Antiparasitic and Antibacterial Drug Discovery

From Molecular Targets to Drug Candidates

Edited by
Paul M. Selzer
Antiparasitic and Antibacterial Drug Discovery

Edited by
Paul M. Selzer
Book Series

Drug Discovery in Infectious Diseases

Forthcoming Topics:
- Viruses
- Helminths
- Apicomplexa

Related Titles

Chorghade, M. S. (ed.)

Drug Discovery and Development

2 Volume Set
2008

Jungblut, P. R., Hecker, M. (eds.)

Proteomics of Microbial Pathogens

2007
ISBN: 978-3-527-31759-2

zur Hausen, H.

Infections Causing Human Cancer

2006
ISBN: 978-3-527-31056-2

Deretic, V. (ed.)

Autophagy in Immunity and Infection: A Novel Immune Effector

2006
ISBN: 978-3-527-31450-8

Frosch, M., Maiden, M. C. J. (eds.)

Handbook of Meningococcal Disease: Infection Biology, Vaccination, Clinical Management

2006
ISBN: 978-3-527-31260-3
Antiparasitic and Antibacterial Drug Discovery

From Molecular Targets to Drug Candidates

Edited by
Paul M. Selzer
Cover
Light microscopic image of the helminth *Schistosoma mansoni*—with a male hosting a female in the *canalis gynaecophorus*: courtesy of Dr. Conor R. Caffrey, University of California San Francisco, USA.

Scanning electron microscopic image of the gram-negative bacteria *Mannheimia haemolytica*: courtesy of Prof. Dr. Lothar H. Wieler, Freie Universität Berlin, Dr. Heike Kaspar, and Dr. Christoph Schaudinn, Robert Koch Institut Berlin, Germany. The chemical structure is taken from chapter 19 authored by Thorsten Meyer *et al.*, figure 19.9.

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek
Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form — by photoprinting, microfilm, or any other means — nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Typesetting Thomson Digital, Noida, India
Printing Strauss GmbH, Mörlenbach
Binding Litges & Dopf GmbH, Heppenheim
Cover Design Adam-Design, Weinheim

Printed in the Federal Republic of Germany
Printed on acid-free paper

ISBN: 978-3-527-32327-2
Foreword

It is ironic that three decades ago infectious diseases were viewed as a problem of the past. Malaria and tuberculosis were going to be eradicated, effective vaccines were available for major childhood infections, and an armamentarium of antibiotics was available for common community and hospital-acquired infections. Young physicians were advised not to enter infectious disease specialties because they were becoming irrelevant. The AIDS epidemic was the first wakeup call that infectious diseases would again become a major global health problem. Drug-resistant malaria and tuberculosis are now almost ubiquitous and new and emerging infectious diseases are almost a weekly staple of the popular press. Indeed the need for new drugs for infectious diseases has never been greater. Global industry and global travel means that formerly exotic diseases can rapidly establish themselves at any port of entry. Effective vaccines against the most prevalent infectious diseases like AIDS and malaria have proven difficult to develop. Multidrug-resistant organisms are an issue in any clinical setting. This publication provides a window on new approaches to drug discovery and development targeting infectious diseases. Fortunately, technology and training in new methodologies of drug discovery have expanded rapidly in the past 10 years. The challenge is how to effectively apply this technology to the thorny problems of global infections and to maintain a drug development pipeline for infectious diseases in light of the immense cost now associated with bringing new drugs to market.

San Francisco, USA
November 2008

James H. McKerrow
Contents

Foreword V
Preface XI
List of Contributors XIII

Part One Drug Discovery Approaches 1

1 Target Identification and Mechanism-Based Screening for Anthelmintics: Application of Veterinary Antiparasitic Research Programs to Search for New Antiparasitic Drugs for Human Indications 3
Timothy G. Geary, Debra J. Woods, Tracey Williams, and Solomon Nwaka

2 Anthelmintic Resistance as a Guide to the Discovery of New Drugs? 17
Georg v. Samson-Himmelstjerna, Roger K. Prichard, and Adrian J. Wolstenholme

3 Drug Discovery for Neglected Diseases: View of A Public–Private Partnership 33
Rob Don and Eric Chatelain

4 Bioinformatics and Chemoinformatics: Key Technologies in the Drug Discovery Process 45
Andreas Krasky, Andreas Rohwer, Richard J. Marhöfer, and Paul M. Selzer

