The page is intensly left blank
INTERFEROMETRY
AND SYNTHESIS
IN RADIO ASTRONOMY
The page is intensily left blank
All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.:
Applied for

British Library Cataloging-in-Publication Data:
A catalogue record for this book is available from the British Library

Bibliographic information published by
Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

© 2001 by John Wiley & Sons, Inc.
© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany
Printed on acid-free paper

Printing and Bookbinding buch bücher dd ag, Birkach

ISBN-10: 0-471-25492-4
To
Sheila, Barbara, Janice,
Sarah, Susan, and Michael
The page is intensely left blank
...truste wel that alle the conclusioums that han ben founde, or elles possibly might'en be founde in so noble an instrument as an Astrolabie, ben un-knowe perfitly to any mortal man...

Geoffrey Chaucer

A Treatise on the Astrolabe

circa 1391
The page is intensely left blank
CONTENTS

Preface to the Second Edition xix
Preface to the First Edition xxii

1 Introduction and Historical Review 1
 1.1 Applications of Radio Interferometry 1
 1.2 Basic Terms and Definitions 3
 Cosmic Signals 3
 Source Positions and Nomenclature 9
 Reception of Cosmic Signals 10
 1.3 Development of Radio Interferometry 12
 Evolution of Synthesis Techniques 12
 Michelson Interferometer 13
 Early Two-Element Radio Interferometers 16
 Sea Interferometer 18
 Phase-Switching Interferometer 18
 Optical I dentifications and Calibration Sources 21
 Early Measurements of Angular Width 21
 Survey Interferometers and the Mills Cross 24
 Centimeter-Wavelength Solar Mapping 26
 Measurements of Intensity Profiles 27
 Spectral Line Interferometry 28
 Earth-Rotation Synthesis Mapping 28
 Development of Synthesis Arrays 31
 Very-Long-Baseline Interferometry 33
 VLBI Using Orbiting Antennas 37
 1.4 Quantum Effect 39

2 Introductory Theory of Interferometry and Synthesis Imaging 50
 2.1 Planar Analysis 50
 2.2 Effect of Bandwidth 53
CONTENTS

2.3 One-Dimensional Source Synthesis 57
 Interferometer Response as a Convolution 58
 Convolution Theorem and Spatial Frequency 60
 Example of One-Dimensional Synthesis 61

2.4 Two-Dimensional Synthesis 64
 Projection-Slice Theorem 65

3 Analysis of the Interferometer Response 68
 3.1 Fourier Transform Relationship between Intensity and
 Visibility 68
 3.2 Cross-Correlation and the Wiener–Khinchin Relation 77
 3.3 Basic Response of the Receiving System 78
 Antennas 78
 Filters 79
 Correlator 80
 Response to the Incident Radiation 80

Appendix 3.1 Mathematical Representation of Noise-Like Signals 82
 Analytic Signal 82
 Truncated Function 84

4 Geometric Relationships and Polarimetry 86
 4.1 Antenna Spacing Coordinates and \((u, v)\) Loci 86
 4.2 \((u', v')\) Plane 90
 4.3 Fringe Frequency 91
 4.4 Visibility Frequencies 92
 4.5 Calibration of the Baseline 93
 4.6 Antenna Mounts 94
 4.7 Beamwidth and Beam-Shape Effects 96
 4.8 Polarimetry 97
 Parameters Defining Polarization 97
 Antenna Polarization Ellipse 99
 Stokes Visibilities 102
 Instrumental Polarization 105
 Matrix Formulation 109
 Calibration of Instrumental Polarization 112

Appendix 4.1 Conversion Between Hour Angle–Declination and
 Azimuth–Elevation Coordinates 117

Appendix 4.2 Leakage Parameters in Terms of the Polarization Ellipse 117
 Linear Polarization 118
 Circular Polarization 119
5 Antennas and Arrays

