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 Preface      

    Catalysis is a central concept in chemistry, playing, for instance, a key role in bio-
logical and industrial processes. For a century, catalysis has been divided into 
homogeneous and heterogeneous reactions, and scientifi c communities have crys-
tallized around each aspect. The advent of nanosciences has now clearly promoted 
the bottom - up strategy over the top - down one, making this traditional frontier 
obsolete. Thus, the molecular approach is presently most useful for the defi nition 
of selective and effi cient heterogeneous catalysts that can be removed from reac-
tion media and re - used. Nanocrystals of size one to only a few nanometers present 
the best catalytic effi ciency, yet their support is most important for the synergistic 
activation of substrates, as best illustrated by Haruta ’ s famous catalysis of CO 
oxidation by O 2  at 200   K by oxide - supported gold nanoparticles (NP). 

 Therefore, this book is timely in gathering together the best experts in catalysis, 
coming originally from both homogeneous and heterogeneous catalysis commu-
nities, who have imagined a large number of synthetic approaches to catalytically 
active transition - metal NPs and their derivatives. All of them now focus on aspects 
that promote selectivity and effi ciency for a broad variety of molecular - activation 
processes with goals ranging from organic synthesis to hydrocarbon reforming 
and environmental problems. 

 Thus the fi rst part of the book (Chapters                  1 to 9 ) deals with NP catalysis, empha-
sizing the key role of NP supports; the second part (Chapters      10 to 12 ) concerns 
specifi c metals (namely Pd, Ru, Ir and Au), and the last part (Chapters            13 to 18 ) 
focuses on specifi c substrates of particular interest for organic chemistry, hydro-
carbon reforming and environmental aspects. Among the metals, Pd and Au 
are the most effective catalysts. Palladium is the most effi cient catalyst for 
carbon – carbon bond formation thus, besides Chapter  10  that is devoted to PdNPs, 
their catalytic properties also spread over the fi rst part of the book. Gold is the 
most effi cient NP catalyst for a variety of aerobic (thus low - cost) oxidation reac-
tions, and AuNP catalysis is covered in four chapters at the end of the second part 
and beginning of the third part. Each chapter is introduced in more detail in 
Chapter  1 . 

 All the chapters have been reviewed by two to three independent referees. For 
their invaluable refereeing assistance and expertise (some have served twice), we 
are grateful to: 
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 Markus Antonietti (Postdam, Germany), Jean - Claude Bertolini, (Villeurbanne, 
France), Harry Bitter (Utrecht, The Netherland), Geoffrey Bond (Salford, U.K.), 
Pierre Braunstein (Strasbourg, France), Mingshu Chen (College Station, USA), 
Bert Chandler (Trinity Univ., USA), Runo Chaudret (Toulouse, France), Mingshu 
Chen (College Statin, Texas, US), Carmen Claver (Taragone, Spain), Avelino 
Corma (Valencia, Spain), Gabriele Centi (Messina, Italy), Richard M. Crooks 
(Austin, Texas, USA), Bernard Coq (Montpellier, France), De Chen (Trondheim, 
Norway), D. Samuel Deutsch (Columbia, SC, USA), Daniel Duprez (Poitiers, 
France), W. Nicholas Delgass (Purdue Univ., USA), D. Wayne Goodman, (College 
Station, USA), Pascal Granger (Lille, France), Masatake Haruta (Toyo, Japan), 
Claude R. Henry (Marseille, France), Xander Nijhuis (Utrecht, The Netherlands), 
Carlos Moreno - Castilla (Granada, Spain), Ulrich Heiz (TU Munich, Germany) 
Jos é  M. Parera (Santa Fe, Argentina), Miquel Pericas (Tarragona, Spain), Laura 
Prati (Milano, Italy), Manfred T. Reetz (M ü hlheim, Germany), Alain Roucoux 
(Rennes, France), Catherine Santini (Lyon, France), Guenter Schmid (Essen, 
Germany), Ulrich Schubert (Vienna, Austria), Sandor Szabo (Budapest, Hongrie), 
Serge Thorimbert (Paris, France), Dmitry Yu. Murzin (Turku, Finland), Marco 
Zecca (Padova, Italy). 

 We strongly believe that this book will greatly catalyze research in this key fi eld 
in the forthcoming years for the benefi t of our Society. Have a nice read! 

