Drug Bioavailability

Estimation of Solubility, Permeability, Absorption and Bioavailability

Edited by
Han van de Waterbeemd and Bernard Testa

Second, Completely Revised Edition
Drug Bioavailability

Edited by

Han van de Waterbeemd
and Bernard Testa
Methods and Principles in Medicinal Chemistry

Edited by R. Mannhold, H. Kubinyi, G. Folkers
Editorial Board
H. Timmerman, J. Vacca, H. van de Waterbeemd, T. Wieland

D. A. Smith, H. van de Waterbeemd, D. K. Walker
Pharmacokinetics and Metabolism in Drug Design, 2nd Ed.
Vol. 31

T. Langer, R. D. Hofmann (eds.)
Pharmacophores and Pharmacophore Searches
Vol. 32

E. Francotte, W. Lindner (eds.)
Chirality in Drug Research
Vol. 33
2006, ISBN 978-3-527-31076-0

W. Jahnke, D. A. Erlanson (eds.)
Fragment-based Approaches in Drug Discovery
Vol. 34

J. Hüser (ed.)
High-Throughput Screening in Drug Discovery
Vol. 35

K. Wanner, G. Höfner (eds.)
Mass Spectrometry in Medicinal Chemistry
Vol. 36
2007, ISBN 978-3-527-31456-0

R. Mannhold (ed.)
Molecular Drug Properties
Vol. 37

R. J. Vaz, T. Klabunde (eds.)
Antitargets
Vol. 38

E. Ottow, H. Weinmann (eds.)
Nuclear Receptors as Drug Targets
Vol. 39
Drug Bioavailability

Estimation of Solubility, Permeability, Absorption and Bioavailability

Edited by
Han van de Waterbeemd and Bernard Testa

Second, Completely Revised Edition
Series Editors

Prof. Dr. Raimund Mannhold
Molecular Drug Research Group
Heinrich-Heine-Universität
Universitätsstrasse 1
40225 Düsseldorf
Germany
mannhold@uni-duesseldorf.de

Prof. Dr. Hugo Kubinyi
Donnersbergstrasse 9
67256 Weisenheim am Sand
Germany
kubinyi@t-online.de

Prof. Dr. Gerd Folkers
Collegium Helveticum
STW/ETH Zurich
8092 Zurich
Switzerland
folkers@collegium.ethz.ch

Volume Editors

Dr. Han van de Waterbeemd
Current address
Rue de la Rasclose 14
66690 Saint André
France

Former address
AstraZeneca
LG DECS-GCS, 50S39
Mereside, Alderley Park
Macclesfield SK10 4TG
United Kingdom

Prof. Dr. Bernard Testa
Univ. Hospital Centre
Pharmacy Dept.-CHUV BH 04
46 Rue du Bugnon
1011 Lausanne
Schweiz

Cover Description
Bioavailability involves the transfer of gut wall membranes in which a drug may encounter metabolising enzymes and transporters limiting or enhancing systemic drug levels.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Contributors</td>
<td>XIX</td>
</tr>
<tr>
<td>Preface</td>
<td>XXIII</td>
</tr>
<tr>
<td>A Personal Foreword</td>
<td>XXV</td>
</tr>
</tbody>
</table>

1 Introduction: The Why and How of Drug Bioavailability Research 1
Han van de Waterbeemd and Bernard Testa

1.1 Defining Bioavailability 1
1.1.1 The Biological Context 1
1.1.2 A Pharmacokinetic Overview 3
1.1.3 Specific Issues 3
1.2 Presentation and Layout of the Book 4
Referenecs 6

Part One Physicochemical Aspects of Drug Dissolution and Solubility 7

2 Aqueous Solubility in Drug Discovery Chemistry, DMPK, and Biological Assays 9
Nicola Colclough, Linette Ruston, and Kin Tam