5.1 Antennas 122
5.2 Sampling the Visibility Function 126
 Sampling Theorem 126
 Discrete Two-Dimensional Fourier Transform 128
5.3 Introductory Discussion of Arrays 129
 Phased Arrays and Correlator Arrays 129
 Spatial Sensitivity and the Spatial Transfer Function 132
 Meter-Wavelength Cross and T Arrays 137
5.4 Spatial Transfer Function of a Tracking Array 138
 Desirable Characteristics of the Spatial Transfer Function 140
 Holes in the Spatial Frequency Coverage 141
5.5 Linear Tracking Arrays 142
5.6 Two-Dimensional Tracking Arrays 147
 Open-Ended Configurations 148
 Closed Configurations 150
 VLBI Configurations 155
 Orbiting VLBI Antennas 158
 Planar Arrays 159
5.7 Conclusions on Antenna Configurations 161
5.8 Other Considerations 162
 Sensitivity 162
 Long Wavelengths 163
 Millimeter Wavelengths 163

6 Response of the Receiving System

6.1 Frequency Conversion, Fringe Rotation, and Complex Correlators 168
 Frequency Conversion 168
 Response of a Single-Sideband System 169
 Upper-Sideband Reception 171
 Lower-Sideband Reception 172
 Multiple Frequency Conversions 173
 Delay Tracking and Fringe Rotation 173
 Simple and Complex Correlators 174
 Response of a Double-Sideband System 175
 Double-Sideband System with Multiple Frequency Conversions 178
 Fringe Stopping in a Double-Sideband System 180
 Relative Advantages of Double- and Single-Sideband Systems 181
Sideband Separation 181

6.2 Response to the Noise 183
 Signal and Noise Processing in the Correlator 183
 Noise in the Measurement of Complex Visibility 188
 Signal-to-Noise Ratio in a Synthesized Map 189
 Noise in Visibility Amplitude and Phase 192
 Relative Sensitivities of Different Interferometer Systems 193
 System Temperature Parameter α 199

6.3 Effect of Bandwidth 199
 Mapping in the Continuum Mode 200
 Wide-Field Mapping with a Multichannel System 204

6.4 Effect of Visibility Averaging 205
 Visibility Averaging Time 205
 Effect of Time Averaging 206

Appendix 6.1 Partial Rejection of a Sideband 208

7 Design of the Analog Receiving System 212

7.1 Principal Subsystems of the Receiving Electronics 212
 Low-Noise Input Stages 212
 Noise Temperature Measurement 214
 Local Oscillator 217
 IF and Signal Transmission Subsystems 218
 Optical Fiber Transmission 218
 Delay and Correlator Subsystems 220

7.2 Local Oscillator and General Considerations of Phase Stability 221
 Round-Trip Phase Measuring Schemes 221
 Swarup and Yang System 222
 Frequency-Offset Round-Trip System 223
 Automatically Correcting System 228
 Fiberoptic Transmission of LO Signals 229
 Phase-Locked Loops and Reference Frequencies 230
 Phase Stability of Filters 232
 Effect of Phase Errors 233

7.3 Frequency Responses of the Signal Channels 233
 Optimum Response 233
 Tolerances on Variation of the Frequency Response:
 Degradation of Sensitivity 235
 Tolerances on Variation of the Frequency Response:
 Gain Errors 235
Delay-Setting Tolerances 238
Implementation of Bandpass Tolerances 239
7.4 Polarization Mismatch Errors 240
7.5 Phase Switching 240
Reduction of Response to Spurious Signals 240
Implementation of Phase Switching 241
Interaction of Phase Switching with Fringe Rotation and Delay Adjustment 246
7.6 Automatic Level Control and Gain Calibration 248
Appendix 7.1 Sideband-Separating Mixer 248
Appendix 7.2 Dispersion in Optical Fiber 249