 Bordeaux, July 2007  Didier Astruc          
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 Transition - metal Nanoparticles in Catalysis: 
From Historical Background to the State - of - the Art  
  Didier   Astruc   

  1.1
Introduction   

 The nanosciences have recently evolved as a major research direction of our 
modern Society resulting from an ongoing effort to miniaturize at the nanoscale 
processes that currently use microsystems. Towards this end, it is well admitted 
that the bottom - up approach should now replace the classic top - down one, a 
strategic move that is common to several areas of nanosciences including opto - 
electronics, sensing, medicine and catalysis. The latter discipline certainly is the 
key one for the development of starting chemicals, fi ne chemicals and drugs 
from raw materials. During the twentieth century, chemists have made consid-
erable achievements in heterogeneous catalysis  [1] , whereas homogeneous catal-
ysis  [2]  progressed after the second world war (hydroformylation) and especially 
since the early 1970s (hydrogenation). Heterogeneous catalysis, that benefi ts 
from easy removal of catalyst materials and possible use of high temperatures, 
suffered for a long time from lack of selectivity and understanding of the mech-
anistic aspects that are indispensable for parameter improvements. Homoge-
neous catalysis is very effi cient and selective, and is used in a few industrial 
processes, but it suffers from the impossibility of removal of the catalyst from 
the reaction media and its limited thermal stability.  Green catalysis  aspects now 
obviously require that environmentally friendly (for instance phosphine - free) 
catalysts be designed for easy removal from the reaction media and recycling 
many times with very high effi ciency. These demanding conditions bring a new 
research impetus for catalyst development at the interface between homoge-
neous and heterogeneous catalysis, gathering the sophisticated fulfi lment of all 
the constraints that were far from being fully taken into account by the pioneers 
and even the specialists in each catalytic discipline in the former decades. Yet 
the considerable knowledge gained from the past research in homogeneous, 
heterogeneous, supported and biphasic catalysis, including also studies in non -
 classical conditions (solvent - free, aqueous, use of ionic liquids, fl uorine chemis-
try, microemulsions, micelles, reverse micelles, vesicles, surfactants, aerogels, 
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2  1 Transition-metal Nanoparticles in Catalysis

polymers or dendrimers), should now help establish the desired optimized cata-
lytic systems. 

 In this context, the use of transition - metal nanoparticles (NPs) in catalysis  [3]  is 
crucial as they mimic metal surface activation and catalysis at the nanoscale and 
thereby bring selectivity and effi ciency to heterogeneous catalysis. Transition -
 metal NPs are clusters containing from a few tens to several thousand metal 
atoms, stabilized by ligands, surfactants, polymers or dendrimers protecting their 
surfaces. Their sizes vary between the order of one nanometer to several tens or 
hundreds of nanometers, but the most active in catalysis are only one or a few 
nanometers in diameter, i.e. they contain a few tens to a few hundred atoms only 
 [4] . This approach is also relevant to homogeneous catalysis, because there is a full 
continuum between small metal clusters and large metal clusters, the latter being 
also called colloids, sols or NPs. NPs are also well soluble in classic solvents (unlike 
metal chips in heterogeneous catalysis) and can often be handled and even char-
acterized as molecular compounds by spectroscopic techniques that are well 
known to molecular chemists, such as  1 H and multinuclear NMR, infrared and 
UV – vis spectroscopy and cyclic voltammetry. Molecular mechanisms involving the 
NP surfaces in catalytic reactions are much more diffi cult to elucidate, however, 
than those of monometallic catalysts, and the size and shape of the NP catalysts 
are key aspects of the catalytic steps. NPs themselves can also be used as catalysts 
in homogeneous systems or alternatively they can be heterogenized by fi xation 
onto a heterogeneous support such as silica, alumina, other oxides or carbon, for 
instance carbon nanotubes. Thus, the fi eld of NP catalysis involves both the homo-
geneous and heterogeneous catalysis communities, and these catalysts are some-
times therefore called  “ semi - heterogeneous ”   [3, 5] . This fi eld has attracted a 
considerable amount of attention recently, as demonstrated by the burgeoning 
number of publications in all kinds of catalytic reactions, because NP catalysts are 
selective, effi cient, and recyclable and thus meet the modern requirements for 
 green catalysts . Applications are already numerous, and the use of these catalysts 
in industry will obviously considerably expand in the coming years. Table  1.1  
shows the impressive number of catalytic reactions that have been achieved using 
transition - metal NPs under rather mild conditions.   

 The stabilization of NPs during their synthesis can be electrostatic, steric, elec-
trosteric (combination of steric and electrostatic, see Fig.  1.1 ) or by ligands  [4, 5, 
8, 11] . The NP synthesis can also occasionally be carried out from metals by 
atomic metal vaporization or from metal(0) complexes  [11] . In view of the catalyst 
recycling, NP catalysts are often immobilized or grafted onto inorganic or organic 
polymer supports  [4, 5, 8, 11] . The mechanism of transition - metal NP self - 
assembly has recently been subjected to detailed studies by Finke ’ s group with a 
proposal of a four - step nucleation mechanism including two autocatalytic steps 
 [11k] . Such mechanistic studies are of fundamental interest for NP catalysis 
overall.   

 There are many reviews on the multiple NP synthetic modes  [4 – 11] , and here 
we will not systematically detail this aspect  per se . We concentrate our attention 
on catalysis, from the pioneering studies to the present state of the art.  
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Table 1.1      Reactions catalyzed by transition - metal nanoparticles.       

