High Performance Pigments

Second, Completely Revised and Extended Edition

Edited by
Edwin B. Faulkner and Russell J. Schwartz
High Performance Pigments

Edited by
Edwin B. Faulkner and
Russell J. Schwartz
Related Titles

Freitag, W. (ed.)

Paints, Coatings and Solvents
3rd Edition
2009
ISBN: 978-3-527-31690-8

Ghosh, S. K. (ed.)

Functional Coatings by Polymer Microencapsulation
2006
ISBN: 978-3-527-31296-2

Hunger, K. (ed.)

Industrial Dyes
Chemistry, Properties, Applications
2009
ISBN: 978-3-527-31401-0

Buxbaum, G., Pfaff, G. (eds.)

Industrial Inorganic Pigments
2005
ISBN: 978-3-527-30363-2

Pfaff, G. (ed.)

Encyclopedia of Applied Color
2008
ISBN: 978-3-527-31551-2

Herbst, W., Hunger, K.

Industrial Organic Pigments
Production, Properties, Applications
2004
ISBN: 978-3-527-30576-6

Streitberger, H.-J., D-ssel, K.-F. (eds.)

Automotive Paints and Coatings
2008
ISBN: 978-3-527-30971-9
High Performance Pigments

Second, Completely Revised and Extended Edition

Edited by

Edwin B. Faulkner and Russell J. Schwartz
The Editors

Edwin B. Faulkner
Sun Chemical Corporation
Performance Pigments
5020 Spring Grove Avenue
Cincinnati, OH 45232
USA

Russell J. Schwartz
Sun Chemical Corporation
Colors Technology
5020 Spring Grove Avenue
Cincinnati, OH 45232
USA

Cover Illustration:
Original artwork by Maria da Rocha, formerly manager of Analytical Services with the Colors Group on Sun Chemical, and chair person of CPMA’s Analytical Committee. The work represents the expansive palette of colors now possible with today’s organic and inorganic high performance pigments.

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany.
Printed on acid-free paper.

Typesetting Kühn & Weyh, Satz und Medien, Freiburg
Printing
Bookbinding

ISBN: 978-3-527-31405-8
Contents

Preface XIX

List of Contributors XXI

Part I

1 Introduction to Inorganic High Performance Pigments 3
 Gunter Buxbaum
 1.1 Introduction 3
 1.2 Survey of Inorganic Pigments 4
 1.3 New Candidates on the Catwalk of Color 5
 1.4 Challenges for the Future 6

2 Bismuth Vanadates 7
 Hartmut Endriss
 2.1 Introduction 7
 2.2 Historical Background 7
 2.3 Manufacture 8
 2.4 Properties and Applications 8
 2.4.1 Chemical Properties 8
 2.4.2 Physical Properties 9
 2.4.3 Coloristic Properties 9
 2.4.4 Dispersibility 10
 2.4.5 Light Fastness and Weather Resistance 10
 2.4.6 Chemical and Solvent Resistance 10
 2.5 Applications 10
 2.5.1 Coatings 10
 2.5.2 Plastics 11
 2.5.2.1 Properties 11
 2.5.2.2 Applications 11
2.5.2.3 Conformity of Pigments for Plastics Coloration to Food and Drug Regulations 11

2.6 Toxicology 12
2.6.1 Acute Toxicity 12
2.6.2 Chronic Toxicity 12

2.7 Ecology 12

3 Cadmium Pigments 13
Paul Dunning

3.1 Introduction 13
3.2 Pigment History 13
3.2.1 Cadmium 15
3.2.2 Selenium 15
3.3 Chemistry of Cadmium, Selenium and Cadmium Sulfide 16
3.3.1 Cadmium 16
3.3.2 Selenium 16
3.3.3 Substitution in the CdS Lattice 17
3.4 Method of Pigment Manufacture 17
3.4.1 General Points 17
3.4.2 Cadmium Oxide Formation 19
3.4.3 Cadmium Metal Dissolution 19
3.4.4 Other Solution Making 20
3.4.5 Precipitation 20
3.4.6 Filtration and Washing 21
3.4.7 Drying 21
3.4.8 Calcination 21
3.4.9 Wet Milling 22
3.4.10 Removal of Soluble Cadmium 22
3.4.11 Final Drying and Milling 22
3.5 Physical Properties 22
3.6 Regulatory Issues 24
3.7 Uses 25