8 Digital Signal Processing 254
8.1 Bivariate Gaussian Probability Distribution 255
8.2 Periodic Sampling 256
Nyquist Rate 256
Correlation of Sampled but Unquantized Waveforms 257
8.3 Sampling with Quantization 260
Two-Level Quantization 261
Four-Level Quantization 264
Three-Level Quantization 271
Quantization with Eight or More Levels 273
Quantization Correction 276
Comparison of Quantization Schemes 277
System Sensitivity 278
8.4 Accuracy in Digital Sampling 278
Principal Causes of Error 278
Tolerances in Three-Level Sampling 279
8.5 Digital Delay Circuits 282
8.6 Quadrature Phase Shift of a Digital Signal 283
8.7 Digital Correlators 283
Correlators for Continuum Observations 283
Principles of Digital Spectral Measurements 284
Lag (XF) Correlator 289
FX Correlator 290
Comparison of Lag and FX Correlators 293
Hybrid Correlator 297
Demultiplexing in Broadband Correlators 297
Appendix 8.1 Evaluation of \(\sum_{q=1}^{\infty} R_\infty^2(q \tau) \) 298
Appendix 8.2 Probability Integral for Two-Level Quantization 299
Appendix 8.3 Correction for Four-Level Quantization 300

9 Very-Long-Baseline Interferometry 304

9.1 Early Development 304
9.2 Differences Between VLBI and Conventional Interferometry 306
9.3 Basic Performance of a VLBI System 308
 - Time and Frequency Errors 308
 - Retarded Baselines 315
 - Noise in VLBI Observations 316
9.4 Fringe Fitting for a Multielement Array 326
 - Global Fringe Fitting 326
 - Relative Performance of Fringe Detection Methods 329
 - Triple Product, or Bispectrum 330
 - Fringe Searching with a Multielement Array 331
 - Multielement Array with Incoherent Averaging 331
9.5 Phase Stability and Atomic Frequency Standards 332
 - Analysis of Phase Fluctuations 332
 - Oscillator Coherence Time 340
 - Precise Frequency Standards 342
 - Rubidium and Cesium Standards 346
 - Hydrogen Maser Frequency Standard 348
 - Local Oscillator Stability 351
 - Phase Calibration System 352
 - Time Synchronization 353
9.6 Recording Systems 353
9.7 Processing Systems and Algorithms 357
 - Fringe Rotation Loss (η_R) 358
 - Fringe Sideband Rejection Loss (η_S) 361
 - Discrete Delay Step Loss (η_D) 363
 - Summary of Processing Losses 365
9.8 Bandwidth Synthesis 366
 - Burst Mode Observing 368
9.9 Phased arrays as VLBI Elements 369
9.10 Orbiting VLBI (OVLBI) 373
10 Calibration and Fourier Transformation of Visibility Data 383
 10.1 Calibration of the Visibility 383
 Corrections for Calculable or Directly Monitored Effects 384
 Use of Calibration Sources 385
 10.2 Derivation of Intensity from Visibility 387
 Mapping by Direct Fourier Transformation 387
 Weighting of the Visibility Data 388
 Mapping by Discrete Fourier Transformation 392
 Convolving Functions and Aliasing 394
 Aliasing and the Signal-to-Noise Ratio 398
 10.3 Closure Relationships 399
 10.4 Model Fitting 401
 Basic Considerations for Models 402
 Cosmic Background Anisotropy 404
 10.5 Spectral Line Observations 404
 General Considerations 404
 VLBI Observations of Spectral Lines 406
 Variation of Spatial Frequency over the Bandwidth 409
 Accuracy of Spectral Line Measurements 409
 Presentation and Analysis of Spectral Line Observations 410
 10.6 Miscellaneous Considerations 411
 Interpretation of Measured Intensity 411
 Errors in Maps 412
 Hints on Planning and Reduction of Observations 413
Appendix 10.1 The Edge of the Moon as a Calibration Source 414
Appendix 10.2 Doppler Shift of Spectral Lines 417
Appendix 10.3 Historical Notes 421
 Maps from One-Dimensional Profiles 421
 Analog Fourier Transformation 422
11 Deconvolution, Adaptive Calibration, and Applications 426
 11.1 Limitation of Spatial Frequency Coverage 426
 11.2 The Clean Deconvolution Algorithm 427
 CLEAN Algorithm 427
 Implementation and Performance of the CLEAN Algorithm 429
 11.3 Maximum Entropy Method 432
 MEM Algorithm 432
 Comparison of CLEAN and MEM 434
 Other Deconvolution Procedures 435
11.4 Adaptive Calibration and Mapping With Amplitude Data Only 438
 Hybrid Mapping 438
 Self-Calibration 440
 Mapping with Visibility Amplitude Data Only 444
11.5 Mapping With High Dynamic Range 445
11.6 Mosaicking 446
 Methods of Producing the Mosaic Map 449
 Some Requirements of Arrays for Mosaicking 451
11.7 Multifrequency Synthesis 453
11.8 Non-Coplanar Baselines 454
11.9 Further Special Cases of Image Analysis 459
 Use of CLEAN and Self-Calibration with Spectral Line Data 459
 Low-Frequency Mapping 459
 Lensclean 461