2.1 Introduction 10
2.1.1 Definition of Aqueous Solubility 11
2.1.2 Aqueous Solubility in Different Phases of Drug Discovery 12
2.2 Aqueous Solubility in Hit Identification 12
2.2.1 Aqueous Solubility from DMSO Solutions 13
2.2.1.1 Turbidimetric Methods 14
2.2.1.2 UV Absorption Methods 15
2.2.1.3 Alternative Detection Methodology 17
2.2.1.4 Application of DMSO-Based Solubility Assays 18
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Aqueous Solubility in Lead Identification and Lead Optimization</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Dried-Down Solution Methods</td>
<td>20</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Solubility from Solid</td>
<td>21</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Thermodynamic Solubility Assays with Solid-State Characterization</td>
<td>22</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Solubility by Potentiometry</td>
<td>24</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Application of Thermodynamic Solubility Data in LI and LO</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Conclusions</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Gastrointestinal Dissolution and Absorption of Class II Drugs</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Drug Absorption and the BCS</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Class II Drugs</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>GI Physiological Variables Affecting Class II Drug Dissolution</td>
<td>38</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Bile Salts</td>
<td>38</td>
</tr>
<tr>
<td>3.4.2</td>
<td>GI pH</td>
<td>39</td>
</tr>
<tr>
<td>3.4.3</td>
<td>GI Transit</td>
<td>39</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Drug Particle Size</td>
<td>40</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Volume Available for Dissolution</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>In Vitro Dissolution Tests for Class II Drugs</td>
<td>41</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Biorelevant Media</td>
<td>41</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Dynamic Lipolysis Model</td>
<td>42</td>
</tr>
<tr>
<td>3.6</td>
<td>BCS-Based FDA Guidelines: Implications for Class II Drugs</td>
<td>43</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Potential of Redefining BCS Solubility Class Boundary</td>
<td>43</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Biowaiver Extension Potential for Class II Drugs</td>
<td>44</td>
</tr>
<tr>
<td>3.7</td>
<td>Conclusions</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>In Silico Prediction of Solubility</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>What Solubility Measures to Model?</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>Is the Data Set Suitable for Modeling?</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>Descriptors and Modeling Methods for Developing Solubility Models</td>
<td>58</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparing Literature Solubility Models</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>What Is the Influence of the Domain of Applicability?</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Can We Tell when Good Predictions Are Made?</td>
<td>65</td>
</tr>
<tr>
<td>4.8</td>
<td>Conclusions</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>66</td>
</tr>
</tbody>
</table>
Part Two Physicochemical and Biological Studies of Membrane Permeability and Oral Absorption 69

5 Physicochemical Approaches to Drug Absorption 71
Han van de Waterbeemd

5.1 Introduction 73
5.2 Physicochemical Properties and Pharmacokinetics 74
5.2.1 DMPK 74
5.2.2 Lipophilicity, Permeability, and Absorption 74
5.2.3 Estimation of Volume of Distribution from Physical Chemistry 76
5.2.4 Plasma Protein Binding and Physicochemical Properties 76
5.3 Dissolution and Solubility 76
5.3.1 Calculated Solubility 78
5.3.2 Ionization (pK_a) 78
5.3.2.1 Calculated pK_a 79
5.5 Molecular Size and Shape 79
5.5.1 Calculated Size Descriptors 79
5.6 Hydrogen Bonding 80
5.6.1 Calculated Hydrogen-Bonding Descriptors 80
5.7 Lipophilicity 81
5.7.1 log P and log D 81
5.7.2 Calculated log P and log D 83
5.8 Permeability 84
5.8.1 Artificial Membranes and PAMPA 84
5.8.1.1 In Silico PAMPA 85
5.8.2 IAM, ILC, MEKC, and BMC 85
5.8.3 Liposome Partitioning 86
5.8.4 Biosensors 86
5.9 Amphiphilicity 86
5.10 Drug-Like Properties 87
5.11 Computation Versus Measurement of Physicochemical Properties 88
5.11.1 QSAR Modeling 88
5.11.2 In Combo: Using the Best of Two Worlds 89
5.12 Outlook 89
References 89

6 High-Throughput Measurement of Physicochemical Properties 101
Barbara P. Mason

6.1 Introduction 102
6.2 Positioning of Physicochemical Screening in Drug Discovery 102
6.3 “Fit for Purpose” Versus “Gold Standard” 103
6.4 Solubility 104
6.4.1 “Thermodynamic” Versus “Kinetic” 104
6.4.2 Methods of Measuring High-Throughput Solubility 106
6.4.3 Supernatant Concentration 106
6.4.4 Measuring Solubility Across a pH Range 107
6.4.5 Supernatant Concentration Methods from Solid Material 109
6.4.6 Precipitate Detection 109
6.4.7 Other Methods of Measuring Solubility 110
6.5 Dissociation Constants, pK_a 110
6.5.1 Measuring pK_a 111
6.5.2 pK_a Measurements in Cosolvent Mixtures 112
6.5.3 pK_a Measurements based on Separation 113
6.6 Lipophilicity 115
6.6.1 log P Versus log D_{pH} 115
6.6.2 Measuring Lipophilicity 116
6.6.3 High-Throughput log D_{7.4} Measurements 117
6.6.4 High-Throughput log D_{7.4} Versus Shake-Flask log D_{7.4} 117
6.6.5 Alternative Methods for Determining High-Throughput log D_{pH} 118
6.7 Permeability 119
6.7.1 Permeability and Lipophilicity 121
6.7.2 Cell-Based Assays 121
6.7.3 Noncell-Based Assays: Chromatographic Methods 122
6.7.4 Noncell-Based Assays: Parallel Artificial Membrane Permeability Assay 122
6.7.4.1 Membrane Composition 123
6.7.4.2 Suggestions for PAMPA 123
6.7.4.3 Considerations in the Calculation of Permeability from PAMPA Data 124
6.7.5 Sink Conditions 125
6.7.6 Unstirred Water Layer 126
6.7.7 Surface Properties for the Determination of Permeability 126
6.8 Data Interpretation, Presentation, and Storage 126
6.9 Conclusions 127

