 because it seems to fit in best after all the counting detectors have been discussed. Moreover it provides an appropriate setting for introducing microdosimetry, which finds its main application in characterizing neutron and mixed n-γ fields.
The tables in the appendixes have been made as extensive as one should hope to find in an introductory text. The references for all the chapters have been collected together at the back of the book to avoid redundancy, since some references are repeated in several chapters. Titles of papers have been included. A comprehensive table of contents and index should allow the easy location of material.

For the authors-to-be among this book's readers: This book was begun in 1977 and completed in 1986. It started from classroom notes that were handed out to students to supplement other texts. These notes gradually evolved into chapters that were modified repeatedly, to keep what worked with the students, and change what didn't. This kind of project is not for anyone with a short attention span.

The original illustrations for this book were drawn by F. Orlando Canto. Kathryn A. McSherry and Colleen A. Schutz of the office staff were very helpful. I also thank the University of Wisconsin Department of Medical Physics for allowing me to use their copying equipment.

Finally, it is a pleasure to acknowledge that the preparation of this book could not have been accomplished without the dedicated partnership and enthusiasm of my wife Shirley. Not only did she do all the repetitious typing, during a time before a word processor was available, but she never complained about the seemingly endless hours I spent working on it.

HERB ATTIX

Madison, Wisconsin
August 1986
This Page Intentionally Left Blank
Contents

CHAPTER 1 IONIZING RADIATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Types and Sources of Ionizing Radiations</td>
<td>2</td>
</tr>
<tr>
<td>III. Description of Ionizing Radiation Fields</td>
<td>5</td>
</tr>
<tr>
<td>A. Consequences of the Random Nature of Radiation</td>
<td>5</td>
</tr>
<tr>
<td>B. Simple Description of Radiation Fields by Nonstochastic Quantities</td>
<td>8</td>
</tr>
<tr>
<td>C. Differential Distributions vs. Energy and Angle of Incidence</td>
<td>10</td>
</tr>
<tr>
<td>D. An Alternative Definition of Fluence</td>
<td>15</td>
</tr>
<tr>
<td>E. Planar Fluence</td>
<td>15</td>
</tr>
</tbody>
</table>

CHAPTER 2 QUANTITIES FOR DESCRIBING THE INTERACTION OF IONIZING RADIATION WITH MATTER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>20</td>
</tr>
<tr>
<td>II. Kerma</td>
<td>21</td>
</tr>
<tr>
<td>A. Definition</td>
<td>21</td>
</tr>
<tr>
<td>B. Relation of Kerma to Energy Fluence for Photons</td>
<td>22</td>
</tr>
</tbody>
</table>

C. Relation of Kerma to Fluence for Neutrons 23
D. Components of Kerma 24
E. Kerma Rate 26

III. Absorbed Dose 26
A. Definition 26
B. Absorbed Dose Rate 27

IV. Comparative Examples of Energy Imparted, Energy Transferred and Net Energy Transferred 27

V. Exposure 29
A. Definition 29
B. Definition of \bar{W} 30
C. Relation of Exposure to Energy Fluence 31
D. Exposure Rate 32
E. Significance of Exposure 32

VI. Quantities and Units for Use in Radiation Protection 34
A. Quality Factor, Q 34
B. Dose Equivalent, H 34
C. Specification of Ambient Radiation Levels 36

CHAPTER 3 EXPONENTIAL ATTENUATION 38
I. Introduction 38
II. Simple Exponential Attenuation 38
III. Exponential Attenuation for Plural Modes of Absorption 40
IV. Narrow-Beam Attenuation of Uncharged Radiation 42
V. Broad-Beam Attenuation of Uncharged Radiation 44
VI. Some Broad-Beam Geometries 46
VII. Spectral Effects 50
VIII. The Buildup Factor 53
IX. The Reciprocity Theorem 55

CHAPTER 4 CHARGED-PARTICLE AND RADIATION EQUILIBRIA 61
I. Introduction 61
II. Radiation Equilibrium 61
VIII. Radioactivation by Nuclear Interactions 115
IX. Exposure-Rate Constant 117