12 Interferometer Techniques for Astrometry and Geodesy 467
12.1 Requirements for Astrometry 467
 Reference Frames 469
12.2 Solution for Baseline and Source-Position Vectors 470
 Connected-Element Systems 470
 Measurements with VLBI Systems 472
 Phase Referencing in VLBI 476
12.3 Time and the Motion of the Earth 480
 Precession and Nutation 481
 Polar Motion 482
 Universal Time 482
 Measurement of Polar Motion and UT1 484
12.4 Geodetic Measurements 485
12.5 Mapping Astronomical Masers 485
Appendix 12.1 Least-Mean-Squares Analysis 490

13 Propagation Effects 507
13.1 Neutral Atmosphere 508
 Basic Physics 508
 Refraction and Propagation Delay 513
 Absorption 518
 Origin of Refraction 524
 Smith–Weintraub Equation 528
 Phase Fluctuations 530
Kolmogorov Turbulence 534
Anomalous Refraction 539
Water Vapor Radiometry 541

13.2 Atmospheric Effects at Millimeter Wavelengths 543
Site Testing by Opacity Measurement 543
Site Testing by Direct Measurement of Phase Stability 546
Reduction of Atmospheric Phase Errors by Calibration 550

13.3 Ionosphere 554
Basic Physics 555
Refraction and Propagation Delay 559
Calibration of Ionospheric Delay 560
Absorption 562
Small- and Large-Scale Irregularities 562

13.4 Scattering Caused by Plasma Irregularities 564
Gaussian Screen Model 564
Power-Law Model 569

13.5 Interplanetary Medium 571
Refraction 571
Interplanetary Scintillation 574

13.6 Interstellar Medium 576
Dispersion and Faraday Rotation 576
Diffractive Scattering 579
Refractive Scattering 580

14 Van Cittert–Zernike Theorem, Spatial Coherence, and Scattering 594

14.1 Van Cittert–Zernike Theorem 594
Mutual Coherence of an Incoherent Source 596
Diffraction at an Aperture and the Response of an Antenna 597
Assumptions in the Derivation and Application of the Van Cittert–Zernike Theorem 600

14.2 Spatial Coherence 602
Incident Field 602
Source Coherence 603
Completely Coherent Source 606

14.3 Scattering and the Propagation of Coherence 607

15 Radio Interference 613

15.1 General Considerations 613

15.2 Short- and Intermediate-Baseline Arrays 615
Fringe-Frequency Averaging 616
Half a century of remarkable scientific progress has resulted from the application of radio interferometry to astronomy. Advances since 1986, when this book was first published, have resulted in the VLBA (Very Long Baseline Array) which is the first array fully dedicated to very-long-baseline interferometry (VLBI), the globalization of VLBI networks with the inclusion of antennas in orbit, increasing importance of spectral line observations, and improved instrumental performance at both ends of the radio spectrum. At the highest frequencies, millimeter-wavelength arrays of the Berkeley–Illinois–Maryland Association (BIMA), the Institut de Radio Astronomie Millimétrique (IRAM), Nobeyama Radio Observatory (NRO) and Owens Valley Radio Observatory (OVRO), which were in their infancy in 1986, have been greatly expanded in their capabilities. The Submillimeter Array (SMA), and the Atacama Large Millimeter Array (ALMA), which is a major international project at millimeter and submillimeter wavelengths, are under development. At low frequencies, with their special problems involving the ionosphere and wide-field mapping, the frequency coverage of the Very Large Array (VLA) has been extended down to 75 MHz, and the Giant Meter-wave Radio Telescope (GMRT), operating down to 38 MHz, has been commissioned. The Australia Telescope and an expanded Multielement Radio-linked Interferometer Network (MERLIN) have provided increased capability at centimeter wavelengths.

