Joseph John Bevelacqua
Contemporary Health Physics
Related Titles

Bevelacqua, J. J.
Health Physics in 21st Century
2008
ISBN: 978-3-527-40822-1

Hendee, W. R., Ibbott, G. S., Hendee, E. G.
Radiation Therapy Physics
2004

Turner, J. E.
Atoms, Radiation, and Radiation Protection
2007
ISBN: 978-3-527-40606-7

Lieser, K. H.
Nuclear and Radiochemistry Fundamentals and Applications
2001
ISBN: 978-3-527-30317-5

Andrä, W., Nowak, H. (Eds.)
Magnetism in Medicine A Handbook
2007
ISBN: 978-3-527-40558-9

Bevelacqua, J. J.
Basic Health Physics Problems and Solutions
1999

Martin, J. E.
Physics for Radiation Protection A Handbook
2006
ISBN: 978-3-527-40611-1

Attix, F. H.
Introduction to Radiological Physics and Radiation Dosimetry
1986
ISBN: 978-0-471-01146-0
Joseph John Bevelacqua

Contemporary Health Physics

Problems and Solutions

Second, Updated and Enlarged Edition

WILEY-VCH Verlag GmbH & Co. KGaA
This book is dedicated to my wife, Terry. Her love and understanding have been of great assistance to the completion of this text.
Preface to the Second Edition

The second edition of Contemporary Health Physics: Problems and Solutions has several new features. There is a new chapter on nonionizing radiation and four new appendixes. The new appendixes provide a compilation of key health physics relationships, a discussion of production equations and their applications, a mathematical review, and a set of radionuclides of health physics significance and their associated data. The text also incorporates a more extensive use of SI units. New problems are cast within an SI format, and a number of first edition problems are converted to SI units.

Additional discussion has been added to Chapters 2–7 to reflect new health physics recommendations, new reports, and emerging technologies. In the Medical Health Physics chapter, discussion has been added regarding neutron and heavy-ion therapy and the use of alpha-emitting radiopharmaceuticals. Recent recommendations of the National Council on Radiation Protection and Measurements (NCRP) regarding shielding in imaging and therapy facilities, and management of radionuclide therapy patients are incorporated into the second edition.

A section on research reactors and an expanded presentation of fusion energy have been added to the University Health Physics chapter. Discussion of open and closed fuel cycles and the Tokai Mura criticality were added to the Fuel Cycle chapter. The Power Reactor chapter has been enhanced by including a description of Generation I, II, III, and IV reactors, major instrumentation systems, updated radioactive waste processing approaches, and new NCRP hot-particle recommendations.

The Environmental Health Physics chapter has been expanded to address the isotopes and pathways associated with reprocessing options in open and closed fuel cycles and the intentional dispersal of radioactive material. A presentation of muon colliders and associated neutrino doses, synchrotron light sources, cascade reactions, the Large Hadron Collider, and ALARA aspects of shielding high-energy accelerators have been added to the Accelerator Health Physics chapter.

The problem and solution set was expanded from 375 to over 500 entries including nonionizing radiation questions. This expansion further develops the text material and provides additional practical application examples. These problems also attempt to capture the evolving nature of the Part II American Board
of Health Physics Certification Examination. Detailed solutions are provided for all problems.

In addition to new NCRP and International Commission on Radiological Protection (ICRP) Reports, a discussion of updated internal dosimetry models, including the human alimentary tract and the human respiratory tract models, have been incorporated into Appendix IV. Appendix IV has also been revised to include a discussion of the 2007 Recommendations of the ICRP. Appendix V has been expanded to incorporate a discussion of the BEIR VII Report that evaluates health risks from exposure to low levels of ionizing radiation.

Since one of the purposes of this text is to maintain the technical focus for students preparing for the American Board of Health Physics Certification Examinations, the majority of the problems were derived from questions that appeared on previous examinations. As a prior panel member, vice chair, and chair of the Part II Examination Panel, I would like to thank my panel and all others whose exam questions have been utilized in formulating questions for this textbook.