7 An Overview of Caco-2 and Alternatives for Prediction of Intestinal Drug Transport and Absorption 133
Anna-Lena Ungell and Per Artursson
7.1 Introduction 134
7.2 Cell Cultures for Assessment of Intestinal Permeability 134
7.2.1 Caco-2 135
7.2.2 MDCK Cells 136
7.2.3 2/4/A1 Cells 137
7.2.4 Other Cell Lines 139
7.3 Correlation to Fraction of Oral Dose Absorbed 140
7.4 Cell Culture and Transport Experiments 141
7.4.1 Quality Control and Standardization 143
8 Use of Animals for the Determination of Absorption and Bioavailability 161
Chris Logan
8.1 Introduction 162
8.1.1 ADME/PK in Drug Discovery 162
8.1.2 The Need for Prediction 163
8.2 Consideration of Absorption and Bioavailability 163
8.3 Choice of Animal Species 167
8.4 Methods 168
8.4.1 Radiolabels 169
8.4.2 Ex Vivo Methods for Absorption 169
8.4.2.1 Static Method 169
8.4.2.2 Perfusion Methods 170
8.4.3 In Vivo Methods 170
8.5 In Vivo Methods for Determining Bioavailability 171
8.5.1 Cassette Dosing 171
8.5.2 Semisimultaneous Dosing 172
8.5.3 Hepatic Portal Vein Cannulation 173
8.6 Inhalation 173
8.7 Relevance of Animal Models 174
8.7.1 Models for Prediction of Absorption 174
8.7.2 Models for Prediction of Volume 175
8.8 Prediction of Dose in Man 176
8.8.1 Allometry 176
8.8.2 Physiologically Based Pharmacokinetics 176
8.8.3 Prediction of Human Dose 177
8.9 Conclusions 179
References 179

9 In Vivo Permeability Studies in the Gastrointestinal Tract of Humans 185
Niclas Petri and Hans Lennernäs
9.1 Introduction 185
9.2 Definitions of Intestinal Absorption, Presystemic Metabolism, and Absolute Bioavailability 188
9.3 Methodological Aspects of In Vitro Intestinal Perfusion Techniques 190
9.4 Paracellular Passive Diffusion 193
9.5 Transcellular Passive Diffusion 196
9.6 Carrier-Mediated Intestinal Absorption 199
9.7 Jejunal Transport and Metabolism 202
9.8 Regional Differences in Transport and Metabolism of Drugs 208
9.9 Conclusions 209
References 210

Part Three Role of Transporters and Metabolism in Oral Absorption 221

10 Transporters in the Gastrointestinal Tract 223
Pascale Anderle and Carsten U. Nielsen
10.1 Introduction 223
10.2 Active Transport Along the Intestine and Influence on Drug Absorption 228
10.2.1 Peptide Transporters 232
10.2.2 Nucleoside Transporters 233
10.2.3 Amino Acid Transporters 234
10.2.4 Monosaccharide Transporters 234
10.2.5 Organic Cation Transporters 235
10.2.6 Organic Anion Transporters 235
10.2.7 Monocarboxylate Transporters 235
10.2.8 ABC Transporters 235
10.2.9 Bile Acid Transporters 237
10.3 Transporters and Genomics 237
10.3.1 Introduction to Genomics Technologies 237
10.3.2 Gene Expression Profiling Along the Intestine and in Caco-2 Cells 238
10.3.2.1 Profiling of the Intestinal Mucosa 238
10.3.2.2 Profiling of Caco-2 Cells 240
10.3.3 Intestinal Transporters and the Influence of Genotypes 242
10.4 Structural Requirements for Targeting Absorptive Intestinal Transporters 245
10.4.1 Strategies for Increasing Drug Absorption Targeting Transporters 245
10.4.2 Changing the Substrate: SAR Established for PEPT1 247
10.4.3 Methods for Investigating Affinity and Translocation 248
10.4.4 Quantitative Structure–Activity Relations for Binding of Drug to Transporters 249
10.5 Transporters and Diseased States of the Intestine 251
10.5.1 Intestinal Diseases 251
10.5.2 Basic Mechanisms in Cancer and Specifically in Colon Carcinogenesis 252
10.5.2.1 Basic Mechanisms 252
10.5.2.2 Colon Cancer 253
10.5.3 Transporters and Colon Cancer 253
10.5.3.1 Transporters as Tumor Suppressor Genes 255
10.5.3.2 Role of Transporters in the Tumor–Stroma Interaction 255
10.5.3.3 Role of Transporters in Intestinal Stem Cells 258
10.5.4 Role of PEPT1 in Inflammatory Bowel Disease 259
10.6 Summary and Outlook 260
References 261