Such progress has led to this revised edition, the intent of which is not only to bring the material up to date but also to expand its scope and improve its comprehensibility and general usefulness. In a few cases symbols used in the first edition have been changed to follow the general usage that is becoming established in radio astronomy. Every chapter contains new material, and there are new figures and many new references. Material in the original Chapter 3 that was peripheral to the basic discussion has been condensed and moved to a later chapter. Chapter 3 now contains the essential analysis of the response of an interferometer. The section on polarization in Chapter 4 has been substantially expanded, and a brief introduction to antenna theory has been added to Chapter 5. Chapter 6 contains a discussion of the sensitivity for a wide variety of instrumental configurations. A discussion of spectral line observations is included in Chapter 10. Chapter 13 has been expanded to include a descrip-
tion of the new techniques for atmospheric phase correction, and site testing data and techniques at millimeter wavelengths. Chapter 14 has been added, and contains an examination of the van Cittert–Zernike theorem and discussions of spatial coherence and scattering, some of which is derived from the original Chapter 3.

A. Richard Thompson
James M. Moran
George W. Swenson, Jr.

Charlottesville, Virginia
Cambridge, Massachusetts
Urbana, Illinois
November 2000
PREFACE TO THE FIRST EDITION

The techniques of radio interferometry as applied to astronomy and astrometry have developed enormously in the past four decades, and the attainable angular resolution has advanced from degrees to milliarcseconds, a range of over six orders of magnitude. As arrays for synthesis mapping* have developed, techniques in the radio domain have overtaken those in optics in providing the finest angular detail in astronomical images. The same general developments have introduced new capabilities in astrometry and in the measurement of the earth's polar and crustal motions. The theories and techniques that underlie these advances continue to evolve, but have reached by now a sufficient state of maturity that it is appropriate to offer a detailed exposition.

The book is intended primarily for graduate students and professionals in astronomy, electrical engineering, physics, or related fields who wish to use interferometric or synthesis-mapping techniques in astronomy, astrometry, or geodesy. It is also written with radio systems engineers in mind and includes discussions of important parameters and tolerances for the types of instruments involved. Our aim is to explain the underlying principles of the relevant interferometric techniques but to limit the discussion of details of implementation. Such details of the hardware and the software are largely specific to particular instruments and are subject to change with developments in electronic engineering and computing techniques. With an understanding of the principles involved, the reader should be able to comprehend the instructions and instrumental details that are encountered in the user-oriented literature of most observatories.

The book does not stem from any course of lectures, but the material included is suitable for a graduate-level course. A teacher with experience in the techniques described should be able to interject easily any necessary guidance to emphasize astronomy, engineering, or other aspects as required.

The first two chapters contain a brief review of radio astronomy basics, a short history of the development of radio interferometry, and a basic discussion of the operation of an interferometer. Chapter 3 discusses the underlying relationships of interferometry from the viewpoint of the theory of partial coherence and may

*We define synthesis mapping as the reconstruction of images from measurements of the Fourier transforms of their brightness distributions. In this book the terms map, image, and brightness (intensity) distribution are largely interchangeable.
be omitted from a first reading. Chapter 4 introduces coordinate systems and parameters that are required to describe synthesis mapping. It is appropriate then to examine configurations of antennas for multielement synthesis arrays in Chapter 5. Chapters 6–8 deal with various aspects of the design and response of receiving systems, including the effects of quantization in digital correlators. The special requirements of very-long-baseline interferometry (VLBI) are discussed in Chapter 9. The foregoing material covers in detail the measurement of complex visibility and leads to the derivation of radio maps discussed in Chapters 10 and 11. The former presents the basic Fourier transformation method, and the latter the more powerful algorithms that incorporate both calibration and transformation. Precision observations in astrometry and geodesy are the subject of Chapter 12. There follow discussions of factors that can degrade the overall performance, namely, effects of propagation in the atmosphere, the interplanetary medium and the interstellar medium in Chapter 13, and radio interference in Chapter 14. Propagation effects are discussed at some length since they involve a wide range of complicated phenomena that place fundamental limits on the measurement accuracy. The final chapter describes related techniques including intensity interferometry, speckle interferometry, and lunar occultation observations.