The author is also fortunate to have worked with colleagues, students, mentors, and teachers who have shared their wisdom and knowledge, provided encouragement or otherwise influenced the content of this text. The following individuals are acknowledged for their assistance during the author’s career: Dick Amato, John Auxier, Lee Booth, Ed Carr, Paul Dirac, Bill Halliday, Tom Hess, Gordon Lodde, Bob Nelson, John Philpott, Lew Pitchford, John Poston, John Rawlings, Don Robson, Bob Rogan, Mike Slobodienn, Jim Tarpinian, Jim Turner, and George Vargo. The continuing encouragement of my wife Terry is gratefully acknowledged.

I would also like to thank the staff of Wiley-VCH with whom I have enjoyed working, particularly Anja Tschörtner, Ulrike Werner, Hans-Jochen Schmitt and Dr. Alexander Grossmann. The advice and encouragement of George Telecki of John Wiley and Sons, Inc. is also acknowledged.

Richland, Washington USA
June 15, 2008

Joseph John Bevelacqua, PhD, CHP
President,
Bevelacqua Resources
Preface to the First Edition

This book contains over 375 problems in health physics and discusses their practical applications. It assumes that the reader is familiar with the science of radiation protection and is either an active participant in that field or interested in learning more about the health physics profession. In particular, this text is particularly useful to individuals preparing for the American Board of Health Physics Certification Examination.

The first part of this book provides an overview of the scientific basis for the field of health physics. The reader is provided with a comprehensive set of references supplemented by appendices that outline selected concepts required to fully appreciate the specialized Part II material. Over 130 problems and their solutions are provided to permit the reader to demonstrate a sound knowledge of health physics fundamentals. The problems are set within scenarios that are intended to enhance the reader’s existing knowledge by demonstrating the basic principles in complex situations requiring a sound knowledge of both theoretical health physics principles and good judgment.

Part II provides the reader with examples of the concepts and calculations frequently encountered in the various fields of health physics. Chapter titles are selected to loosely conform to the various subfields of the health physics profession— that is, medical, university, fuel cycle, power reactor, environmental, and accelerator health physics. The problems are intended to illustrate general concepts within the framework of specific areas such as medical or power reactor health physics.

In addition to illustrating the fundamental concepts of health physics, the collection includes a large number of detailed problems that are often encountered by the radiation protection professional. Some of these problems involve considerable effort, whereas others are more simplistic and can be solved from traditional lectures in health physics. In addition, there are problems which address topics not usually covered in existing texts. These problems are not presented as isolated bits of health physics knowledge, but are introduced within a scenario that stimulates an integrated professional approach to the problem. Professional judgment and sound health physics principles are emphasized.

The third part of this book provides the solutions to the problems presented in the first and second parts. Many of these are worked in considerable detail to further illustrate and emphasize the concepts introduced in Parts I and II.
The present collection of problems is largely based upon the American Board of Health Physics Comprehensive Examination. The author was privileged to serve for four years as a member, Vice-Chairman, and Chairman of the ABHP Comprehensive Panel of Examiners. The experience gained in the development of this examination and the weaknesses of candidates attempting this examination have affected the content of this work.

The author is deeply indebted to the members of the examination panels and the ABHP Board for their professional interaction which greatly expanded the author’s own health physics knowledge. The opinions and interpretations reflected in this work are the author’s and do not necessarily reflect those of his current or previous employers.

Wisconsin Electric Power Company

Joseph John Bevelacqua
A Note on Units

In the United States many regulations, most reporting requirements, and a large portion of practicing health physicists utilize traditional units (Ci, R, rad, rem, etc.). The use of traditional units is currently in conflict with much of the international community and scientific publications which have adopted the SI system (Bq, C kg⁻¹, Gy, Sv, etc.).

The Second Edition of Contemporary Health Physics utilizes both traditional and SI units. Traditional units are selected because they are what the practicing health physicist will most frequently encounter in daily assignments and they can be easily related to their SI counterparts. Traditional units are also utilized to ensure that communications between the health physicist and the health physics technician are clearly understood.

The Second Edition attempts to strike a balanced view of units. All new problems have been recast in terms of SI units. This acknowledges the inevitable adoption of the international set of units. Although many of the existing problems are in traditional units, a number of First Edition problems have been converted to the SI system.

