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Preface to the Second Edition

“And with regard to my actual reporting of the events [. . .], I have made it a principle
not to write down the first story that came my way, and not even to be guided by my own
general impressions; either I was present myself at the events which I have described or else I
heard of them from eye-witnesses whose reports I have checked with as much thoroughness
as possible. Not that even so the truth was easy to discover: different eye-witnesses give
different accounts of the same events, speaking out of partiality for one side or the other
or else from imperfect memories. And it may well be that my history will seem less easy to
read because of the absence in it of a romantic element. It will be enough for me, however,
if these words of mine are judged useful by those who want to understand clearly the events
which happened in the past and which (human nature being what it is) will, at some time
or other and in much the same ways, be repeated in the future. My work is not a piece of
writing designed to meet the taste of an immediate public, but was done to last for ever.’’

The History of the Peloponnesian War (Book I, Section 22),
Thucydides (431–413 BC), translated by Rex Warner

Almost five years ago to this day, I wrote the preface to the first edition of this book
(which is reproduced herein, meaning I don’t have to repeat myself). I was honoured
to be asked to do it, and it was an enjoyable task. How often do we, as scientists, get
the privilege to write freely about a subject close to our hearts, without a censorious
editor’s pen being wielded? This is a rite of passage we more normally associate
with an arts critic. So when Peter and Tom asked me to write the preface for the
second edition, I was again flattered, but did wonder if I could add anything to what
I originally wrote.

I was literally shocked when I read my original preface—was this really written
only five years ago? How memory distorts with time! The figure illustrating the
publication rate, for example—was it only five years ago that we were in awe of the
fact that there was a “burgeoning growth of papers in this area”—when the total
for 1999 was almost as high as 120! Even the most optimistic of us could not have
anticipated how this would look in 2007 (see Figure 1). Approximately two thousand
papers on ionic liquids appeared in 2006 (nearly 25% originating in China), bringing
the total of published papers to over 6000 (and of these, over 2000 are concerned
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with catalysis)—-and there are also over 700 patents! That is 40 papers appearing per
week—more than were being published annually a decade ago. And, on average,
a review appears every two to three days. That means there is one review being
published for every 20 original papers. If one assumes the garbage factor1 runs at
about 90% (a generous assumption), that means there is a review being published
for every two valuable original contributions.

This is a bizarre and surreal situation, which seems more appropriate to a Kurt
Vonnegut2 novel—did buckminsterfullerene and superconductivity have the same
problem? And how many papers within this annual flood of reviews say anything
critical, useful, or interesting? How many add value to a list of abstracts which can be
generated in five minutes using SciFinder or the ISI Web of Knowledge? How many
of them can themselves be categorised as garbage? It is the twenty-first century—if
a review is just an uncritical list of papers and data, what is its value?

So, am I being cynical and judgemental when I state that 90% of the published
literature on ionic liquids adds little or no useful information? The PhD regulations
for my University state that a satisfactory thesis must:

(1) Embody the results of research which make a distinct contribution to
scholarship and afford evidence of originality as shown by the discovery
of new facts, the development of new theory or insight or by the exercise
of independent critical powers; and

(2) contain an acceptable amount of original work by the candidate. This work
must be of a standard which could be published, either in the form of articles

1 Discussed in the Preface to the First Edition.
2 Sadly, he died in April 2007.
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in appropriate refereed journals or as the basis of a book or research
monograph which could meet the standards of an established academic
publisher.

Well, clearly (2) is not evidence of (1); examination of the published literature un-
doubtedly demonstrates that “the results of research which make a distinct contri-
bution to scholarship and afford evidence of originality as shown by the discovery of
new facts, the development of new theory’’ is no longer a criterion for publication
in refereed journals. If it was, would we find multiple publication of results from
the same authors, or (frighteningly common) publication of work already published
elsewhere by another, frequently uncited, group? Would papers on ionic liquids
still be appearing where there is no report of the purity or water content of the
ionic liquids, where claims of autocatalytic effects from the solvent appear based
on reactions carried out in hexafluorophosphate or tetrafluoroborate ionic liquids
(which contain HF), where physical properties are reported on impure materials,
if the publications were properly refereed? I reject many of the papers which cross
my (electronic) desk on these grounds when submitted to the ACS or RSC; months
later I will see these papers appear, largely unchanged, in the pages of commercial
journals—clearly, you can’t keep a bad paper down—publish, and be damned! I
have actually heard scientists say “I can’t be expected to keep on top of the literature
when it is appearing so rapidly.” Well, sorry, yes you can—it is your job and duty as a
scientist to know the published literature. It has never been easier to keep up-to-date
with the literature, but finding and downloading a .pdf file is not the same as reading
it!! With 2000 papers appearing in 2006 (and will anyone bet against over 2500 in
2007?), we must exercise our critical faculties to the full; we much teach our students,
colleagues and collaborators to look for experimental evidence, not unsubstantiated
claims. The field of ionic liquids is vibrant, fascinating, and rewarding, and offers a
phenomenal opportunity for new science and technology, but we must guard, as a
community, against it getting a reputation (as green chemistry has already gained)
for being an area of soft publications by mediocre scientists. And the attacks and
carping criticism have started; Murray, in an editorial in the ACS journal Analytical
Chemistry [Anal. Chem., 2006, 78, 2080], rubbished both the areas of ionic liquids
and green chemistry; although he later published a mealy-mouthed, insincere apol-
ogy at the end of a response from Robin Rogers and myself [Anal. Chem., 2006, 78,
3480–3481], it is clear that this will not be the last emotive, rather than logical, attack
on the field. There are hundreds of outstanding papers being published annually in
this area—they must not be tarnished by the hundreds of reports of bad science.