References are included to seminal papers and to many other publications and reviews that are relevant to the topics of the book. Numerous descriptions of instruments and observations are also referenced for purposes of illustration. Details of early procedures are given wherever they are of help in elucidating the principles or origin of current techniques, or because they are of interest in their own right. Because of the diversity of the phenomena described, it has been necessary, in some cases, to use the same mathematical symbol for different quantities. A glossary of principal symbols and usage follows the final chapter.

The material in this book comes only in part from the published literature, and much of it has been accumulated over many years from discussions, seminars, and the unpublished reports and memoranda of various observatories. Thus we acknowledge our debt to colleagues too numerous to mention individually. Our special thanks are due to a number of people for critical reviews of portions of the book, or other support. These include D. C. Backer, D. S. Bagri, R. H. T. Bates, M. Birkinshaw, R. N. Bracewell, B. G. Clark, J. M. Cordes, T. J. Cornwell, L. R. D’Addario, J. L. Davis, R. D. Ekers, J. V. Evans, M. Faucherre, S. J. Franke, J. Granlund, L. J. Greenhill, C. R. Gwinn, T. A. Herring, R. J. Hill, W. A. Jeffrey, K. I. Kellermann, J. A. Klobuchar, R. S. Lawrence, J. M. Marcaide, N. C. Mathur, L. A. Molnar, P. C. Myers, P. J. Napier, P. Nisenson, H. V. Poor, M. J. Reid, J. T. Roberts, L. F. Rodriguez, A. E. E. Rogers, A. H. Rots, J. E. Salah, F. R. Schwab, I. I. Shapiro, R. A. Sramek, R. Stachnik, J. L. Turner, R. F. C. Vessot, N. Wax, and W. J. Welch. The reproduction of diagrams from other publications is acknowledged in the captions, and we thank the authors and the publishers concerned for permission to use this material. For major contributions to the preparation of the manuscript, we wish to thank C. C. Barrett, C. F. Burgess, N. J. Diamond, J. M. Gillberg, J. G. Hamwey, E. L. Haynes, G. L. Kessler, K. I. Maldonis, A. Patrick, V. J. Peterson, S. K. Rosenthal, A. W. Shepherd, J. F. Singarella, M. B. Weems, and C. H. Williams. We are grateful to M. S. Roberts and P. A. Vanden Bout, for-
mer Director and present Director of the National Radio Astronomy Observatory, and to G. B. Field and I. I. Shapiro, former Director and present Director of the Harvard-Smithsonian Center for Astrophysics, for encouragement and support. Much of the contribution by J. M. Moran was written while on sabbatical leave at the Radio Astronomy Laboratory of the University of California, Berkeley, and he is grateful to W. J. Welch for hospitality during that period. G. W. Swenson, Jr. thanks the Guggenheim Foundation for a fellowship during 1984–1985. Finally, we acknowledge the support of our home institutions: the National Radio Astronomy Observatory which is operated by Associated Universities, Inc. under contract with the National Science Foundation; the Harvard-Smithsonian Center for Astrophysics which is operated by Harvard University and the Smithsonian Institution; and the University of Illinois.

A. RICHARD THOMPSON
JAMES M. MORAN
GEORGE W. SWENSON, JR.

Charlottesville, Virginia
Cambridge, Massachusetts
Urbana, Illinois
January 1986
The page is intensly left blank
1 Introduction and Historical Review

The subject of this book can be broadly described as the principles of radio interferometry applied to the measurement of natural radio signals from cosmic sources. The uses of such measurements lie mainly within the domains of astronomy, astrometry, and geodesy. As an introduction we consider in this chapter the applications of the technique, some basic terms and concepts, and the historical development of the instruments and their uses.