5 Target Identification and Validation in Antiparasitic Drug Discovery 59
Christian Wolf and *Nikolas Gunkel*

6 Selective Drug Targets in Parasites 75
Peter Köhler and *Richard J. Marhöfer*
Contents

7 Lessons Learned from Target-Based Lead Discovery 99
 Michael Gassel, Jörg Cramer, Christopher Kern, Sandra Noack,
 and Wolfgang Streber

8 Approaches Towards Antiparasitic Drug Candidates for
 Veterinary Use 117
 Christophe Chassaing* and Harald Sekljic

9 Learning to Relate Structural Space to Property Space 135
 Michael Berger, Jörg Cramer, Michael Hinz, Christina Mertens,
 Christian Miculka*, Trevor Newton, Jörg Schröder, and Harald Sekljic

10 Recruiting the Host Defense Mechanisms: Roles for Vaccines
 and Chemotherapeutics 159
 Theo P.M. Schetters*

Part Two Protozoan Parasites 175

11 Proteases of Parasitic Protozoa – Current Status and Validation 177
 Mohammed Sajid*, Michael J. Blackman, Patricia Doyle, Chen He,
 Kirkwood M. Land, Cheryl Lobo, Zachary Mackey, Momar Ndao,
 Sharon L. Reed, Brian Shiels, Ryan Swenerton, and William Weir

12 In Search of Trypanocidal Drugs 211
 Leopold Flohé*

13 Trypanosomatid Protein Kinases As Potential Drug Targets 227
 Martin Wiese, Andrew Morris, and Karen M. Grant*

14 Targeting the Malaria Kinome: Discovering Kinase Inhibitors
 as Novel Antimalarial Agents 249
 Dayadevi Jirage, Susan M. Keenan, and Norman C. Waters*

15 Malaria and Antimalarials – a Focused View 277
 Frank Seeber*

Part Three Multicellular Parasites 299

16 Chemotherapeutic Development Strategies for Schistosomiasis 301
 Conor R. Caffrey*, David L. Williams, Matthew H. Todd, David L. Nelson,
 Jennifer Keiser, and Jürg Utzinger
17 Searching New Antiparasitics in Virtual Space 323
Frank Oellien, Kristin Engels, Jörg Cramer, Richard J. Marhöfer, Christopher Kern, and Paul M. Selzer

18 Cyclooctadepsipeptides – an Anthelmintically Active Class of Compounds Exhibiting a Novel Mode of Action 339
Achim Harder*, Kathryn Bull, Marcus Guest, Lindy Holden-Dye, and Robert Walker

19 Chemical Optimization of Anthelmintic Compounds – A Case Study 357
Thorsten Meyer*, Jörg Schröder, Manfred Uphoff, Sandra Noack, Anja R. Heckeroth, Michael Gassel, Petra Rohrwild, and Thomas Ilg

Part Four Bacteria 373

20 Pathogenomics: Identification of Novel Drug Targets and Vaccine Candidates in Bacteria 375
Knut Ohlsen*, Martin Eckart, Ulrich Dobrindt, Heike Bruhn, and Jörg Hacker

21 Tuberculosis Drug Discovery: Issues, Gaps and the Way Forward 415
Véronique Dartois*, Franz Joel Leong, and Thomas Dick

22 Decreasing the Number of Gaps in the Draft Assembly of the Mannheimia haemolytica M7/2 Genome Sequence 441
Hon Q. Tran, Mathias Beig, Volker Spehr, Andreas Rohwer, Gottfried Unden, and Paul M. Selzer

23 Total Synthesis and Configurational Assignment of Pasteurestin A and B, a Natural Product with Antimicrobial Activity on Pasteurellaceae 453
Marion Kögl, Lothar Brecker, Ralf Warrass, and Johann Mulzer

Index 473
Preface

In the age of antibiotics, vaccines, and drugs, we might be lulled into a sense of complacency regarding infectious diseases and that there is “a cure for everything”. This sense of security is maintained at our peril, however. One has only to consider the growing devastation caused by such big-name diseases as influenza, HIV-AIDS, tuberculosis, and malaria to see that the struggle to treat and control infectious diseases is truly titanic and indeed becoming more perilous with the ever-evolving development and spread of drug resistance compounded by the greater freedom and speed of movement of goods, animals, and people. Aside from the recently perceived security threat to the health and business structures of the developed world caused by these and a plethora of other infectious disease, billions living in developing countries must endure the daily struggle of diseases. In contrast to most human health-related pharmaceutical companies, academic institutions, veterinary science, and animal health companies remain very much focused on infectious diseases, including those caused by bacteria and parasites. As illustrated in Figure 1, the animal health sector remains profitable, and thankfully so, as history has shown that therapies produced in this sector often prove invaluable for treatment of similar infectious diseases of humans – the application of anthelmintics being a case in point.