11 Hepatic Transport 277
Kazuya Maeda, Hiroshi Suzuki, and Yuichi Sugiyama
11.1 Introduction 278
11.2 Hepatic Uptake 278
11.2.1 NTCP (SLC10A1) 279
11.2.2 OATP (SLCO) Family Transporters 279
11.2.3 OAT (SLC22) Family Transporters 281
11.2.4 OCT (SLC22) Family Transporters 284
11.3 Biliary Excretion 284
11.3.1 MDR1 (P-glycoprotein; ABCB1) 287
11.3.2 MRP2 (ABCC2) 287
11.3.3 BCRP (ABCG2) 289
11.3.4 BSEP (ABCB11) 290
11.3.5 MATE1 (SLC47A1) 290
11.4 Sinusoidal Efflux 290
11.4.1 MRP3 (ABCC3) 291
11.4.2 MRP4 (ABCC4) 291
11.4.3 Other Transporters 293
11.5 Prediction of Hepatobiliary Transport of Substrates from In Vitro Data 294
11.5.1 Prediction of Hepatic Uptake Process from In Vitro Data 294
11.5.2 Prediction of the Contribution of Each Transporter to the Overall Hepatic Uptake 295
11.5.3 Prediction of Hepatic Efflux Process from In Vitro Data 298
11.5.4 Utilization of Double (Multiple) Transfected Cells for the Characterization of Hepatobiliary Transport 299
11.6 Genetic Polymorphism of Transporters and Its Clinical Relevance 301
11.7 Transporter-Mediated Drug–Drug Interactions 305
11.7.1 Effect of Drugs on the Activity of Uptake Transporters Located on the Sinusoidal Membrane 305
11.7.2 Effect of Drugs on the Activity of Efflux Transporters Located on the Bile Canalicular Membrane 308
11.7.3 Prediction of Drug–Drug Interaction from In Vitro Data 309
11.8 Concluding Remarks 309
References 311
12 The Importance of Gut Wall Metabolism in Determining Drug Bioavailability
Christopher Kohl

12.1 Introduction 334
12.2 Physiology of the Intestinal Mucosa 334
12.3 Drug-Metabolizing Enzymes in the Human Mucosa 336
12.3.1 Cytochrome P450 336
12.3.2 Glucuronyltransferase 337
12.3.3 Sulfotransferase 337
12.3.4 Other Enzymes 337
12.4 Oral Bioavailability 341
12.4.1 In Vivo Approaches to Differentiate Between Intestinal and Hepatic First-Pass Metabolism 342
12.4.2 In Vitro Approaches to Estimate Intestinal Metabolism 344
12.4.3 Computational Approaches to Estimate and to Predict Human Intestinal Metabolism 345
12.5 Clinical Relevance of Gut Wall First-Pass Metabolism 347
References 347

13 Modified Cell Lines 359
Guangqing Xiao and Charles L. Crespi

13.1 Introduction 359
13.2 Cell/Vector Systems 360
13.3 Expression of Individual Metabolic Enzymes 363
13.4 Expression of Transporters 365
13.4.1 Efflux Transporters 365
13.4.2 Uptake Transporters 367
13.5 Summary and Future Perspectives 368
References 368

Part Four Computational Approaches to Drug Absorption and Bioavailability 373

14 Calculated Molecular Properties and Multivariate Statistical Analysis 375
Ulf Norinder

14.1 Introduction 377
14.2 Calculated Molecular Descriptors 377
14.2.1 2D-Based Molecular Descriptors 377
14.2.1.1 Constitutional Descriptors 378
14.2.1.2 Fragment- and Functional Group-Based Descriptors 378
14.2.1.3 Topological Descriptors 379
14.2.2 3D Descriptors 381
14.2.2.1 WHIM Descriptors 381
14.2.2.2 Jurs Descriptors 382
14.2.2.3 VolSurf and Almond Descriptors 383
14.2.2.4 Pharmacophore Fingerprints 384
14.2.3 Property-Based Descriptors 385
14.2.3.1 log \(P \) 385
14.2.3.2 HYBOT Descriptors 386
14.2.3.3 Abraham Descriptors 386
14.2.3.4 Polar Surface Area 386
14.3 Statistical Methods 387
14.3.1 Linear and Nonlinear Methods 388
14.3.1.1 Multiple Linear Regression 388
14.3.1.2 Partial Least Squares 389
14.3.1.3 Artificial Neural Networks 390
14.3.1.4 Bayesian Neural Networks 390
14.3.1.5 Support Vector Machines 390
14.3.1.6 \(k \)-Nearest Neighbor Modeling 392
14.3.1.7 Linear Discriminant Analysis 392
14.3.2 Partitioning Methods 393
14.3.2.1 Traditional Rule-Based Methods 393
14.3.2.2 Rule-Based Methods Using Genetic Programming 394
14.3.3 Consensus and Ensemble Methods 395
14.4 Applicability Domain 396
14.5 Training and Test Set Selection and Model Validation 398
14.5.1 Training and Test Set Selection 398
14.5.2 Model Validation 399
14.6 Future Outlook 400
 References 401