1.1 APPLICATIONS OF RADIO INTERFEROMETRY

Radio interferometers and synthesis arrays, which are basically ensembles of two-element interferometers, are used to make measurements of the fine angular detail in the radio emission from the sky. The angular resolution of single radio antennas is insufficient for many astronomical purposes. Practical considerations limit the resolution to a few tens of arcseconds. For example, the beamwidth of a 100-m-diameter antenna at 7 mm wavelength is approximately 17 arcsec. In the optical range the diffraction limit of large telescopes (diameter ~8 m) is about 0.015 arcsec, but the angular resolution achievable from the ground by conventional techniques is limited to about one arcsec by turbulence in the troposphere. For progress in astronomy it is particularly important to measure the positions of radio sources with sufficient accuracy to allow identification with objects detected in the optical and other parts of the electromagnetic spectrum. It is also very important to be able to measure parameters such as intensity, polarization, and frequency spectrum with similar angular resolution in both the radio and optical domains. Radio interferometry enables such studies to be made.

Precise measurement of the angular positions of stars and other cosmic objects is the concern of astrometry. This includes the study of the small changes in celestial positions attributable to the parallax introduced by the earth's orbital motion, as well as those resulting from the intrinsic motions of the objects. Such measurements are an essential step in the establishment of the distance scale of the universe. Astrometric measurements have also provided a means to test the general theory of relativity and to establish the dynamical parameters of the solar system. In making astrometric measurements it is essential to establish a reference frame for celestial positions. A frame based on extremely distant large-mass
objects as position references is close to ideal. Radio measurements of distant, compact, extragalactic sources presently offer the best prospects for the establishment of such a system. Radio techniques provide an accuracy of the order of 10^{-3} arcsec for absolute positions and 10^{-5} arcsec or less for the relative positions of objects closely spaced in angle. Optical measurements of stellar images, as seen through the earth's atmosphere, allow the positions to be determined with a precision of about 0.05 arcsec. However, stellar positions have been measured to ~ 1 milliarcsecond (mas) with the Hipparcos satellite, and optical measurements with the National Aeronautics and Space Administration (NASA) Space Interferometry Mission hold promise of position measurements to $\sim 4 \mu$arcsec.

As part of the measurement process, astrometric observations include a determination of the orientation of the instrument relative to the celestial reference frame. Ground-based observations therefore provide a measure of the variation of the orientation parameters for the earth. In addition to the well-known precession and nutation of the direction of the axis of rotation, there are irregular shifts of the earth's axis relative to the surface. These shifts, referred to as polar motion, are attributed to the gravitational effects of the sun and moon on the equatorial bulge of the earth, and to dynamic effects in the earth's mantle, crust, oceans, and atmosphere. The same causes give rise to changes in the angular rotation velocity of the earth, which are manifest as corrections that must be applied to the system of universal time. Measurements of the orientation parameters are important in the study of the dynamics of the earth. During the 1970s it became clear that radio techniques could provide an accurate measure of these effects, and in the late 1970s the first radio programs devoted to the monitoring of universal time and polar motion were set up jointly by the U.S. Naval Observatory and the U.S. Naval Research Laboratory, and also by NASA and the National Geodetic Survey. Polar motion can also be studied by observation of satellites, in particular the Global Positioning System, but distant radio sources provide the best standard for measurement of earth rotation.

In addition to revealing angular changes in the motion and orientation of the earth, precise interferometer measurements entail an astronomical determination of the vector spacing between the antennas, which for spacings of ~ 100 km or more, is usually more precise than can be obtained by conventional surveying techniques. Very-long-baseline interferometry (VLBI) involves antenna spacings of hundreds or thousands of kilometers, and the uncertainty with which these spacings can be determined has decreased from a few meters in 1967, when VLBI measurements were first made, to a few millimeters. Average relative motions of widely spaced sites on separate tectonic plates lie in the range 1–10 cm per year, and have been tracked extensively with VLBI networks. Interferometric techniques have also been applied to the tracking of vehicles on the lunar surface and the determination of the positions of spacecraft. In this book, however, we limit our concern mainly to measurements of natural signals from astronomical objects. The attainment of the highest angular resolution in the radio domain of the electromagnetic spectrum results in part from the ease with which radio frequency signals can be processed electronically. Also, the phase variations induced by the earth's neutral atmosphere are less severe than at shorter wavelengths. Fu-
BASIC TERMS AND DEFINITIONS

This section is written for readers who are unfamiliar with the basics of radio astronomy. It presents a brief review of some background information that is useful when approaching the subject of radio interferometry.