4 Cerium Pigments 27
Jean-Noel Berte

4.1 Introduction 27
4.2 Rare Earth Sulfides and the Origins of their Color. 28
4.3 Cerium Sulfide Pigment: Manufacture 31
4.4 Properties and Applications 34
4.4.1 Coloration of Plastics 34
4.4.2 Paint and Coatings Application 38
4.4.3 Miscellaneous Applications 39
4.5 Toxicology and Environmental Aspects 39
4.6 Toxicological and Environmental Concerns during the Manufacturing Process 40

5 Complex Inorganic Color Pigments: An Overview. 41
James White

5.1 Introduction 41
5.2 Structures of CICPs 42
5.3 Production of CICPs 44
5.4 Titanate Pigments 44
5.4.1 Rutile Titanates 45
5.4.2 Spinel Titanates 46
5.4.3 Other Titanates 47
5.5 Aluminate Pigments 47
5.6 Cobalt Aluminates 47
5.7 Cobalt Chromium Aluminates 48
5.8 Chromites and Ferrites 49
5.9 Black CICPs 49
5.10 Brown Pigments 50
5.11 Green Chromites 51

6 Titanate Pigments: Colored Rutile, Priderite, and Pseudobrookite Structured Pigments 53
John Maloney

6.1 Introduction 53
6.2 History 55
6.2.1 Doped-Rutile (DR) Pigments 57
6.2.2 Priderite Pigments 58
6.2.3 Pseudobrookite Pigments 58
6.3 Synthesis 58
6.3.1 DR Pigments 59
6.3.2 Priderite Pigments 61
6.3.3 Pseudobrookite Pigments 62
6.4 Applications 62
6.5 Properties 63
6.5.1 Spectral Properties 63
6.5.1.1 Visible Spectral Characterization 63
6.5.1.2 UV and NIR Spectral Characterization 66
6.5.2 Physical Properties 66
6.5.2.1 Particle Size Distribution 66
6.5.2.2 X-ray Diffraction Characterization 67
6.5.2.3 Specific Gravity 68
6.5.2.4 Oil Absorption and Specific Surface Area 69
6.5.2.5 Powder Flow and Dusting 70
6.5.3 Chemical Properties 70
6.5.3.1 pH Measurement 70
6.5.3.2 Weathering 71
6.5.3.3 Particle Chemistry 72

Part II

7 Special Effect Pigments 77
Gerhard Pfaff

7.1 Introduction 77
7.2 Pearlescent and Interference Pigments 78
7.2.1 Optical Principles of Pearlescent and Interference Pigments 79
7.2.2 Substrate-Free Pearlescent Pigments 82
7.2.2.1 Natural Pearl Essence 82
7.2.2.2 Basic Lead Carbonate 82
7.2.2.3 Bismuth Oxychloride 82
7.2.2.4 Micaceous Iron Oxide 83
7.2.2.5 Titanium Dioxide Flakes 83
7.2.3 Pigments Formed by Coating of Substrates 84
7.2.3.1 Metal Oxide-Mica Pigments 84
7.2.3.2 Silica Flake Pigments 90
7.2.3.3 Alumina Flake Pigments 94
7.2.3.4 Borosilicate-based Pigments 96
7.3 Effect Pigments Formed by Coating of Metal Flakes 96
7.4 Pigments Formed by Grinding a Film 97
7.5 Pigments Based on Liquid Crystal Polymers 98
7.6.1 Diffractive Pigments 101
7.6.2 Pigments Based on Holography and Gratings 102
Acknowledgments 103

8 Crystal Design of High Performance Pigments 105
Martin Schmidt

8.1 Introduction 105
8.2 Crystal Engineering of Organic Pigments 106
8.2.1 Close Packing 106
8.2.2 Crystal Energy 108
8.2.3 Specific Interactions 109
8.3 Crystal Structure Determination 113
8.4 Crystal Structure Calculation 115
8.4.1 General Methods 115
8.4.2 Crystal Structure Calculations of Pigments 116
8.4.3 Crystallochromy 118
8.4.4 Morphology Calculation 119
8.4.5 Pigment Morphologies 121
8.5 Control of Interfacial Properties Through Tailor-Made Additives 122