The conflict of units will remain until the United States adopts the SI system in its regulations. This should be done over a period of years in order to ensure that all health physicists are thoroughly familiar and comfortable with the SI units.

For those that feel more comfortable with the traditional system, the following conversion factors are provided:

<table>
<thead>
<tr>
<th>SI Unit</th>
<th>Traditional Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bq</td>
<td>2.70×10^{-11} Ci</td>
</tr>
<tr>
<td>Gy</td>
<td>100 rad</td>
</tr>
<tr>
<td>C kg⁻¹ of air</td>
<td>3881 R</td>
</tr>
<tr>
<td>Sv</td>
<td>100 rem</td>
</tr>
</tbody>
</table>

As the reader can quickly note, the choice of units is more a matter of familiarity rather than scientific rigor. By using these simple factors, the reader should begin to feel more comfortable with either set of units.
Contents

Preface to the Second Edition VII

Preface to the First Edition IX

A Note on Units XI

Part I Basic Concepts: Theory and Problems 1

1 Introduction 3

1.1 Scenarios 4
Scenario 1.1 4
Scenario 1.2 4
Scenario 1.3 5
Scenario 1.4 5
Scenario 1.5 7
Scenario 1.6 8
Scenario 1.7 9
Scenario 1.8 9
Scenario 1.9 10
Scenario 1.10 10
Scenario 1.11 11
Scenario 1.12 12
Scenario 1.13 13
Scenario 1.14 14
Scenario 1.15 15
Scenario 1.16 15
Scenario 1.17 17
Scenario 1.18 17
Scenario 1.19 18
Scenario 1.20 19
Scenario 1.21 20
Scenario 1.22 21
Part II Specialized Areas: Theory and Problems 45

2 Medical Health Physics 47
2.1 Historical Perspective 47
2.2 Medical Accelerator Physics 48
2.3 Diagnostic Nuclear Medicine 51
 2.3.1 X-rays 51
 2.3.2 Nuclear Medicine 52
 2.3.3 Computed Tomography 52
 2.3.4 Tracer Studies and Radioisotope Administration 53
2.4 Therapeutic Nuclear Medicine 53
 2.4.1 Radionuclide Administration 53
 2.4.2 External Beam Therapy 55
 2.4.3 Brachytherapy 57
2.5 Facility Design 58
2.6 Shielding Design 59
2.7 X-ray Shielding 60
2.8 NCRP-49 61
 2.8.1 Primary Barrier 61
 2.8.2 Secondary Barrier 62
 2.8.3 Leakage Radiation 63
2.9 NCRP-147 64
 2.9.1 Unshielded Air Kerma 64
 2.9.2 Shielding Calculations 65
2.10 NCRP-151 66
 2.10.1 Primary Barrier 67
2.10.2 Secondary Barriers 68
2.10.3 Scattering 68
2.10.4 Leakage 68
2.11 Management of Radionuclide Therapy Patients 69
2.12 Ventilation Considerations 70
2.13 Scenarios 71
 Scenario 2.1 71
 Scenario 2.2 72
 Scenario 2.3 73
 Scenario 2.4 75
 Scenario 2.5 76
 Scenario 2.6 76
 Scenario 2.7 77
 Scenario 2.8 78
 Scenario 2.9 79
 Scenario 2.10 82
References 82

3 University Health Physics 87
3.1 Research Utilizing Radionuclides 87
 3.1.1 H-3 88
 3.1.2 C-14 88
 3.1.3 P-32 88
 3.1.4 Co-60 89
 3.1.5 I-125/I-131 89
 3.1.6 Cf-252 90
3.2 Engineering Considerations 90
 3.2.1 Engineering Controls 90
3.3 Sample Counting 91
3.4 Intake of Radionuclides 92
3.5 Other Research Activities 93
3.6 Agricultural/Environmental Research 93
3.7 Research Reactors 94
 3.7.1 Operational Characteristics 94
 3.7.2 Reactor Systems and Associated Radionuclide Production 96
 3.7.3 Reactor Effluents 96
 3.7.4 Gaseous Effluents 96
 3.7.5 Liquid Effluents 97
3.8 Particle Accelerators 97
3.9 Materials Research Via X-ray Diffraction Techniques 97
3.10 Fusion Energy Research 98
3.11 Overview of an Initial Fusion Power Facility 100
 3.11.1 General Radiological Characteristics 101
 3.11.2 ALARA-Confinement Methods and Fusion Process Types 102
3.12 Scenarios 103
Scenario 3.1 103
Scenario 3.2 105
Scenario 3.3 106
Scenario 3.4 108
Scenario 3.5 110
Scenario 3.6 111
Scenario 3.7 112
Scenario 3.8 113
Scenario 3.9 113
Scenario 3.10 114
Scenario 3.11 115
References 116