CHAPTER 7 GAMMA- AND X-RAY INTERACTIONS IN MATTER 124

I. Introduction 124
II. Compton Effect 125
 A. Kinematics 126
 B. Interaction Cross Section for the Compton Effect 129
 C. Energy-Transfer Cross Section for the Compton Effect 134
III. Photoelectric Effect 138
 A. Kinematics 138
 B. Interaction Cross Section for the Photoelectric Effect 139
 C. Energy-Transfer Cross Section for the Photoelectric Effect 142
IV. Pair Production 146
 A. Pair Production in the Nuclear Coulomb-Force Field 148
 B. Pair Production in the Electron Field 150
 C. Pair Production Energy-Transfer Coefficient 152
V. Rayleigh (Coherent) Scattering 153
VI. Photonuclear Interactions 154

CHAPTER 8 CHARGED-PARTICLE INTERACTIONS IN MATTER 160

I. Introduction 160
II. Types of Charged-Particle Coulomb-Force Interactions 161
A. “Soft” Collisions ($b \gg a$)
B. Hard (or “Knock-On”) Collisions ($b \sim a$)
C. Coulomb-Force Interactions with the External Nuclear Field ($b \ll a$)
D. Nuclear Interactions by Heavy Charged Particles

III. Stopping Power
A. The Soft-Collision Term
B. The Hard-Collision Term for Heavy Particles
C. Shell Correction
D. Mass Collision Stopping Power for Electrons and Positrons
E. Polarization or Density-Effect Correction
F. Mass Radiative Stopping Power
G. Radiation Yield
H. Stopping Power in Compounds
I. Restricted Stopping Power

IV. Range
A. CSDA Range
B. Projected Range
C. Straggling and Multiple Scattering
D. Electron Range
E. Photon “Projected Range”

V. Calculation of Absorbed Dose
A. Dose in Thin Foils
B. Mean Dose in Thicker Foils
C. Mean Dose in Foils Thicker than the Maximum Projected Range of the Particles
D. Electron Backscattering
E. Dose vs. Depth for Charged-Particle Beams

CHAPTER 9 X-RAY PRODUCTION AND QUALITY
I. Introduction
II. X-Ray Production and Energy Spectra
A. Fluorescence X-Rays
B. Bremsstrahlung X-Rays
CONTENTS

CHAPTER 12 IONIZATION CHAMBERS

I. Introduction 292

II. Free-Air Ion Chambers 292
 A. Conventional Designs 292
 B. Novel Free-Air-Chamber Designs 300

III. Cavity Ionization Chambers 304
 A. Thimble-Type Chambers 304
 B. Flat Cavity Chambers; Extrapolation Chambers 311
 C. Transmission Monitor Chambers 315

IV. Charge and Current Measurements 315
 A. General Considerations 315
 B. Charge Measurement 319
 C. Current Measurement 323
 D. Atmospheric Corrections 326

V. Ion-Chamber Saturation and Ionic Recombination 330
 A. Charge Produced vs. Charge Collected 330
 B. Types of Recombination 332
 C. Types of Gases 332
 D. Electric Field Strength vs. Chamber Geometry 333
 E. Boag’s Treatment of Mie’s Theory of General or Volume Recombination for Constant Dose Rate in an Electronegative Gas such as Air 334
 F. Extrapolation for Initial Recombination 336
 G. Pulsed Radiation 337

VI. Ionization, Excitation and W 339
 A. Definition of W and W 339
 B. Calculation of W 340
 C. Experimental Measurement of W or W 341
 D. Energy Dependence of W 342
 E. Dependence of W on Type of Radiation 343
 F. W for Gas Mixtures 343
 G. “W” in Semiconductors 343
CHAPTER 13
DOSIMETRY AND CALIBRATION OF PHOTON AND ELECTRON BEAMS WITH CAVITY ION CHAMBERS