So, having vented my spleen, how do these rhetorical comments relate to this
book, which has grown dramatically in size (but, thankfully, not to a size reflecting
the growth of the number of publications) since the First Edition? The number of
chapters and sections in the Second Edition reflect the broadening of the applications
of ionic liquids; wherever a conventional fluid can be used, the option for replacing
it with an ionic liquid exists. The present chapters are written from a depth of
understanding that did not exist five years ago. Today, there are over a dozen extant
industrial processes; in 2002, there were none in the public domain. This has been
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achieved by ongoing synergistic collaborations between industry and academia, and
not by the literally fantastic views expressed recently in an article entitled “Out of
the Ivory Tower’’ [P.L. Short, Chem. Eng. News, 2006, 84 (24th April)] [15–21]. The
field has expanded and matured, and so has this Second Edition. The team of expert
writers remains impressive—these are authors who are at the top of their field.
The chapters radiate the informed writing of specialists; their wisdom is generously
shared with us. The editors have performed a Herculean task in bringing this all
together in a coherent and smooth account of the whole field as it stands today
(although, at the current rate, the total number of papers published will rise above
10000 by 2009). If there is to be a Third Edition, and we will need one, it will have
to be in two volumes! So let us hope this book is read by all practitioners of the
field—by some for enjoyment, by all for insight and understanding, and by some as
a bible. The field continues to expand and intrigue—by the time this book is in print,
nearly one thousand more papers will have appeared—this textbook will remain the
rock upon which good science will be built. To return to thoughts expressed over
two thousand years ago, it will be enough “if these words [. . .] are judged useful by
those who want to understand clearly the events which happened in the past and which
(human nature being what it is) will, at some time or other and in much the same ways,
be repeated in the future. My work is not a piece of writing designed to meet the taste of
an immediate public, but was done to last for ever.’’

K.R. Seddon
April, 2007



A Note from the Editors

This book has been arranged in several chapters that have been prepared by different
authors, and the reader can expect to find changes in style and emphasis as they
go through it. We hope that, in choosing authors who are at the forefront of their
particular specialism, this variety is a strength of the book.

In addition to the subjects covered in the first edition we have added five new
chapters describing newly emerging areas of interest for ionic liquids in synthesis.
The book now ranges from the most fundamental theoretical understanding of ionic
liquids through to their industrial applications.

In order to cover the most important advances we allowed the book to double in
length. Yet, due to the explosion of interest in the use of ionic liquids in synthesis it
has not been possible to be fully comprehensive. Consequently, the book must be
didactic with examples from the literature used to illustrate and explain. We hope
that no offence is caused to anyone whose work has not been included. None is
intended.

Naturally, a multi-authored book has a time gap between the author’s submission
and the publication which can be different for different contributions. However, this
was the same for the first edition of this book and did not harm its acceptance.
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Queen’s University Belfast
Atomistic Simulation Centre
School of Mathematics and Physics
Belfast BT7 1NN
Northern Ireland, UK

Andreas Dölle

RWTH Aachen
Institute of Physical Chemistry
Templergraben 59
52062 Aachen
Germany

Susanne Dreyer

University of Rostock
Department of Chemistry
Albert-Einstein-Str. 3a
18059 Rostock
Germany

Martyn Earle

The Queen’s University
School of Chemistry
Stransmills Rd.
Belfast BT9 5AG
Northern Ireland
UK

Marrit Eckstein

RWTH Aachen
Institute for Technical and
Macromolecular Chemistry
Worringerweg 1
52074 Aachen
Germany

Sherif Zein El Abedin

Clausthal University of Technology
Faculty of Natural & Material Sciences
Robert-Koch-Str. 42
38678 Clausthal-Zellerfeld
Germany

Frank Endres

Clausthal University of Technology
Institute of Metallurgy
Robert-Koch-Str. 42
38678 Clausthal-Zellerfeld
Germany

Frédéric Favre

Institut Francais du Pétrole
IFP Lyon
69390 Vernaison
France

Rasmus Fehrmann

Technical University of Denmark
Department of Chemistry
Building 207
2800 Kgs. Lyngby
Denmark

Charles M. Gordon

Pfizer Global Research
and Development
Ramsgate Road
Sandwich
Kent CT13 9NJ
UK

David M. Haddleton

University of Warwick
Dept. of Chemistry
Coventry CV4 7AC
UK

Chris Hardacre

Queen’s University Belfast
School of Chemistry and Chemical
Engineering
Stranmillis Road
Belfast BT9 5AG
Northern Ireland
UK