15 Computational Absorption Prediction 409

Christel A.S. Bergström, Markus Haeberlein, and Ulf Norinder

15.1 Introduction 410
15.2 Descriptors Influencing Absorption 410
15.2.1 Solubility 411
15.2.2 Membrane Permeability 412
15.3 Computational Models of Oral Absorption 413
15.3.1 Quantitative Predictions of Oral Absorption 413
15.3.1.1 Responses: Evaluations of Measurement of Fraction Absorbed 417
15.3.1.2 Model Development: Data sets, Descriptors, Technologies, and Applicability 419
15.3.2 Qualitative Predictions of Oral Absorption 420
15.3.2.1 Model Development: Data sets, Descriptors, Technologies, and Applicability 420
15.3.2.2 An Example Using Genetic Programming-Based Rule Extraction 426
15.3.3 Repeated Use of Data Sets 427
15.4 Software for Absorption Prediction 427
15.5 Future Outlook 428
 References 429
16

In Silico Prediction of Human Bioavailability 433
David J. Livingstone and Han van de Waterbeemd

16.1 Introduction 434
16.2 Concepts of Pharmacokinetics and Role of Oral Bioavailability 437
16.3 In Silico QSAR Models of Oral Bioavailability 438
16.3.1 Prediction of Human Bioavailability 438
16.3.2 Prediction of Animal Bioavailability 441
16.4 Prediction of the Components of Bioavailability 441
16.5 Using Physiological Modeling to Predict Oral Bioavailability 443
16.6 Conclusions 445
References 446

17

Simulations of Absorption, Metabolism, and Bioavailability 453
Michael B. Bolger, Robert Fraczkiewicz, and Viera Lukacova

17.1 Introduction 454
17.2 Background 454
17.3 Use of Rule-Based Computational Alerts in Early Discovery 456
17.3.1 Simple Rules for Drug Absorption (Druggability) 456
17.3.2 Complex Rules That Include Toxicity 473
17.4 Mechanistic Simulation (ACAT Models) in Early Discovery 474
17.4.1 Automatic Scaling of k_a as a Function of P_{eff}, pH, log D, and GI Surface Area 477
17.4.2 Mechanistic Corrections for Active Transport and Efflux 478
17.4.3 PBPK and In Silico Estimation of Distribution 481
17.5 Mechanistic Simulation of Bioavailability (Drug Development) 481
17.5.1 Approaches to In Silico Estimation of Metabolism 484
17.6 Regulatory Aspects of Modeling and Simulation (FDA Critical Path Initiative) 484
17.7 Conclusions 485
References 485

18

Toward Understanding P-Glycoprotein Structure–Activity Relationships 497
Anna Seelig

18.1 Introduction 498
18.1.1 Similarity Between P-gp and Other ABC Transporters 498
18.1.2 Why P-gp Is Special 500
18.2 Measurement of P-gp Function 500
18.2.1 P-gp ATPase Activity Assay 500
18.2.1.1 Quantification of Substrate–Transporter Interactions 503
18.2.1.2 Relationship between Substrate–Transporter Affinity and Rate of Transport 504
18.2.2 Transport Assays 506
18.2.3 Competition Assays 508
18.3 Predictive In Silico Models 508
18.3.1 Introduction to Structure–Activity Relationship 509
18.3.2 3D-QSAR Pharmacophore Models 509
18.3.3 Linear Discriminant Models 510
18.3.4 Modular Binding Approach 511
18.3.5 Rule-Based Approaches 512
18.4 Discussion 513
18.4.1 Prediction of Substrate-P-gp Interactions 513
18.4.2 Prediction of ATPase Activity or Intrinsic Transport 513
18.4.3 Prediction of Transport (i.e., Apparent Transport) 513
18.4.4 Prediction of Competition 514
18.4.5 Conclusions 514
References 514