The improved understanding of the resilience of disease-causing agents to therapies, their expanding disease menace in the era of “globalization,” and the balance provided by the opportunities for cross-sector exchange of ideas and applications spurred the preparation of this book. Also, the book serves to highlight the importance and visibility of drug discovery efforts for infectious diseases of both animals and humans.

Though it is not possible to address every aspect, disease, or approach within a single volume, this book sets forth a series of case studies and review articles that focus on bacterial and parasitic diseases in order to showcase how scientists in the different disciplines strive to move drug discovery forward. The contributing authors are experts drawn from drug discovery units of the pharmaceutical industry, academia, and nonprofit organizations in an effort to offer a global and balanced insight into the issues and problems at stake and their possible solutions.

Writing this has been a rewarding task for everybody involved. My heartfelt thanks go to the contributing authors for their excellent work performed within a short timeframe. In addition, I am grateful to Intervet/Schering-Plough Animal Health and its Drug Discovery Unit for their unreserved support, inspiration, and motivation.
Figure 1 The world animal health market based on data from 2006. The first row depicts the proportion of antiparasitics and antiinfectives in the whole animal health market. Rows two and three represent the antiparasitics and antiinfectives market, respectively. From left to right the individual proportions are broken down according to regional sales (ROW = rest of world), sales per animal species, and sales per chemical class. The area of the individual pie charts is not size-adjusted. Original data were derived by Wood Mackenzie and kindly provided by Linda Franken-Horspool, International Marketing, Intervet/Schering-Plough Animal Health.

during the preparation of this book. I also thank the members of Intervet’s BioChemInformatics Unit for their excellent technical backing and team spirit. Finally, I am very grateful to Ms Simone Maus-Gilbert for her outstanding editorial assistance.

Schwabenheim, Germany

Paul M. Selzer

November 2008
List of Contributors

Mathias Beig
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Michael Berger
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Michael J. Blackman
Division of Parasitology
National Institute for Medical Research
The Ridgeway
Mill Hill
London
NW7 1AA
UK

Lothar Brecker
Institut für Organische Chemie der
Universität Wien
Währinger Strasse 38
1090 Wien
Austria

Heike Bruhn
University of Würzburg
Institute for Molecular Infection Biology
Röntgenring 11
97070 Würzburg
Germany

Kathryn Bull
School of Biological Sciences
University of Southampton
Bassett Crescent East
Southampton
SO16 7PX
UK

Conor R. Caffrey*
Department of Pathology and
the Sandler Center for Basic Research
in Parasitic Diseases
Byers Hall
University of California San Francisco
CA 94158
USA
caffrey@cgl.ucsf.edu

Christophe Chassaing*
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany
christophe.chassaing@sp.intervet.com

* Corresponding author
List of Contributors

Eric Chatelain
Drugs for Neglected Diseases Initiative (DNDi)
15 Chemin Louis-Dunant
1202 Geneva
Switzerland

Jörg Cramer
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Véronique Dartois
Novartis Institute for Tropical Diseases
10 Biopolis Road
05-01 Chromos
Singapore 138670
Singapore
veronique.dartois@novartis.com

Thomas Dick
Novartis Institute for Tropical Diseases
10 Biopolis Road
05-01 Chromos
Singapore 138670
Singapore

Ulrich Dobrindt
University of Würzburg
Institute for Molecular Infection Biology
Röntgenring 11
97070 Würzburg
Germany

Rob Don
Drugs for Neglected Diseases Initiative (DNDi)
15 Chemin Louis-Dunant
1202 Geneva
Switzerland
rdon@dndi.org

Patricia Doyle
Department of Pathology and the Sandler Center for Basic Research in Parasitic Diseases
University of California San Francisco
CA 94158
USA

Martin Eckart
University of Würzburg
Institute for Molecular Infection Biology
Röntgenring 11
97070 Würzburg
Germany

Kristin Engels
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Leopold Flohé
Molisa GmbH
Brennekestraße 20
39118 Magdeburg
Germany
l.flohe@t-online.de