I. Introduction 346
II. Absolute Cavity Ion Chambers 346
III. Calibration of Ion Chambers Using X-Rays or \(\gamma \)-Rays 347
 A. Exposure Calibration of Ion Chambers 347
 B. \(N_{\text{gas}} \) Calibration of Ion Chambers 350
 C. Calibration of Ion Chambers in Terms of Absorbed Dose in Water 356
IV. Calibration of Photon Beams with an Exposure-Calibrated Ion Chamber 357
 A. Calibrations in Free Space 357
 B. Calibration of Photon Beams in Phantoms by Means of an Exposure-Calibrated Ion Chamber 366
 C. Substitution of Plastics for Water in Photon-Beam Phantoms 372
V. Calibration of Photon Beams in Phantoms by the \(N_{\text{gas}} \) Method 376
 A. Chamber Wall Material Same as Phantom 376
 B. Chamber Wall Material Different from Phantom 378
VI. Calibration of Electron Beams in Phantoms 380
 A. Absolute Cavity-Chamber Measurements 380
 B. Electron-Beam Perturbation Corrections for Cavity Chambers in Phantoms 380
 C. The \(C_E \) Method 385
 D. The \(N_{\text{gas}} \) Method 388

CHAPTER 14
INTEGRATING DOSIMETERS

I. Thermoluminescence Dosimetry 395
 A. The Thermoluminescence Process 395
 B. TLD Readers 400
 C. TLD Phosphors 403
CONTENTS

D. TLD Forms 403
E. Calibration of Thermoluminescent Dosimeters 405
F. Advantages and Disadvantages 410
G. References 411

II. Photographic Dosimetry 411
A. Photographic Process 411
B. Optical Density of Film 412
C. Practical Exposure Range for X-Ray Film 414
D. X-Ray Energy Dependence 414
E. Nuclear Track Emulsions 415
F. Advantages and Disadvantages of Photographic Dosimetry 416
G. References 418

III. Chemical Dosimetry 418
A. Introduction 418
B. Basic Principles 418
C. General Procedures 419
D. The Fricke Ferrous Sulfate Dosimeter 421
E. Other Chemical Dosimeters 423
F. General Advantages and Disadvantages of Aqueous Chemical Dosimetry Systems 424
G. References 425

IV. Calorimetric Dosimetry 426
A. Temperature Measurement 426
B. Calorimeter Design 427
C. Advantages and Disadvantages of Calorimetric Dosimetry 435
D. Conclusions 435

CHAPTER 15 DOSIMETRY BY PULSE-MODE DETECTORS 438
I. Introduction 438
II. Geiger–Müller and Proportional Counters 438
A. Gas Multiplication 438
B. Proportional Counters 441
C. Geiger–Müller Counters 446
CONTENTS

III. Scintillation Dosimetry 450
 A. Introduction 450
 B. Light Output Efficiency 451
 C. Scintillator Types 452
 D. Light Collection and Measurement 452
 E. Comparison with an Ionization Chamber 455
 F. Pulse-Shape Discrimination 456
 G. Beta-Ray Dosimetry 457

IV. Semiconductor Detectors for Dosimetry 457
 A. Introduction 457
 B. Basic Operation of Reverse-Biased Semiconductor Junction Detectors 457
 C. Silicon Diodes without Bias 459
 D. Lithium-Drifted Si and Ge Detectors 459
 E. Use of Si(Li) as an Ion-Chamber Substitute 461
 F. Use of Si(Li) Junctions with Reverse Bias as Counting Dose-Rate Meters 461
 G. Fast-Neutron Dosimetry 461

CHAPTER 16 NEUTRON INTERACTIONS AND DOSIMETRY 463

I. Introduction 463

II. Neutron Kinetic Energy 464
 A. Thermal Neutrons 464
 B. Intermediate-Energy Neutrons 465
 C. Fast Neutrons 465

III. Neutron Interactions in Tissue 465
 A. Tissue Composition 465
 B. Kerma Calculations 466
 C. Thermal-Neutron Interactions in Tissue 467
 D. Interaction by Intermediate and Fast Neutrons 468

IV. Neutron Sources 468

V. Neutron Quality Factor 472

VI. Calculation of the Absorbed Dose in a Cylindrical Phantom Representing the Human Body 472
This Page Intentionally Left Blank
I. INTRODUCTION

Radiological physics is the science of ionizing radiation and its interaction with matter, with special interest in the energy thus absorbed. Radiation dosimetry has to do with the quantitative determination of that energy. It would be awkward to try to discuss these matters without providing at the outset some introduction to the necessary concepts and terminology.