Part III 129

9 The Global Market for Organic High Performance Pigments 131
Fritz Brenzikofer

9.1 Introduction 131
9.2 The 1999 Market for Organic High Performance Pigments 132
9.3 The Producers of High Performance Pigments 133
9.4 The Demand for HPP by Consumer Market Segments 133
9.4.1 The Demand by Regions 134
9.4.2 The Trade Balance of HPP among these Regions 134
9.5 Demand Factors for HPPs 137
9.5.1 Market Requirements and Trends 138
9.5.1.1 Industrial/Decorative Paints 138
9.5.1.2 Plastics 138
9.5.1.3 New Markets 138
9.5.2 Marketing Strategies of Main HPP Producers 138
9.5.3 Globalization Prozess 138
9.6 Conclusions/Outlook 138

10 Benzimidazolone Pigments and Related Structures 139
Hans-Joachim Metz and Frank Morgenroth

10.1 Introduction 139
10.2 Historical Background 143
10.3 Method of Manufacture 145
10.4 Typical Properties and Major Reasons for Use 146
10.5 Pigment Grades, Discussion of Individual Pigments 154
10.6 Pigment Manufacturers, Economics 158
10.7 Safety, Health and Environmental Aspects 164

11 Diketopyrrolopyrrole (DPP) Pigments 165
Olof Wallquist and Roman Lenz

11.1 Introduction 165
11.2 History 165
11.3 Syntheses 166
11.2.1 Reformatsky Route 166
11.2.2 Succinic Ester Route 168
11.2.3 Succinic Amide Route 169
11.2.4 Miscellaneous Routes 169
11.3 Molecular Structure and Properties 170
11.3.1 Spectral Properties 170
11.3.2 Spectral Properties – Fluorescence 172
11.3.3 Single X-ray Structure Analysis 174
11.4 Chemical Properties 176
11.4.1 Electrophilic Aromatic Substitution 177
11.4.2 Nucleophilic Aromatic Substitution 177
11.4.3 N-Alkylation 178
11.4.4 Transformations on the Carbonyl Group 179
11.5 Solid-State Properties 180
11.5.1 General Properties 180
11.5.2 Particle Size Control 180
11.5.3 Polymorphism 181
11.5.4 Solid Solutions 182
11.5.5 Surface Modifications 184
11.6 Conventional Applications 185
11.7 Nonconventional Applications 190

12 Dioxazine Violet Pigments 195
Terence Chamberlain

12.1 Introduction 195
12.1.1 The Chemistry of Dioxazine Pigments 195
12.2 Synthesis 196
12.2.1 Dianil Formation 197
12.2.2 Cyclization of the Dianil 197
12.3 Pigmentation and Properties 202
12.3.1 Pigment Violet 23 202
12.3.2 Pigment Violet 37 203
12.4 Recent Developments 203
12.4.1 Preparation/Production Methods 203
12.4.2 New Products 204

13 Disazocondensation Pigments 205
Fritz Herren

13.1 Introduction 205
13.2 Historical Background 205
13.3 Chemistry 206
13.3.1 Commercialized Pigments (Past and Present [4]) 207
13.3.2 Recent Developments 212
13.4 Synthesis and Manufacture 214
13.5 Characterization, Properties, Application 216
13.5.1 Physical Characterization 216
13.5.2 Available Grades 216
13.5.3 Properties and Applications 217
Contents

14 Isoindoline Pigments 221
Volker Radtke, Peter Erk, and Benno Sens

14.1 Introduction 221
14.2 Historical Background 224
14.3 Methods of Manufacture 226
14.4 Typical Properties and Major Reasons for Use 229
14.5 Crystal Structures of Isoindoline Pigments 229
14.5.1 Structure Determination 229
14.5.2 Discussion 232
14.5.3 ESA Data 233
14.5 Pigment Grades; Discussion of Individual Pigments 236
14.6 Pigment Manufacturers; Economics 239
14.7 Toxicology and Ecology 240

15 Isoindolinone Pigments 243
Abul Iqbal, Fritz Herren, and Olof Wallquist

15.1 Introduction 243
15.2 Chemistry 244
15.2.1 Azomethine-Type Isoindolinones 244
15.2.2 Methine-Type Isoindolinones 252
15.2.3 Metal Complexes Based on Isoindolinones 253
15.3 Physicochemical Properties 254
15.4 Commercial Products and Applications 257