Michael Gassel
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Timothy G. Geary
Institute of Parasitology
McGill University
21111 Lakeshore Road
Ste-Anne-de-Bellevue
QC Canada H9X 3V9
Canada
timothy.g.geary@mcgill.ca
Karen M. Grant
School of Health & Medicine
Division of Medicine
Faraday Building, Lancaster University
Lancaster
LA1 4YB
UK
k.grant1@lancaster.ac.uk

Marcus Guest
School of Biological Sciences
University of Southampton
Bassett Crescent East
Southampton
SO16 7PX
UK

Nikolas Gunkel
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany
nikolas.gunkel@sp.intervet.com

Jörg Hacker
Robert-Koch-Institute
Nordufer 20
13353 Berlin
Germany

Achim Harder
Bayer HealthCare AG
Animal Health GmbH
CRD-Parasiticides
Alfred-Nobel-Strasse 50
40789 Monheim
Germany
achim.harder@bayerhealthcare.com

Chen He
UCSD Medical Center
200 West Arbor Drive
San Diego
CA 92103-8416
USA

Anja R. Heckeroth
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Michael Hinz
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Lindy Holden-Dye
School of Biological Sciences
University of Southampton
Bassett Crescent East
Southampton
SO16 7PX
UK

Thomas Ilg
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Dayadevi Jirage
Division of Experimental Therapeutics
Walter Reed Army Institute of Research
503 Robert Grant Avenue
Silver Spring
MD 20910
USA

Susan M. Keenan
School of Biological Sciences
University of Northern Colorado
501 20th Street
Greeley
CO 80501
USA
Jennifer Keiser
Department of Medical Parasitology and Infection Biology
Swiss Tropical Institute
P.O. Box
4002 Basel
Switzerland

Christopher Kern
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Marion Kögl (passed away)
Institut für Organische Chemie der Universität Wien
Währinger Strasse 38
1090 Wien
Austria

Peter Köhler*
University of Zürich
Institute of Parasitology
Switzerland
peterkoehler@access.uzh.ch

and

Niederdorf 833
8132 Hinteregg
Switzerland

Andreas Krasky
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Franz Joel Leong
Novartis Institute for Tropical Diseases
10 Biopolis Road
05-01 Chromos
Singapore 138670
Singapore

Kirkwood M. Land
Department of Biological Sciences
University of the Pacific
Stockton
CA 95211
USA

Cheryl Lobo
Lab of Blood-Borne Parasites
The Lindsley Kimball Research Institute
New York Blood Center
310 East 67th Street
New York
NY 10021
USA

Zachary Mackey
Department of Pathology and the Sandler Center for Basic Research in Parasitic Diseases
Byers Hall
University of California San Francisco
CA 94158
USA

Richard J. Marhöfer
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

James H. McKerrow*
Department of Pathology and the Sandler Center for Basic Research in Parasitic Diseases
Byers Hall
University of California San Francisco
CA 94158
USA
jmck@cgl.ucsf.edu
Christina Mertens
Intervet International BV
Wim de Körverstraat 35
5830 AA Boxmeer
The Netherlands

Thorsten Meyer*
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany
thorsten.meyer@sp.intervet.com

Christian Miculka*
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Present address:
Merial Inc.
3239 Satellite Blvd.
Duluth, GA 30096
USA
christian.miculka@merial.com

Andrew Morris
Institute for Science and Technology in Medicine
Huxley Building
Keele University
Keele, Newcastle-under-Lyme
STS 5BG
UK

Johann Mulzer*
Institut für Organische Chemie der Universität Wien
Währinger Strasse 38
1090 Wien
Austria
johann.mulzer@univie.ac.at

Momar Ndao
National Reference Centre for Parasitology
Department of Medicine
Division of Infectious Diseases
Research Institute of the McGill University Health Centre
Montreal General, Hospital/Research Institute R3-13
1625 Pine Ave West
Montreal H3G 1A4
Quebec Canada

David L. Nelson
Departamento de Alimentos
Faculdade de Farmácia
Universidade Federal de Minas Gerais
31270-901 Belo Horizonte
Minas Gerais
Brazil

Trevor Newton
BASF SE
GVA/HC – B009
67056 Ludwigshafen
Germany

Sandra Noack
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Solomon Nwaka
Special Programme for Research and Training in Tropical Diseases (TDR)
World Health Organization
20 Avenue Appia
1211 Geneva 27
Switzerland
List of Contributors

Frank Oellien
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Knut Ohlsen
University of Würzburg
Institute for Molecular Infection Biology
Röntgenring 11
97070 Würzburg
Germany
knut.ohlsen@mail.uni-wuerzburg.de