4 Fuel Cycle Health Physics 119
4.1 Radiation in Fuel Cycle Facilities 119
4.1.1 Occupational Exposure 120
4.2 Nuclear Fuel Cycle 121
4.3 Uranium Fuel Cycle 121
4.3.1 Open and Closed Fuel Cycles 123
4.3.2 Uranium Ore and Chemical Processing 124
4.3.3 Enrichment 125
4.3.4 Gaseous Diffusion 125
4.3.5 Gas Centrifuge 127
4.3.6 Laser Isotope Separation 128
4.3.6.1 MLIS 130
4.3.6.2 AVLIS 130
4.3.7 Spent Power Reactor Fuel 131
4.4 Thorium Fuel Cycle 131
4.5 Radioactive Waste 132
4.5.1 High-Level Wastes 133
4.6 Criticality 133
4.6.1 Tokaimura Criticality 134
4.6.2 Critical Mass 135
4.6.3 Geometry or Shape 136
4.6.4 Enrichment of the Fissile Isotope 136
4.6.5 Moderation and Reflection 136
4.6.6 Neutron Absorbers or Poison Material 137
4.6.7 Consequences of a Criticality Event 138
4.7 Dispersion of Radioactive Gas from a Continuous Source 138
4.8 Dispersion of Radioactive Particulates from a Continuous Source 140
4.9 Fuel Cycle Facilities 140
4.10 Detection of Fuel Cycle Facility Activity 142
4.11 Scenarios 143
Scenario 4.1 143
Scenario 4.2 144
5 Power Reactor Health Physics 157
5.1 Overview 157
5.2 Generation I, II, III, and IV Reactors 158
5.3 Health Physics Hazards 160
5.3.1 Buildup of Filter or Demineralizer Activity 161
5.3.2 Activation of Reactor Components 162
5.3.3 Cladding Failures 163
5.3.4 Reactor Coolant System Leakage 164
5.3.5 Hot-Particle Skin Dose 165
5.4 NCRP-130 Hot Particle Recommendations 169
5.5 Health Physics Program Elements 170
5.5.1 ALARA 170
5.5.2 Effluents 171
5.5.3 Radioactive Waste 172
5.5.4 Decontamination 172
5.6 Outages 176
5.7 Major Radiation Instrumentation Systems 176
5.7.1 Primary System Monitors 176
5.7.2 Secondary System Monitors 177
5.8 Radiological Considerations During Reactor Accidents 178
5.9 Mitigation of Accident Consequences 180
5.10 Scenarios 181
 Scenario 5.1 181
 Scenario 5.2 183
 Scenario 5.3 185
 Scenario 5.4 188
 Scenario 5.5 190
 Scenario 5.6 192
 Scenario 5.7 194
 Scenario 5.8 195
 Scenario 5.9 196
References 197