16 Perylene Pigments 261
Brian Thompson

16.1 Definition of Perylene Pigments 261
16.1.1 History 261
16.1.2 Color Index and Identity 261
16.2 Synthesis of Perylenes 263
16.2.1 Conversion of Perylenes: Acenaphthene to Perylene Tetracarboxylic Acid Diimide (PTCI, Pigment Violet 29) 263
16.2.2 Synthesis of Perylene Tetracarboxylic Acid Dianhydride (PTCA) by Hydrolysis of PTCI to PTCA, and PTCA as a Pigment (Pigment Red 224) 265
16.2.3 Alkylation of PTCI to Pigment Red 179 and other Perylene Pigments 265
16.2.4 Synthesis of Perylene Pigments and Mixed Crystals by Condensation of PTCA with Amines 266
16.2.5 Half Imide, Half Anhydrides of PTCA (10) 266
16.2.6 Derivatives of Perylene as Performance Enhancers 267
16.3 The Conditioning of Perylene Diimide Pigments 267
16.4 Mixed Crystals and Solid Solutions of Perylene Diimide Pigments 268
16.5 Drying of Perylene Pigments 268
16.6 Physical Chemistry and Color Physics of Perylene Pigments 269
16.7 Perylene Pigments and their Applications 270
16.8 Perylenes as Functional Colorants 271
16.9 Current Producers 271
16.10 Pricing Trends and Economics of Use 272
16.11 Health, Safety, and Environmental Considerations 272

17 Phthalocyanines – High Performance Pigments and Their Applications 275
Masao Tanaka

17.1 Introduction 275
17.2 Application of Optical Properties 276
17.2.1 Color Filters for Liquid Crystal Display Devices 276
17.2.2 Ink Jet Inks 277
17.2.3 Infrared Ray Absorbents 279
17.2.4 CD-R 281
17.3 Application of Optoelectronic Properties 282
17.3.1 Electrophotographic Photoreceptor 282
17.3.2 Nonlinear Optical Devices 286
17.4 Application of Catalysis 287
17.4.1 Deodorizers 287
17.4.2 Photodynamic Therapy 288
17.5 Conclusion 289

18 Quinacridone Pigments 293
Terence R. Chamberlain (modification of original chapter by Edward E. Jaffe)

18.1 Introduction 293
18.2 Historical Background 293
18.3 Quinacridone Syntheses 295
18.3.1 The Synthesis of DMSS from Dimethyl Succinate 295
18.3.1.1 By-Products Produced During the Synthesis and Isolation of DMSS 295
18.3.2 Synthesis of DMSS from Diketene (Methyl 4-Chloroacetoacetate) 297
18.3.3 Synthesis of Quinacridones by the Thermal Process 298
18.3.4 Synthesis of Quinacridones by the PPA Process 300
18.3.5 Synthesis of Quinacridones by Application of the Ullmann Reaction 303
18.4 Recently Introduced Quinacridone Products 304
18.5 Structural Data and Spectra 305
18.6 Polymorphism 308
18.7 Substituted Quinacridones 311
18.8 Photostability and a Suggested Mechanism 313
18.9 Quinacridonequinone 315
18.10 Other 6,13-Disubstituted Quinacridones 317
18.11 Solid Solutions 318
18.12 Conditioning and Surface Treatment of Quinacridones 323
18.13 Applications 325
18.14 Health and Safety Factors 326
18.15 Business Aspects 326

19 Quinophthalone Pigments 331
Volker Radtke

19.1 Introduction 331
19.2 Historical Background 333
19.3 Methods of Manufacture 334
19.4 Typical Properties and Major Reasons for Use 335
19.5 Pigment Grades and Discussion of Individual Pigments 336
19.5.1 Discussion of Individual Pigments 338
19.6 Pigment Manufacturers: Economics 339
19.7 Toxicology and Ecology 340

20 Imidazolone-Annellated Triphenedioxazine Pigments 341
Martin U. Schmidt

20.1 Introduction 341
20.2 On the Structure of Pigment Violet 23 342
20.3 Imidazolone-Annellated Triphenedioxazine Pigments 344
20.3.1 Syntheses 345
20.3.2 Properties 346
20.3.2.1 Pigment Blue 80 346
20.3.2.2 Other Imidazolone-Annellated Triphenedioxazine Pigments 347
20.3.3 Crystal Engineering on Imidazolone-Annellated Triphenedioxazine Pigments 347
20.3.3.1 Structure Determination from X-Ray Powder Data 348
20.3.3.2 Crystal Structures of Pigment Blue 80 and the Dimethyl Derivative (4b) 349
20.3.3.3 Crystal Engineering: Pigment Violet 57 351