List of Contributors xxiii

Claus Hilgers

Solvent Innovation GmbH
Nattermannallee 1
50829 Köln
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Introduction

John S. Wilkes, Peter Wasserscheid, and Tom Welton

Ionic liquids may be viewed as a new and remarkable class of solvents, or as a
type of materials that has a long and useful history. In fact, ionic liquids are both,
depending on your point of view. It is absolutely clear that whatever “ionic liquids”
are, there has been an explosion of interest in them. Entries in Chemical Abstracts
for the term “ionic liquids” were steady at about twenty per year through 1995, but
grew to over 140 in the year 2000 and to more than 1500 in 2005. The reason for the
increased interest is clearly due to the realization that these materials, formerly used
for specialized electrochemical applications, may have greater utility as solvents for
reactions and materials processing, as extraction media or as working fluids in
mechanical applications, to name just a few of the more recent applications of ionic
liquids.

For the purposes of discussion in this volume we will define ionic liquids as salts
with a melting temperature below the boiling point of water. That is an arbitrary
definition based on temperature, and says little about the composition of the mate-
rials themselves, except that they are completely ionic. In reality, most ionic liquids
in the literature that meet our present definition are also liquids at room tempera-
ture. The melting temperature of many ionic liquids can be problematic, since they
are notorious glass-forming materials. It is a common experience to work with a
new ionic liquid for weeks or months only to find one day that it has crystallized
unexpectedly. The essential feature that ionic liquids possess is one shared with
traditional molten salts – a very wide liquidus range. The liquidus range is the span
of temperatures between the melting point and boiling point. No molecular solvent
can match the liquidus range of ionic liquids or molten salts, except perhaps some
liquid polymers. Ionic liquids differ from molten salts just in where the liquidus
range is in the scale of temperature.

There are many synonyms used for ionic liquids that complicate a literature
search. “Molten salts” is the most common and most broadly applied term for
ionic compounds in the liquid state. Unfortunately the term “ionic liquid” was
also used to mean “molten salt” long before there was much literature on low
melting salts. It may seem that the difference between ionic liquids and molten
salts is just a matter of degree (literally); however the practical differences are
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sufficient to justify a separately identified area for the salts that are liquid around
room temperature. That is, in practice the ionic liquids may usually be handled like
ordinary solvents. There are also some fundamental features of ionic liquids, such
as strong ion–ion interactions that are not often seen in higher temperature molten
salts. Synonyms in the literature for materials that meet the working definition of
ionic liquid are: “room temperature molten salt,” “low temperature molten salt,”
“ambient temperature molten salt,” and “liquid organic salt.”

Our definition of an ionic liquid does not answer the general question, “What is
an ionic liquid?” This question has both a chemical and a historical answer. The
details of the chemical answer are the subject of several subsequent chapters in this
book. The general chemical composition of ionic liquids is surprisingly consistent,
even though the specific composition and the chemical and physical properties
vary tremendously. Most ionic liquids have an organic cation and an inorganic
polyatomic anion. Since there are many known and potential cations and anions, the
potential number of ionic liquids is huge. Discovering a new ionic liquid is relatively
easy, but determining its usefulness as a solvent requires a much more substantial
investment in determination of physical and chemical properties. The best trick
would be a method for predicting an ionic liquid composition with a specified
set of properties. That is an important goal that still awaits a better fundamental
understanding of structure–property relationships and the development of better
computational tools. I believe it can be done.

The historical answer to the nature of the present ionic liquids is somewhat in
the eye of the beholder. The very brief history presented here is just one of many
possible ones, and is necessarily biased by the point of view of just one participant in
the development of ionic liquids. The earliest material that would meet our current
definition of an ionic liquid was observed in Friedel–Crafts reactions in the mid-
19th century as a separate liquid phase called the “red oil.” The fact that the red oil
was a salt was determined more recently when NMR spectroscopy became a com-
monly available tool. Early in the 20th century some alkylammonium nitrate salts
were found to be liquids [1], and more recently liquid gun propellants have been
developed using binary nitrate ionic liquids [2]. In the 1960s John Yoke at Oregon
State University reported that mixtures of copper(I) chloride and alkylammonium
chlorides were often liquids [3]. These were not as simple as they might appear,
since several chlorocuprous anions formed, depending on the stoichiometry of the
components. In the 1970s Jerry Atwood at the University of Alabama discovered
an unusual class of liquid salts he termed “liquid clathrates” [4]. These were com-
posed of a salt combined with an aluminum alkyl, which then forms an inclusion
compound with one or more aromatic molecules. A formula for the ionic portion
is M[Al2(CH3)6X], where M is an inorganic or organic cation and X is a halide.

None of the interesting materials just described are the direct ancestors of
the present generation of ionic liquids. Most of the ionic liquids responsible
for the burst of papers in the last several years evolved directly from high tem-
perature molten salts, and the quest to gain the advantages of molten salts without
the disadvantages. It all started with a battery that was too hot to handle.