Part Five Drug Development Issues 521

19 Application of the Biopharmaceutics Classification System Now and in the Future 523
Bertil Abrahamsen and Hans Lennernäs
19.1 Introduction 524
19.2 Definition of Absorption and Bioavailability of Drugs Following Oral Administration 527
19.3 Dissolution and Solubility 528
19.4 The Effective Intestinal Permeability (P_{eff}) 535
19.5 Luminal Degradation and Binding 539
19.6 The Biopharmaceutics Classification System 541
19.6.1 Regulatory Aspects 541
19.6.1.1 Present Situation 541
19.6.2 Potential Future Extensions 543
19.6.2.1 Drug Development Aspects 543
19.6.2.1.1 Selection of Candidate Drugs 544
19.6.2.2 Choice of Formulation Principle 545
19.6.2.3 In Vitro/In Vivo Correlation 547
19.6.2.4 Food–Drug Interactions 549
19.6.2.5 Quality by Design 552
19.7 Conclusions 552
References 553

20 Prodrugs 559
Bernard Testa
20.1 Introduction 559
20.2 Why Prodrugs? 560
20.2.1 Pharmaceutical Objectives 560
20.2.2 Pharmacokinetic Objectives 561
20.2.3 Pharmacodynamic Objectives 564
20.3 How Prodrugs? 565
20.3.1 Types of Prodrugs 565
20.3.2 Hurdles in Prodrug Research 567
20.4 Conclusions 568
References 568

21 Modern Delivery Strategies: Physiological Considerations for Orally Administered Medications 571
Clive G. Wilson and Werner Weitschies
21.1 Introduction 571
21.2 The Targets 572
21.3 The Upper GI Tract: Mouth and Esophagus 573
21.3.1 Swallowing the Bitter Pill... 575
21.4 Mid-GI Tract: Stomach and Intestine 576
21.4.1 Gastric Inhomogeneity 576
21.4.2 Gastric Emptying 579
21.4.3 Small Intestinal Transit Patterns 581
21.4.4 Modulation of Transit to Prolong the Absorption Phase 582
21.4.5 Absorption Enhancement 582
21.5 The Lower GI Tract: The Colon 583
21.5.1 Colonic Transit 584
21.5.2 Time of Dosing 585
21.5.3 Modulating Colonic Water 586
21.6 Pathophysiological Effects on Transit 587
21.7 Pathophysiological Effects on Permeability 589
21.8 pH 589
21.9 Conclusions 590
References 590

22 Nanotechnology for Improved Drug Bioavailability 597
Marjo Yliperttula and Arto Urtti
22.1 Introduction 597
22.2 Nanotechnological Systems in Drug Delivery 599
22.2.1 Classification of the Technologies 599
22.2.1.1 Nanocrystals 599
22.2.1.2 Self-Assembling Nanoparticulates 600
22.2.1.3 Processed Nanoparticulates 601
22.2.1.4 Single-Molecule-Based Nanocarriers 601
22.2.2 Pharmaceutical Properties of Nanotechnological Formulations 601
22.2.2.1 Drug-Loading Capacity 601
22.2.2.2 Processing 602
22.2.2.3 Biological Stability 602
22.3 Delivery via Nanotechnologies 603
List of Contributors

Bertil Abrahamsson
Astra Zeneca R&D
S-43183 Mölndal
Sweden

Gordon L. Amidon
University of Michigan
College of Pharmacy
Department of Pharmaceutical Sciences
Ann Arbor, MI
USA

Pascale Anderle
Laboratory of Experimental Cancer Research
Istituto Oncologico della Svizzera Italiana (IOSI)
Via Vincenzo Vela 6
CH-6500 Bellinzona
Switzerland

Per Artursson
Uppsala University
Department of Pharmacy
BMC, Box 580
SE-751 23 Uppsala
Sweden

Christel A.S. Bergström
Uppsala University
Department of Pharmacy
Pharmaceutical Screening and Informatics
BMC, P.O. Box 580
SE-751 23 Uppsala
Sweden

Michael B. Bolger
6 6th Street
Petaluma, CA 94952
USA

Pierre Bruneau
AstraZeneca Centre de Recherches
Parc Industriel Pompelle
BP 1050
Reims
France

Nicola Colclough
AstraZeneca R&D
Physical and Computational Chemistry
Alderley Park
Macclesfield, Cheshire SK10 4TG
UK
List of Contributors

Charles L. Crespi
BD Biosciences-Discovery Labware
6 Henshaw Street
Woburn, MA 01801
USA

Arik S. Dahan
University of Michigan
College of Pharmacy
Department of Pharmaceutical Sciences
Ann Arbor, MI
USA

Andrew M. Davis
AstraZeneca R&D Charnwood
Bakewell Road
Loughborough
Leicestershire LE11 5RH
UK