Roger K. Prichard
Institute of Parasitology
McGill University
21111 Lakeshore Road
Sainte Anne-de-Bellevue
H9X 3V9
Quebec
Canada

Sharon L. Reed
UCSD Medical Center
200 West Arbor Drive
San Diego
CA 92103-8416
USA

Petra Rohrwild
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Andreas Rohwer
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Georg von Samson-Himmelstjerna
Institute for Parasitology
University of Veterinary Medicine
Buenteweg 17
30559 Hannover
Germany
gvsamson@tiho-hannover.de

Mohammed Sajid
Department of Pathology and
the Sandler Center for Basic Research
in Parasitic Diseases
University of California San Francisco
CA 94158
USA
sajid@ucsf.edu

and

Leiden University Medical Centre
Leiden Malaria Research Group, afd.
Parasitologie
Albinusdreef 2
Kamer P4-35
2333 ZA Leiden
Netherlands
m.sajid@lumc.nl

Jörg Schröder
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Theo P.M. Schetters
Intervet/Schering-Plough Animal Health
Körverstraat 35
5830 AA Boxmeer
The Netherlands
theo.schetters@sp.intervet.com
Frank Seeber
Molecular Parasitology
Institute for Biology
Humboldt University
Philippstraße 13
10115 Berlin
Germany
seeber@staff.hu-berlin.de

Harald Sekljic
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Paul M. Selzer
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany
paul.selzer@sp.intervet.com

Brian Shiels
Institute of Comparative Medicine
Vet School
University of Glasgow
Bearsden Road
Glasgow
G61 1QH
UK

Volker Spehr
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Wolfgang Streber
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany
wolfgang.streber@sp.intervet.com

Ryan Swenerton
Department of Pathology and
the Sandler Center for Basic Research
in Parasitic Diseases
University of California San Francisco
CA 94158
USA

Matthew H. Todd
School of Chemistry
University of Sydney
NSW 2006
Australia

Hon Q. Tran
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Robert Walker
School of Biological Sciences
University of Southampton
Bassett Crescent East
Southampton
SO16 7PX
UK

Ralf Warrass
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Norman C. Waters
Division of Experimental Therapeutics
Walter Reed Army Institute of Research
503 Robert Grant Avenue
Silver Spring
MD 20910
USA
norman.waters@us.army.mil

and
List of Contributors

Australian Army Malaria Institute
WRAIR laboratory
Gallipoli Barracks
Weary Dunlop Drive
Enoggera
QLD 4051
Australia

William Weir
Institute of Comparative Medicine
Vet School
University of Glasgow
Bearsden Road
Glasgow
G61 1QH
UK

Martin Wiese
Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS)
John Arbuthnott Building
27 Taylor Street
Glasgow
G4 0NR
UK

David L. Williams
Department of Biological Sciences
Illinois State University
Normal
IL 61790
USA

Tracey Williams
Pfizer Animal Health
7000 Portage Road
Kalamazoo
MI 49001
USA

Christian Wolf
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Adrian J. Wolstenholme
Department of Biology and Biochemistry
University of Bath
Claverton Down
Bath
BA2 7AY
UK

and

Debra J. Woods
Pfizer Animal Health
7000 Portage Road
Kalamazoo
MI 49001
USA

Manfred Uphoff
Intervet Innovation GmbH
Zur Propstei
55270 Schwabenheim
Germany

Gottfried Unden
Institut für Mikrobiologie und Weinforschung
University of Mainz
Becherweg 15
55128 Mainz
Germany

Jürg Utzinger
Department of Public Health and Epidemiology
Swiss Tropical Institute
P.O. Box 4002 Basel
Switzerland
Part One
Drug Discovery Approaches
Target Identification and Mechanism-Based Screening for Anthelmintics: Application of Veterinary Antiparasitic Research Programs to Search for New Antiparasitic Drugs for Human Indications

Timothy G. Geary, Debra J. Woods, Tracey Williams, and Solomon Nwaka

Abstract

Anthelmintic discovery in the veterinary pharmaceutical industry has succeeded only through screening synthetic compounds and fermentation products against whole parasites in culture or in host animals. Following trends in the parent, and much larger, human pharmaceutical industry, many programs have been developed in the past 20 years to exploit mechanism-based screening strategies for the identification of new leads in this therapeutic area. This strategy relies on the robust identification of parasite proteins as targets for chemotherapeutic intervention and their subsequent validation. Expanding access to sequenced genomes of parasitic nematodes will facilitate identification of genes that encode putative drug targets. Of particular relevance will be those that are shared among nematodes of veterinary and human importance. These targets offer the best chance for finding new molecules with potential utility in both arenas and provide an opportunity for collaboration and synergy between the two sectors. Validation of these gene products as drug targets will require advances in functional genomics methods for parasites. Expanded capacities for parasite-based physiological and biochemical experiments are also likely to be needed. While mechanism-based approaches remain an attractive alternative to organism-based strategies for broad-spectrum anthelmintic discovery, proof-of-concept for the platform is still needed.