Radiological physics began with the discovery of x-rays by Wilhelm Röntgen, of radioactivity by Henri Becquerel, and of radium by the Curies in the 1890s. Within a very short time both x-rays and radium became useful tools in the practice of medicine. In fact, the first x-ray photograph (of Mrs. Röntgen’s hand) was made by Röntgen late in 1895, within about a month of his discovery, and physicians on both sides of the Atlantic were routinely using x-rays in diagnostic radiography within a year, thus setting some kind of record for the rapid adoption of a new technology in practical applications.

The historical development of the science of radiological physics since then is itself interesting, and aids one in understanding the quantities and units used in this field today. However, such an approach would be more confusing than helpful in an introductory course. Historical reviews have been provided by Etter (1965), Parker and Roesch (1962), and by Roesch and Attix (1968).
II. TYPES AND SOURCES OF IONIZING RADIATIONS

Ionizing radiations are generally characterized by their ability to excite and ionize atoms of matter with which they interact. Since the energy needed to cause a valence electron to escape an atom is of the order of 4–25 eV, radiations must carry kinetic or quantum energies in excess of this magnitude to be called "ionizing." As will be seen from Eq. (1.1), this criterion would seem to include electromagnetic radiation with wavelengths up to about 320 nm, which includes most of the ultraviolet (UV) radiation band (∼10–400 nm). However, for practical purposes these marginally ionizing UV radiations are not usually considered in the context of radiological physics, since they are even less capable of penetrating through matter than is visible light, while other ionizing radiations are generally more penetrating.

The personnel hazards presented by optical lasers and by radiofrequency (RF) sources of electromagnetic radiation are often administratively included in the area of a health physicist's responsibilities, together with ionizing radiation hazards. Moreover, the determination of the energy deposition in matter by these radiations is often referred to as "dosimetry". However, the physics governing the interaction of such radiations with matter is totally different from that for ionizing radiations, and this book will not deal with them.

The important types of ionizing radiations to be considered are:

1. γ-rays: Electromagnetic radiation emitted from a nucleus or in annihilation reactions between matter and antimatter. The quantum energy of any electromagnetic photon is given in keV by

 \[E_\gamma = h\nu = \frac{hc}{\lambda} = \frac{12.398\ \text{keV}\cdot\text{Å}}{\lambda} = \frac{1.2398\ \text{keV}\cdot\text{nm}}{\lambda} \]

 where 1 Å (Angstrom) = \(10^{-10}\) m, Planck's constant is

 \[h = 6.626 \times 10^{-34}\ \text{J s} \]

 \[= 4.136 \times 10^{-18}\ \text{keV s} \]

 (note that \(1.6022 \times 10^{-16}\) J = 1 keV), and the velocity of light in vacuo is

 \[c = 2.998 \times 10^8\ \text{m/s} \]

 \[= 2.998 \times 10^{18}\ \text{Å/s} \]

 \[= 2.998 \times 10^{17}\ \text{nm/s} \]

 Evidently, by Eq. (1.1) the quantum energy of a photon of 0.1-nm wavelength is 12.4 keV, within one part in 6000.

 The practical range of photon energies emitted by radioactive atoms extends
from 2.6 keV (Kα characteristic x-rays from electron capture in 37Ar) to the 6.1- and 7.1-MeV γ-rays from 15N.

2. **X-rays**: Electromagnetic radiation emitted by charged particles (usually electrons) in changing atomic energy levels (called characteristic or fluorescence x-rays) or in slowing down in a Coulomb force field (continuous or bremsstrahlung x-rays). Note that an x-ray and a γ-ray photon of a given quantum energy have identical properties, differing only in mode of origin. Older texts sometimes referred to all lower-energy photons as x-rays and higher energy photons as γ-rays, but this basis for the distinction is now obsolete. Most commonly, the energy ranges of x-rays are now referred to as follows, in terms of the generating voltage:

0.1–20 kV Low-energy or “soft” x-rays, or “Grenz rays”
20–120 kV Diagnostic-range x-rays
120–300 kV Orthovoltage x-rays
300 kV–1 MV Intermediate-energy x-rays
1 MV upward Megavoltage x-rays

3. **Fast Electrons**: If positive in charge, they are called positrons. If they are emitted from a nucleus they are usually referred to as β-rays (positive or negative). If they result from a charged-particle collision they are referred to as “δ-rays”.