6 Environmental Health Physics 201
6.1 Naturally Occurring Radioactive Material 201
6.2 Radon 203
6.2.1 Buildup of Radon from Inleakage 206
6.2.2 Evolution of Radon from the Household Water Supply 206
6.2.3 Radon Risk Assessments 207
6.3 Environmental Monitoring Programs 207
6.4 Environmental Releases 208
6.5 Accumulation of Activity in Ponds and Surfaces 208
6.6 Pathways Associated with Open and Closed Fuel Cycles 210
6.6.1 High-Level Waste 210
6.6.2 Open Fuel Cycles 210
6.6.3 Closed Fuel Cycles 211
6.7 Regulatory Guidance for Effluent Pathways 211
6.8 Doses from Liquid Effluent Pathways 212
6.8.1 Potable Water 212
6.8.2 Aquatic Foods 213
6.8.3 Shoreline Deposits 214
6.8.4 Irrigated Foods 214
6.8.4.1 Irrigated Foods (Tritium) 214
6.8.4.2 Irrigated Foods (Radionuclides Other than Tritium) 215
6.9 Doses from Gaseous Effluent Pathways 216
6.9.1 Annual Gamma Air Dose from Noble Gas Releases from Free-Standing Stacks Higher than 80 Meters 216
6.9.2 Annual Air Dose from All Noble Gas Releases 217
6.9.2.1 Annual Gamma Air Dose from All Noble Gas Releases 217
6.9.2.2 Annual Beta Air Dose from All Noble Gas Releases 217
6.9.2.3 Annual Total Body Dose Equivalent from Noble Gas Releases from Free-Standing Stacks More than 80 Meters High 218
6.9.2.4 Annual Skin Dose from Noble Gas Releases from Free-Standing Stacks Higher than 80 Meters 218
6.10 Annual Doses from All Other Noble Gas Releases 219
6.10.1 Annual Total Body Dose Equivalent from All Other Noble Gas Releases 219
6.10.2 Annual Skin Dose from All Other Noble Gas Releases 219
6.11 Doses from Radioiodines and Other Radionuclides Released to the Atmosphere 220
6.11.1 Annual Organ Dose from External Irradiation from Radionuclides Deposited Onto the Ground Surface 220
6.11.2 Annual Organ Dose from Inhalation of Radionuclides in Air 220
6.11.3 Annual Organ Dose from Ingestion of Atmospherically Released Radionuclides in Food 221
6.12 Pathway Selection 222
6.13 Model Parameters 222
6.14 Intentional Dispersal of Radioactive Materials 222
6.15 Protection of the Environment 225
6.16 Scenarios 226
Scenario 6.1 226
Nonionizing Radiation Health Physics

8.1 Sources of Radiofrequency and Microwave Radiation
8.2 Characteristics of Electromagnetic Waves
8.3 Antennas
8.3.1 Stationary Antennas
8.3.2 Rotating Antennas
8.4 Attenuation by Biological Systems
8.5 Biological Effects
8.6 Protection Standards
8.7 Measurement of Electromagnetic Fields
8.8 Laser Radiation
8.8.1 Radiometric and Photometric Terms and Units
8.8.2 Properties of the Laser
8.9 Biological Effects from Laser Radiation
8.9.1 Eye
8.9.2 Skin
8.10 Laser Standards
8.10.1 Intrabeam Exposures
8.10.2 Nominal Ocular Hazard Distance
8.10.3 Diffuse Reflections
8.10.4 Nominal Hazard Zone
8.10.5 Skin Exposures
8.11 Free Electron Lasers
8.12 Federal Regulations and Laser Standards
8.12.1 Laser Classes
8.12.2 Laser Safety Calculations
8.12.2.1 Limiting Aperture
8.12.2.2 Exposure Time/Maximum Permissible Exposure
8.13 Controlling Laser Radiation
8.14 Personnel Protective Equipment
8.15 Spectral Effectiveness of Ultraviolet Radiation
8.16 Scenarios

Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>295</td>
</tr>
<tr>
<td>8.2</td>
<td>296</td>
</tr>
<tr>
<td>8.3</td>
<td>297</td>
</tr>
<tr>
<td>8.4</td>
<td>298</td>
</tr>
</tbody>
</table>
Contents

Scenario 1.35 364
Scenario 1.36 366
Scenario 1.37 369
Scenario 1.38 372

Solutions for Chapter 2 375
Scenario 2.1 375
Scenario 2.2 378
Scenario 2.3 381
Scenario 2.4 384
Scenario 2.5 386
Scenario 2.6 388
Scenario 2.7 389
Scenario 2.8 391
Scenario 2.9 395
Scenario 2.10 398