Introduction

Screening for antiparasitic drugs as a scientific exercise can be traced to the early work of Ehrlich, who screened a collection of synthetic dyes for trypanocidal activity in mice with the aim of allowing the importation of European horses and
cattle into the African colonies of Germany prior to 1900 (see Refs. [1, 2]). This was perhaps the first example of a screen of a collection of chemicals for any therapeutic indication; Ehrlich’s efforts at drug discovery seem to have begun with a veterinary parasite as target, but led to the introduction of the first anti-infective drugs for use in humans. Thus, the process by which drugs introduced into veterinary practice for parasite control were adopted for use in humans has a long history.

The motivation to discover “modern” antiparasitic drugs for the animal health industry can be traced to the introduction of sulfaquinoxaline for the prevention of mortality and morbidity due to poultry coccidiosis in the late 1940s, phenothiazine (1930s) and piperazine (1950s) as veterinary anthelmintics, and the chlorinated hydrocarbons and organophosphates as ectoparasiticides in the 1940s and 1950s. Diethylcarbamazine was discovered as an agent for use in human filariasis within the same time-frame, being developed for veterinary practice for heartworm prevention some time later. It is important to note that all these drugs were first used in humans – not necessarily for parasites – prior to being adopted for veterinary use. Their utility for controlling parasites in animals paved the way for the institution of systematic screening of chemical collections for new synthetic antiparasitic drugs for veterinary application. Their use in clinical settings proved that chemotherapeutic control of parasites which plagued livestock and poultry was economically rewarding for the manufacturer, the veterinarian, and the farmer.

The general flow of antiparasitic drugs from human to veterinary application (Table 1.1) reversed over time. For anthelmintics, the reversal began with the discovery of thiabendazole for veterinary medicine in the 1960s (Table 1.2), which was later introduced for treatment of various gastrointestinal (GI) nematodes in humans. This pattern was repeated for the nicotinic cholinergic agonists (pyrantel, levamisole), the second generation benzimidazoles, particularly albendazole and mebendazole, and ivermectin (and, potentially, related macrocyclic lactones). In contrast, antiprotozoal drugs have not moved as easily between the sectors (Table 1.2) or continue to flow in the opposite direction, a situation that primarily reflects the

<table>
<thead>
<tr>
<th>Drug</th>
<th>Human use</th>
<th>Veterinary use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diethylcarbamazine</td>
<td>Filarisis</td>
<td>Heartworm prophylaxis</td>
</tr>
<tr>
<td>Arsenicals</td>
<td>Trypanosomiasis, onchocerciasis</td>
<td>Heartworm therapy</td>
</tr>
<tr>
<td>Piperazine</td>
<td>Gout (discontinued)</td>
<td>GI nematodes</td>
</tr>
<tr>
<td>Phenothiazine</td>
<td>Malaria/mosquito control</td>
<td>GI nematodes</td>
</tr>
<tr>
<td>Sulfa antibiotics</td>
<td>Bacteria</td>
<td>Poultry coccidiosis</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>Anaerobic microbes</td>
<td>Giardiasis</td>
</tr>
<tr>
<td>Buparvoquone</td>
<td>Malaria</td>
<td>Theileriosis</td>
</tr>
<tr>
<td>Halofuginone</td>
<td>Malaria</td>
<td>Poultry coccidiosis</td>
</tr>
</tbody>
</table>
differences in the major species of protozoal pathogens of animals compared to humans (see below).