 Reaction  References (see also general Refs.  3 – 11 ) 

  Hydrogenation      
 Simple olefi ns and dienes   2, 6b, 10d – i, 12, 14d,f,j,k,l, 16, 17a,b,d, 23, 

26, 31l,o – q, 32, 33, 35a,i, 36a, 40a, 41, 
43d, 44b,h, 46a – d, 58, 61  

 Alkynes   14c, 37b, 39, 40b, 62, 63  
 CO 2    10, 82  
 Arene ring   12a, 29, 33k,m, 34, 37b, 65 – 70  
 Arene rings of dibenzo - 18 - crown - 6 - ether   64  
 Acrolein   12b, 78  
 Methylacrylate   16  
 Allylic alcohols   14d, 17b  
  N  - isopropylacrylamide   17b  
 Ethylpyruvate   30a, 63  
 Citral   32c,d,e  
 Styrene   18i  
  Trans  - stilbene   32h,f  
 Opening of epoxides   14a  
 Dehydrolinalol   14b  
 Citronellal   59b  
 9 - Decen - 1 - ol   35n  
 Various olefi ns including functional ones   9f,g; 14e, 22b,d, 32h, 33k,m  
 Polar olefi ns   22b  
 Nitroaromatics   9a, 59c, 60, 61  
 Ketones, benzonitrile   14h, 33l, 35d,i  
 Cinnamaldehyde   47, 59a  
 Asymmetric hydrogenation   29  

  Heck C  - C co upling (ArX + olefi n  Æ  arylolefi n)    7, 8b, 14f, 17f, 18i, 22, 24a, 31a – n, 32n, 
33e – g,i,j, 35g,n, 40b, 43a – f, 44a – k, 53, 
71, 72, 73  

  Suzuki C - C coupling
(ArX + Ar ’ B(OH) 2  Æ  Ar – Ar ’ )  

  13a,b, 14i, 17i – k, 21, 22, 23, 24a, 25, 26, 
27, 31m,n, 33e,h,i 34b, 35b,o, 43c,
44c – e,l, 54, 72f, 74a, 76  

  Sonogashira C - C coupling
(ArX + alkyne  Æ  arylalkyne)  

  28c, 43g,h,i  

  Stille C - C coupling (ArX + Bu 3 SnR  Æ  Ar - R)    33h  

  Negishi C - C coupling (ArCl+RZnX  Æ  Ar - R)    44m  

  Kumada C - C coupling (ArCl+RMgX(Ar - R)    44j,k  

  Dehydrohalogenation of aryl halides    44i,n  

  Amination of aryl halides and sulfonates
(ArX + RNHR ’  Æ  Ar - N(R)R ’ )  

  44k – o, 74b, 77  

  Hydrosilylation    9h, 49a  

  Coupling of silanes    28a,b  

  Hydroxycarbonylation of olefi ns    75  
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  1.2
Historical Background 

 Soluble AuNPs appeared about two thousand years ago and were used as pigments 
for esthetic and curative purposes. On the materials side, their use to make ruby 
glass and for coloring ceramics was known in these ancient times, as exemplifi ed 
by the famous Lycurgus cup (dated 4th century AD, British Museum)  [8a] . Modern 
syntheses of NPs are often inspired by the 150 - year old method of Faraday who 
demonstrated the formation of red solutions of AuNPs by reduction of tetrachlo-
roaurate [AuCl 4 ]  −   using phosphorus as the reducing agent  [8a,b] . This strategy has 
been popularized again by Schiffrin ’ s group in 1993  [8a,c] , using NaBH 4  reduction 
of a metal precursor such as HAuCl 4  in a biphasic organic solvent – water system 
in the presence of the phase - transfer reagent [N(C 8 H 17 ) 4 ]Br followed by the 
addition of a thiol that stabilizes the NPs as a thiolate ligand  [8a,c] . Likewise, 

 Reaction  References (see also general Refs.  3 – 11 ) 

  [3 + 2] Cycloaddition    55  

  McMurry coupling    56, 57  

  Oxidation      
 CO   8a, 9d,e, 11j, 17, 34, 36a,b,e, 37c,d, 45, 

51b, 80  
 Dihydrogen   46e  
 Aromatic amines   33g, 46f  
 Alkyl amines   9d  
 1 - Phenylethanol   38  
 CH 3 OH and alcohol electro - oxidation   47  
 Cyclooctane   49b  
 Cyclohexane   46g  
 Ethene and propene epoxidation   50  
 Glucose   52, 46h  
 Diol, Glycerol, ethylene glycol   46c,e, 81  
 Oxalate   46h  

  Amination    24b, 43j  

  Carbonylation      
 Aryl halides   24b  
 Methanol   53a  

  Allylic alkylation    30f, 31, 35c, 57  

 Mannich   57  

  Pauson - Khand    11h, 35c  

  Hydroconversion of hydrocarbons    40a  

  Combustion: alkanes, arenes, alcohols    32e, 35j, 79  

  Methanol reforming    36c, 39h  

Table 1.1 Continued