Solutions for Chapter 3 403
Scenario 3.1 403
Scenario 3.2 406
Scenario 3.3 408
Scenario 3.4 410
Scenario 3.5 412
Scenario 3.6 413
Scenario 3.7 417
Scenario 3.8 419
Scenario 3.9 421
Scenario 3.10 423
Scenario 3.11 425

Solutions for Chapter 4 433
Scenario 4.1 433
Scenario 4.2 435
Scenario 4.3 438
Question 4.12 439
Scenario 4.4 440
Scenario 4.5 442
Scenario 4.6 444
Scenario 4.7 445
Scenario 4.8 449
Scenario 4.9 452

Solutions for Chapter 5 455
Scenario 5.1 455
Scenario 5.2 457
Appendix II Basic Source Geometries and Attenuation Relationships 565
References 571

Appendix III Neutron-Induced Gamma Radiation Sources 573
References 576

Appendix IV Selected Topics in Internal Dosimetry 577
References 624

Appendix V Radiation Risk and Risk Models 627
References 638

Appendix VI Key Health Physics Relationships 639
References 652

Appendix VII Production Equations in Health Physics 653
References 659

Appendix VIII Mathematical Review 661
References 671

Appendix IX Selected Data on Radionuclides of Health Physics Interest 673
References 678

Subject Index 679
Part I
Basic Concepts: Theory and Problems
1
Introduction

Health physics or radiation protection is the science dealing with the protection of radiation workers and the general public from the harmful effects of radiation. Health physicists work in a variety of environments, including medical facilities, facilities utilizing nonionizing radiation, universities, accelerator complexes, power reactors, and fuel cycle facilities. The health physicist is responsible for the radiological safety aspects of facility equipment and services. Radiological assessments of plant equipment, facility modifications, design changes, employee exposures, or the assessment of radiological effluents are key functions of a health physicist.

The fundamental tools of the health physicist include the fields of mechanics, electricity and magnetism, energy transfer, quantum mechanics. Atomic and nuclear structure, radioactive transformations, and the interaction of radiation with matter are the cornerstones of health physics knowledge. Application of these fundamental tools permits the health physicist to measure, quantify, and control radiation exposures to affected groups.

Introductory health physics texts typically cover these topics in several hundred pages. Because the scope of this text builds upon these fundamental concepts, we will not repeat them herein. The reader is referred to the texts listed as references to this chapter for a discussion of health physics fundamentals. We will, however, provide several appendices that illustrate selected fundamental concepts. Also included is an extensive set of scenarios, including over 160 worked examples, that illustrate the fundamental concepts and permit the reader to assess his or her knowledge of these concepts. Because the fundamentals are needed to fully understand the remaining chapters in this text, a review of the scenarios in this chapter is recommended.
1 Introduction

1.1 Scenarios

Scenario 1.1

One of your neighbors, while digging up his back yard to build a pool, has discovered some old planks. Another neighbor, who has been investigating the possibility of the existence of a Viking settlement in the area, believes that the planks may be significant. He wishes to conduct an archeological expedition prior to any further construction. You offer to carbon date the wood to help settle the argument.

1.1 Carbon dating is possible because:

a. The specific activity of carbon-14 in living organisms has changed over time, and one can identify the era of time the organism lived based on its current specific activity.

b. Carbon-14 is in secular equilibrium with its daughter.

c. The specific activity of carbon-14 in living organisms is relatively constant through time, but decays after the death of the organism.

d. The specific activity of carbon-14 in wood increases over time due to shrinkage of the wood.

1.2 Calculate the approximate age of the wood given the following:

\[
\text{C-14 } T_{1/2} = 5715 \text{ years}
\]

Specific activity for C-14 in a nearby living tree = \(1.67 \times 10^{-1} \text{ Bq/g}\)

Specific activity for C-14 in the old wooden plank = \(1.50 \times 10^{-1} \text{ Bq/g}\)

Scenario 1.2

A nearby hospital has received a shipment of a Mo-99 generator. The shipment contained 1000 mCi of Mo-99 when manufactured. It arrived at the hospital 48 h after its production. The decay scheme is illustrated in Figure 1.1.

![Figure 1.1 Decay scheme for Mo-99.](image-url)