Potential for Veterinary → Human Transfer of new Antiparasitic Drugs

Like most of the pharmaceutical industry, animal health companies underwent a considerable reduction in abundance over the past 20 years from mergers and acquisitions [3, 4]. This led to a net reduction in investment in antiparasitic drug discovery, with a consequent focus of efforts on the most profitable sectors of the animal health market [5]. As a result, priorities for veterinary parasite control now diverge more extensively from those of human medicine. A summary of current emphasis on types of parasites targeted for drug discovery for human versus veterinary applications is shown in Box 1.1. It is worth noting in this context that there may be a

<table>
<thead>
<tr>
<th>Drug</th>
<th>Veterinary indication</th>
<th>Human indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzimidazoles</td>
<td>Anthelmintic/antiprotozoal</td>
<td>Nematodes, protozoa</td>
</tr>
<tr>
<td>Pyrantel/levamisole</td>
<td>GI Nematodes, Lungworms</td>
<td>Nematodes</td>
</tr>
<tr>
<td>Praziquantel</td>
<td>Cestodes</td>
<td>Schistosomiasis</td>
</tr>
<tr>
<td>Ivermectin</td>
<td>Heartworm prophylaxis</td>
<td>Filarias</td>
</tr>
<tr>
<td>Nitazoxanide</td>
<td>Sarcocystis in horses</td>
<td>Protozoa, nematodes</td>
</tr>
<tr>
<td>Moxidectin</td>
<td>Nematodes, ectoparasites</td>
<td>Onchocerciasis (in development)</td>
</tr>
<tr>
<td>Emodepside</td>
<td>Nematodes</td>
<td>Onchocerciasis (investigation)</td>
</tr>
</tbody>
</table>

Box 1.1: Areas of synergism/overlap based on current trends in discovery investment

Apicomplexan protozoa:	human ↑, veterinary ↓
Kinetoplastids:	human ↑, veterinary ↓
Giardia/ameba/Cryptosporidium:	human ↓, veterinary ↓
Trematodes:	human ↔, veterinary ↔
Filarial nematodes:	human ↑, veterinary ↔
GI nematodes:	human ↓, veterinary ↑

This box illustrates the potential for flow of compounds in each direction as discovery efforts continue.

↑: relatively high interest and activity in discovering new drugs.
↔: modest interest/activity.
↓: minimal or declining interest/activity.
resumption of drug transfer for parasites from the human to the veterinary side in the future. This situation may benefit both areas, as described below.

Protozoan Parasites

A renaissance has occurred in the attention of public and private funders to the discovery of new drugs for protozoal parasites that infect humans. The primary targets for chemotherapy include the Apicomplexan malaria parasites (Plasmodium spp.), kinetoplastids such as Leishmania spp., Trypanosoma brucei and T. cruzi, Entamoeba histolytica, Giardia lamblia, Toxoplasma gondii, Trichomonas vaginalis, and Cryptosporidium parvum. Based on prevalence and pathogenicity, these drug discovery efforts are considerably weighted to malaria and the kinetoplastids [6–12]. In contrast, the primary protozoal target for veterinary medicine is a distinct group of Apicomplexans, the Eimeria spp. of poultry, with additional interest in phylogenetically related parasites (Neospora caninum, Sarcocystis neurona) and in Giardia spp. and Cryptosporidium spp. [3]. However, dedicated antiprotozoal discovery programs are no longer common in the animal health pharmaceutical industry (vaccine discovery is more prevalent at this time), and so future drugs for these infections will likely flow from human to veterinary use. Current work in this area on the human side is heavily focused on mechanism-based, as opposed to whole-organism, high-throughout screening. The extent of target overlap is likely to be reasonably good across the human/veterinary species divide, though target choice in the human-focused projects does not routinely include an assessment of relevance for parasite species of strictly veterinary importance. Inclusion of this factor as a criterion for prioritization could provide a for-profit component that would appeal to potential animal health partners, with benefits similar to those anticipated in the anthelmintic arena (see below).

Ectoparasites

Indications for the use of ectoparasiticides in human medicine are far fewer than for veterinary clientele, which in turn is a much smaller market than agricultural applications. The flow of these compounds has typically been from agriculture to animal health to human applications, with the exception of DDT, which was first developed for use in humans. The use of ivermectin for the treatment of head lice and scabies is an example of an ectoparasiticide developed for animals being adopted for humans. However, the current economic driving force for this arena is so small that discovery programs in animal health sectors typically do not include a component that addresses possible human uses. From the human medical perspective, the temporally limited (as opposed to chronic) use of these products and the relatively low number of infestations in the West make the cost–benefit analysis in terms of registration unrewarding. This situation may change if head lice and scabies develop more extreme resistance to available ectoparasiticides, including ivermectin.
Trematodes