Robert Fraczkiewicz
42505 10th Street West
Lancaster, CA 93534
USA

Markus Haeberlein
AstraZeneca R&D Södertälje
Medicinal Chemistry
SE-151 85 Södertälje
Sweden

Christopher Kohl
Actelion Pharmaceuticals Ltd
Pharmacokinetics
Gewerbestrasse 16
4123 Allschwil
Switzerland

Hans Lennernäs
Uppsala University
Biopharmaceutics Research Group
Department of Pharmacy
SE-751 23 Uppsala
Sweden

David J. Livingstone
University of Portsmouth
Centre for Molecular Design
Portsmouth
UK

and
ChemQuest
Delamere House
1 Royal Crescent
Sandown
Isle of Wight PO36 8LZ
UK

Chris Logan
AstraZeneca R&D Alderley Park
Clinical Pharmacology and DMPK
Macclesfield, Cheshire SK10 4TG
UK

Viera Lukacova
42505 10th Street West
Lancaster, CA 93534
USA

Kazuya Maeda
The University of Tokyo
Graduate School of Pharmaceutical Sciences
Department of Molecular Pharmacokinetics
7-3-1 Hongo, Bunkyo-ku
Tokyo 113-0033
Japan

Barbara P. Mason
masonphyschem@aol.com
List of Contributors

Carsten U. Nielsen
University of Copenhagen
Faculty of Pharmaceutical Sciences
Bioneer:FARMA and Department of
Pharmaceutics and Analytical
Chemistry
2-Universitetsparken
DK-2100 Copenhagen
Denmark

Ulf Norinder
AstraZeneca R&D Södertälje
Medicinal Chemistry
SE-151 85 Södertälje
Sweden

Niclas Petri
Uppsala University
Biopharmaceutics Research Group
Department of Pharmacy
SE-751 23 Uppsala
Sweden

Linette Ruston
AstraZeneca R&D
Physical and Computational Chemistry
Alderley Park
Macclesfield, Cheshire SK10 4TG
UK

Anna Seelig
University of Basel
Biozentrum
Klingelbergstrasse 70
CH-4056 Basel
Switzerland

Yuichi Sugiyama
The University of Tokyo
Graduate School of Pharmaceutical
Sciences
Department of Molecular
Pharmacokinetics
7-3-1 Hongo, Bunkyo-ku
Tokyo 113-0033
Japan

Hiroshi Suzuki
The University of Tokyo
Faculty of Medicine
The University of Tokyo Hospital
Department of Pharmacy
7-3-1 Hongo, Bunkyo-ku
Tokyo 113-8655
Japan

Kin Tam
AstraZeneca R&D
Physical and Computational Chemistry
Alderley Park
Macclesfield, Cheshire SK10 4TG
UK

Bernard Testa
University Hospital Centre
Department of Pharmacy
CHUV – BH04
Rue du Bugnon 46
CH-1011 Lausanne
Switzerland

Anna-Lena Ungell
AstraZeneca R&D Mölndal
Discovery DMPK and Bioanalytical
Chemistry
Pepperedsleden 1
SE-431 83 Mölndal
Sweden
List of Contributors

Arto Urtti
University of Helsinki
Centre for Drug Research
P.O. Box 56 (Viikinkaari 5E)
00014 Helsinki
Finland

Han van de Waterbeeml
Current address
Rue de la Rasclose 14
66690 Saint André
France

Former address
AstraZeneca
LG DECS-GCS
Mereside, Alderley Park
Macclesfield, Cheshire SK10 4TG
UK

Werner Weitschies
University of Greifswald
Institute of Pharmacy
Department of Biopharmaceutics
Friedrich-Ludwig-Jahn-Strasse 17
17487 Greifswald
Germany

Clive G. Wilson
University of Strathclyde
Strathclyde Institute for Biomedical Studies
Department of Pharmaceutical Sciences
Glasgow, Scotland
UK

Guangqing Xiao
Biogen Idec
Drug Metabolism and Pharmacokinetics
14 Cambridge Center
Cambridge, MA 02142
UK

Marjo Yliperttula
University of Helsinki
Division of Biopharmacy and Pharmacokinetics
P.O. Box 56 (Viikinkaari 5E)
00014 Helsinki
Finland
Preface

The processes involved in drug discovery have changed considerably in the past decade. Today we have access to the full human as well as several bacterial genomes offering a rich source of molecular targets to treat diseases. Methods in biology have moved to ultra-high-throughput screening (uHTS) of such preceded and unprecedented targets. Chemistry adapted to this progress by developing methods such as combinational and parallel synthesis allowing the rapid synthesis of hundreds to hundreds of thousands molecules in reasonable quantities, purities and timelines.