Intense continuous beams of electrons up to 12 MeV are available from Van de Graaff generators, and pulsed electron beams of much higher energies are available from linear accelerators (“linacs”), betatrons, and microtrons. Descriptions of such accelerators, as encountered in medical applications, have been given by Johns and Cunningham (1974) and Hendee (1970).

4. **Heavy Charged Particles**: Usually obtained from acceleration by a Coulomb force field in a Van de Graaff, cyclotron, or heavy-particle linear accelerator. Alpha particles are also emitted by some radioactive nuclei. Types include:

- Proton—the hydrogen nucleus.
- Deuteron—the deuterium nucleus, consisting of a proton and neutron bound together by nuclear force.
- Triton—a proton and two neutrons similarly bound.
- Alpha particle—the helium nucleus, i.e., two protons and two neutrons. 3He particles have one less neutron.
- Other heavy charged particles consisting of the nuclei of heavier atoms, either fully stripped of electrons or in any case having a different number of electrons than necessary to produce a neutral atom.
- Pions—negative π-mesons produced by interaction of fast electrons or protons with target nuclei.

5. **Neutrons**: Neutral particles obtained from nuclear reactions [e.g., (p, n) or fission], since they cannot themselves be accelerated electrostatically.
The range of kinetic or photon energies most frequently encountered in applications of ionizing radiations extends from $10\,\text{keV}$ to $10\,\text{MeV}$, and relevant tabulations of data on their interactions with matter tend to emphasize that energy range. Likewise the bulk of the literature dealing with radiological physics focuses its attention primarily on that limited but useful band of energies. Recently, however, clinical radiotherapy has been extended (to obtain better spatial distribution, and/or more direct cell-killing action with less dependence on oxygen) to electrons and x-rays up to about $50\,\text{MeV}$; and neutrons to $70\,\text{MeV}$, pions to $100\,\text{MeV}$, protons to $200\,\text{MeV}$, α-particles to $10^3\,\text{MeV}$, and even heavier charged particles up to $10\,\text{GeV}$ are being investigated in this connection. Electrons and photons down to about $1\,\text{keV}$ are also proving to be of experimental interest in the context of radiological physics.

The ICRU (International Commission on Radiation Units and Measurements, 1971) has recommended certain terminology in referring to ionizing radiations which emphasizes the gross differences between the interactions of charged and uncharged radiations with matter:

1. **Directly Ionizing Radiation.** Fast charged particles, which deliver their energy to matter directly, through many small Coulomb-force interactions along the particle's track.
2. **Indirectly Ionizing Radiation.** X- or γ-ray photons or neutrons (i.e., uncharged particles), which first transfer their energy to charged particles in the matter through which they pass in a relatively few large interactions. The resulting fast charged particles then in turn deliver the energy to the matter as above.

It will be seen that the deposition of energy in matter by indirectly ionizing radiation is thus a two-step process. In developing the concepts of radiological physics the importance of this fact will become evident.

The reason why so much attention is paid to ionizing radiation, and that an extensive science dealing with these radiations and their interactions with matter has evolved, stems from the unique effects that such interactions have upon the irradiated material. Biological systems (e.g., humans) are particularly susceptible to damage by ionizing radiation, so that the expenditure of a relatively trivial amount of energy ($\sim 4\,\text{J/kg}$) throughout the body is likely to cause death, even though that amount of energy can only raise the gross temperature by about $0.001\,\text{°C}$. Clearly the ability of ionizing radiations to impart their energy to individual atoms, molecules, and biological cells has a profound effect on the outcome. The resulting high local concentrations of absorbed energy can kill a cell either directly or through the formation of highly reactive chemical species such as free radicals* in the water medium that constitutes the bulk of the biological material. Ionizing radiations can also produce gross changes, either desirable or deleterious, in organic compounds by breaking molecular bonds, or in crystalline materials by causing defects in the lattice structure.