These considerations suggest that the primary influence of animal health drug discovery research on human medicine will continue to be in the anthelmintic arena. More specifically, this will be largely restricted to drugs that primarily affect nematodes. The only flatworm of economic significance in veterinary medicine is the liver fluke, *Fasciola hepatica*. This parasite is important in some areas, but is not enough of a production problem in livestock to warrant dedicated screening in most animal health companies, even though resistance is emerging to the best available drug, triclabendazole (which is not even registered in the USA). Although *F. hepatica* is a significant human pathogen in some regions, it has not proven to be sufficiently prevalent to elicit a dedicated discovery effort for it. Instead, work on flatworms in the human sector focuses on *Schistosoma* spp., currently controlled by a single drug (praziquantel). In the absence of rigorously documented cases of praziquantel resistant schistosomes, investment in new antischistosomal drug discovery has been somewhat limited compared to the efforts mounted against protozoa. This situation may be changing in light of the Helminth Drug Initiative recently developed by WHO/TDR [13], which aims to reinforce and advance screening for new antischistosomal drugs. As for protozoan parasites, this effort may discover compounds that can be adopted for use against liver flukes in veterinary medicine.

Nematodes

Further analysis of the impact of veterinary antiparasitic drug discovery programs will be restricted to nematocides. Historically, the discovery of nematocides for use in animals or humans was based on low-throughput systems that employed infected animals as the primary screen. These assays were labor-intensive, slow to attain the final read-out and used relatively large amounts of experimental compounds. Even so, it remains true that at least the prototype of every available anthelmintic class, including emodepside, the paraherquamides, and the newest class, the AADs, was discovered by screening in infected animals or worms in culture. Nonetheless, there has been a marked shift of strategy in the animal health industry to emphasize discovery programs based on targets, or high-throughput, mechanism-based screening [14].

The initial change from screening in infected animals to tests run on organisms in culture was motivated primarily by the need for animal health operations to fit into the evolving discovery paradigms adopted by their parent companies. This meant a marked reduction in the amount of chemicals used in a screen (to adapt to new parameters for compound synthesis in medicinal chemistry programs) as well as a reduction in animal use and in labor costs associated with screening. In addition, there were concerns that in *vivo* screens might fail to detect truly interesting actives that are false negatives due to insufficient potency or pharmaceutical inadequacy.
Unfortunately, screening against parasites or the free-living species Caenorhabditis elegans in culture, while vastly increasing throughput and radically diminishing the amount of compound needed for primary screening, was not very successful in revealing new anthelmintic templates. Indeed, these procedures led to a very high rate of false positives, as many compounds were noted to kill nematodes in culture, but very few (almost none) were subsequently found to be active in infected animal models. As resources were typically insufficient to permit experiments designed to determine why in vitro actives routinely failed in vivo, improvements in the screening stream designed to reduce the incidence of false positives were not possible. A new approach was clearly needed, and it was incompatible with standard industry practices to return to the era of screening in infected animals. In keeping with drug discovery for human medicine, mechanism-based approaches came into vogue [14].

The drive to move from organism to target-based screens was based on several factors. One factor was the motivation to capitalize on biology-based intellectual property (IP); screens using infected animals or organisms in culture barred few competitors from an area and can only exploit chemistry-based IP. Mechanism-based screens can restrict the discovery activities of competitors by taking advantage of investments made in understanding the physiology and molecular pathology of diseases and infectious pathogens that dominate Western human medicine. In addition, advances in chemical technology, such as combinatorial chemistry, made it possible to synthesize thousands of molecules at a time in small amounts; organism-based screens were ill-equipped to test either the number or the small amount of available compounds. Advances in computational chemistry and structure-based drug design meant that the traditional whole-organism blind-screen approaches became seen as intellectually unchallenging and out of step with the times. Finally, whole-organism approaches are labor-intensive compared to mechanism-based strategies; the incorporation of mechanism-based screening allowed a relatively small team of screeners to evaluate hundreds of thousands of compounds against multiple targets in a matter of weeks. The combination of vastly increased throughput with lowered labor costs made this an irresistible strategy, validated by expert scientific opinion. To date, however, it is undeniably true that the adoption of this overall strategy has not led to an increase in the number of new chemical entities registered for use in humans. For our topic, it is crucial to stress again that at least the prototype of all commercially available anthelmintics was discovered in whole-organism assays, despite at least two decades using the more modern approaches to discovery. What does this bode for the switch to more modern screening platforms? We can use the neuropeptide area as an example (see page 12).

Discovery Synergies

Discovery programs in animal health companies can contribute to the discovery and development of drugs for use in humans in several ways. The most obvious is the