Cosmic Signals

The voltages induced in antennas by radiation from cosmic sources are generally referred to as signals, although they do not contain information in the usual engineering sense. Such signals are generated by natural processes and almost universally have the form of Gaussian random noise. That is to say, the voltage as a function of time at the terminals of a receiving antenna can be described as a series of very short pulses of random occurrence that combine as a waveform with Gaussian amplitude distribution. In a bandwidth Δv the envelope of the radio frequency waveform has the appearance of random variations with duration of order $1/\Delta v$. For most radio sources the characteristics of the signals are invariant with time, at least on the scale of minutes or hours typical of the duration of a radio astronomy observation. Gaussian waveforms of this type are assumed to be identical in character to the noise voltages generated in resistors and amplifiers. Such waveforms are usually assumed to be stationary and ergodic, that is, ensemble averages and time averages converge to equal values.

Most of the power is in the form of continuum radiation, the power spectrum of which shows slow variation with frequency and may be regarded as constant over the receiving bandwidth of most instruments. Figure 1.1 shows continuum spectra of three radio sources. Radio emission from the radio galaxy Cygnus A and from the quasar 3C48 is generated by the synchrotron mechanism [see, e.g., Rybicki and Lightman (1979), Longair (1992)], in which high-energy electrons in magnetic fields radiate as a result of their orbital motion. The radiating electrons are generally highly relativistic, and under these conditions the radiation emitted by each one is concentrated in the direction of its instantaneous motion. An observer therefore sees pulses of radiation from those electrons whose orbital motion lies in, or close to, a plane containing the observer. The observed polarization of the radiation is mainly linear, and any circularly polarized component is generally very small. The overall linear polarization from a source, however, is seldom large, since it is randomized by the variation of the direction of the magnetic field within the source and by Faraday rotation. The power in the electromagnetic pulses from the electrons is concentrated at harmonics of the orbital frequency, and a continuous distribution of electron energies results in a contin-
Figure 1.1 Continuum spectra of three discrete sources: Cygnus A, a radio galaxy; 3C48, a quasar; and NGC7027, an ionized nebula within our Galaxy. Data are from Conway, Kellermann, and Long (1963); Kellermann and Pauliny-Toth (1969); and Thompson (1974). [One jansky (Jy) = 10^{-20} W m$^{-2}$ Hz$^{-1}$.]

uum radio spectrum. The individual pulses from the electrons are too numerous to be separable, and the electric field appears as a continuous random process with zero mean. The variation of the spectrum as a function of frequency is related to the slope of the energy distribution of the electrons. In the quasar in Fig. 1.1, which is a very much more compact object than the radio galaxy, the electron density and magnetic fields are high enough to produce self-absorption of the radiation at low frequencies.

NGC7027, the spectrum of which is shown in Fig. 1.1, is a planetary nebula within our Galaxy in which the gas is ionized by radiation from a central star. The radio emission is a thermal process and results from free–free collisions between unbound electrons and ions within the plasma. At the low-frequency end of the spectral curve the nebula is opaque to its own radiation and emits a blackbody spectrum, for which the Rayleigh–Jeans law is a valid approximation. As the frequency increases, the absorptivity, and hence the emissivity, decrease approximately as v^{-2} [see, e.g., Rybicki and Lightman (1979)], where v is the frequency. This behavior counteracts the v^2 dependence of the Rayleigh–Jeans law, and thus the spectrum becomes flat when the nebula is no longer opaque to the radiation. Radiation of this type is unpolarized.

In contrast to continuum radiation, spectral line radiation is generated at specific frequencies by atomic and molecular processes. A fundamentally important