* A free radical is an atom or compound in which there is an unpaired electron, such as H or CH_3.
Even structural steel will be damaged by large enough numbers of fast neutrons, suffering embrittlement and possible fracture under mechanical stress.

Discussing the details of such radiation effects lies beyond the scope of this book, however. Here we will concentrate on the basic physics of the interactions, and methods for measuring and describing the energy absorbed in terms that are useful in the various applications of ionizing radiation.

III. DESCRIPTION OF IONIZING RADIATION FIELDS

A. Consequences of the Random Nature of Radiation

Suppose we consider a point P in a field of ionizing radiation, and ask: "How many rays (i.e., photons or particles) will strike P per unit time?" The answer is of course zero, since a point has no cross-sectional area with which the rays can collide. Therefore, the first step in describing the field at P is to associate some nonzero volume with the point. The simplest such volume would be a sphere centered at P, as shown in Fig. 1.1, which has the advantage of presenting the same cross-sectional target area to rays incident from all directions. The next question is how large this imaginary sphere should be. That depends on whether the physical quantities we wish to define with respect to the radiation field are stochastic or nonstochastic.

A stochastic quantity has the following characteristics:

a. Its values occur randomly and hence cannot be predicted. However, the probability of any particular value is determined by a probability distribution.

b. It is defined for finite (i.e. noninfinitesimal) domains only. Its values vary discontinuously in space and time, and it is meaningless to speak of its gradient or rate of change.

c. In principle, its values can each be measured with an arbitrarily small error.

d. The expectation value \(\bar{N} \) of a stochastic quantity is the mean of its measured values \(N \) as the number \(n \) of observations approaches \(\infty \). That is, \(\bar{N} \to N_e \) as \(n \to \infty \).

A nonstochastic quantity, on the other hand, has these characteristics:

a. For given conditions its value can, in principle, be predicted by calculation.

b. It is, in general, a "point function" defined for infinitesimal volumes; hence it is a continuous and differentiable function of space and time, and one may speak of its spatial gradient and time rate of change. In accordance with common usage in physics, the argument of a legitimate differential quotient may always be assumed to be a nonstochastic quantity.

*Further discussion of stochastic vs. nonstochastic physical quantities will be found in ICRU (1971) and ICRU (1980).
c. Its value is equal to, or based upon, the expectation value of a related stochastic quantity, if one exists. Although nonstochastic quantities in general need not be related to stochastic quantities, they are so related in the context of ionizing radiation.

It can be seen from these considerations that the volume of the imaginary sphere surrounding point \(P \) in Fig. 1.1 may be small but must be finite if we are dealing with stochastic quantities. It may be infinitesimal \((dV)\) in reference to nonstochastic quantities. Likewise the great-circle area \((da)\) and contained mass \((dm)\) for the sphere, as well as the irradiation time \((dt)\), may be expressed as infinitesimals in dealing with nonstochastic quantities. Since the most common and useful quantities for describing ionizing radiation fields and their interactions with matter are all nonstochastic, we will defer further discussion of stochastic quantities (except when leading to nonstochastic quantities) until a later chapter dealing with microdosimetry, that is, the determination of energy spent in small but finite volumes. Microdosimetry is of particular interest in relation to biological-cell damage.

In general one can assume that a "constant" radiation field is strictly random with respect to how many rays arrive at a given point per unit area and time interval. It can be shown (e.g., see Beers, 1953) that the number of rays observed in repetitions of the measurement (assuming a fixed detection efficiency and time interval, and no systematic change of the field vs. time) will follow a Poisson distribution. For large numbers of events this may be approximated by the normal (Gaussian) distribution. If \(N_e \) is the expectation value of the number of rays detected per measurement, the standard deviation of a single random measurement \(N \) relative to \(N_e \) is equal to

\[
\sigma = \sqrt{N_e} \equiv \sqrt{\bar{N}}
\]

(1.2a)

and the corresponding percentage standard deviation is

\[
S = \frac{100\sigma}{N_e} = \frac{100}{\sqrt{N_e}} \equiv \frac{100}{\sqrt{\bar{N}}}
\]

(1.2b)

That is, a single measurement would have a 68.3\% chance of lying within \(\pm \sigma \)