Historical data on the fate of potential drugs in development indicate that major reasons for attrition include toxicity, efficacy and pharmacokinetics/drug metabolism. Therefore, in today’s drug discovery the evaluation of absorption, distribution, metabolism and excretion (ADME) of drug candidates is performed early in the process. In the last 10 years drug metabolism and physicochemical in vitro screening methods have increasingly been introduced. In recent years these methods more and more became medium to high throughput in order to cope with increasing numbers of compounds to evaluate after HTS.

Although HTS seems to be a very efficient approach, it must be stressed that there is also a high cost associated with it. Interest is thus shifting to prediction and simulation of molecular properties, which might hopefully lead to overall more efficient processes.

The next vague of tools will be around computational or in silico ADME approaches. These will allow to include ADME into the design of combinational libraries, the evaluation of virtual libraries, as well as in selecting the most promising compounds to go through a battery of in vitro screens, possibly even replacing some of these experimental screens. Several of these computational tools are currently under development as will be discussed in this volume.

For reasons of convenience for the patient and compliance to the therapy, most drugs are administered orally. To keep the dose at the lowest possible level, high oral absorption and high bioavailability are prime properties to optimize in a new drug. Drug bioavailability is the outcome of a complex chain of events, and is among others influenced by the drug’s solubility, permeability through the gastrointestinal wall, and its first pass gut wall and liver metabolism. Excluding liver metabolism, all
other factors are characterized by the term oral absorption. Permeability through the gut wall can be favoured or hindered through the effect of various transporter proteins such as P-glycoprotein. Our increased knowledge and understanding of all of these processes involved in permeability, oral absorption and bioavailability will make predictive tools more robust.

A previous volume in our series, edited in 2003 by Han van de Waterbeemd, Hans Lennernäs, and Per Artursson, was dedicated to summarize the current status in the estimation of relevant ADME parameters. This volume emerged as a top-seller in our series indicating the high impact of this topic in modern drug research.

Now, five years later, we are proud to present a complete revision, edited by Han van de Waterbeemd and Bernard Testa, which reflects the enormous developments in this research area. Few chapters were omitted and a new one on “Nanotechnology in Drug Discovery” was added. Some chapters were condensed and merged into others; some other chapters had to be split into two. The majority of chapters remained of high currency and were all comprehensively updated, some by the same and some by new authors such as the chapter on “Prodrugs” by Bernard Testa.

The series editors would like to thank Han van de Waterbeemd and Bernard Testa for their enthusiasm to put together this book and to work with such a fine selection of authors.

September 2008

Raimund Mannhold, Düsseldorf
Hugo Kubinyi, Weisenheim am Sand
Gerd Folkers, Zürich
A Personal Foreword

"Drug Bioavailability – Estimation of Solubility, Permeability, Absorption and Bioavailability" was published in 2003 under the editorship of H. van de Waterbeemd, H. Lennernäs and P. Artursson. The book met with such success that it had to be reprinted 4 times. But given the many and fast advances in the field, even this solution was no longer satisfactory. A second, fully revised edition was thus envisaged. Professors Lennernäs and Artursson having too many other commitments, Han van de Waterbeemd found himself alone for the task and approached his colleague and friend Bernard Testa. Having just completed the joint editorship of the 1100-page ADMET volume in “Comprehensive Medicinal Chemistry II”, we were happy to team up again in an exciting book project. Having decided on an updated content and a logical structure, it was clear that some chapters had to be split into two and rewritten to take latest advances into account. A few chapters could be condensed and merged into others, while yet other chapters remained of high currency and simply needed an in-depth updating. These changes in book structure and chapter contents implied a number of changes in authorship; we are grateful to contributors of the first edition and to our new authors for their enthusiastic cooperation. The final product is thus vastly different from the previous one and, we hope, will be found valuable by aficionados of the first edition as well as by new readers.

May 2008

Han van de Waterbeemd, Market Harborough, United Kingdom
Bernard Testa, Lausanne, Switzerland
1

Introduction: The Why and How of Drug Bioavailability Research

Han van de Waterbeemd and Bernard Testa

Abbreviations

ADME Absorption, distribution, metabolism, and excretion
EMEA European Agency for the Evaluation of Medicinal Products
FDA Food and Drug Administration (USA)
NCE New chemical entity
PD Pharmacodynamic(s)
P-gp P-glycoprotein
PK Pharmacokinetic(s)
R&D Research and development

Symbols

AUC Area under the plasma concentration versus time curve
CL Total plasma clearance
C_{max} Maximum plasma concentration in blood
F Fraction of administered dose that reaches the general circulation
M Amount of drug that reaches the general circulation
t_{max} Time to reach C_{max}

1.1

Defining Bioavailability

1.1.1

The Biological Context

Before presenting and explaining the content of this book, it is necessary to ponder the concept of bioavailability, more accurately termed oral bioavailability.