Part IV 355

21 Chemical and Physical Characterization of High Performance Organic Pigments 357
Constantinos Nicolaou

21.1 Introduction 357
21.2 Visible Spectrophotometry 359
21.2.1 Introduction 359
21.2.2 Applications of Visible Spectroscopy 362
21.2.2.1 Copper Phthalocyanines 362
21.2.2.2 Visible Spectra of Quinacridone Pigments 364
21.2.2.3 Visible Spectra of Other Pigments 366
21.3 Applications of FT-IR Spectroscopy 368
21.3.1 Introduction 368
21.3.2 Applications of Infrared Spectroscopy 370
21.4 Mass Spectrometry Techniques 373
21.4.1 Introduction 373
21.5 High-Performance Liquid Chromatography 378
21.5.1 Introduction 378
21.5.2 HPLC Applications 378
21.6 Powder X-ray Diffraction 380
21.6.1 Introduction 380
21.6.2 XRD Sample Preparation 382
21.6.3 Applications of XRD 382
21.7 Particle Sizing Techniques 390
21.7.1 Introduction 390
21.7.2 Transmission Electron Microscopy 393
21.7.2.2 Sample Preparation for TEM Analysis 393
21.7.2.3 Applications of TEM 394
21.7.3 Optical Microscopy 396
21.7.3.1 Introduction 396
21.7.3.2 Applications of Optical Microscopy 397
21.7.4 Particle Size by Ultracentrifugal Sedimentation and Comparison to TEM 398
21.7.4.1 Introduction 398
21.7.4.2 Applications of Particle Sizing by Ultracentrifugation 399
21.8 Thermal Analysis and Decomposition Temperatures of HPOPs 404
21.9 Product Safety and Environmental Testing of HPOPs 407

22 Regulatory Affairs for High Performance Pigments: North America 409
Harold F. Fitzpatrick, Esq. and Glenn C. Merritt, Esq.

22.1 Introduction 409
22.2 Toxic Substances Control Act 409
22.3 Canada 411
22.3.1 Assessment of the Canadian DSL 412
22.4 Mexico 413
22.5 Toxic Release Inventory Reporting 414
22.6 Regulation of de minimis Levels 414
22.7 Food and Drug Administration 415
22.8 Color Pigments in General 415
22.9 PBT-TRI Rules 418
22.10 Nanotechnology and Regulation 420
22.11 High Production Volume (HPV) Substances 423
22.12 Phthalocyanine Pigments 424
Contents

22.13 Quinacridone Pigments 424
22.14 Carbazole Violet Pigments 425
22.15 Perylene Pigments 426
22.16 Inorganic Pigments 426
22.16.1 Complex Inorganic Color Pigments 426
22.16.2 Cadmium Pigments 427
22.17 Conclusion 428

23 Regulatory and Legislative Aspects of Relevance to High Performance Pigments: Europe 431
Eric Clarke and Herbert Motschi

23.1 Introduction 431
23.2 The European Union and its Institutions 431
23.2.1 European Commission 432
23.2.2 European Parliament (E.P.) 433
23.2.3 The Council of the European Union and other Institutions 434
23.2.4 Legal Instruments 434
23.3 The Major EU Directives Governing Chemical Control 435
23.3.1 Dangerous Substances (Commission Directive 67/548/EEC) 436
23.3.1.1 Some Differences between EU and US Requirements 437
23.3.1.2 Notification 438
23.3.1.3 Classification and Labeling 440
23.3.3 Safety Data Sheets (Commission Directive 2001/58/EC) 444
23.3.4 Existing Substances, Priority Lists, Risk Assessment (Council Regulation EEC 793/93) 444
23.3.5 Restrictions of Marketing and Use 445
23.3.6 REACH 447
23.3.7 Pollution Control 448
23.3.9 Eco-Labels 448
23.3.10 Food Packaging Legislation 449
23.3.11 Technical Barriers to Trade 452
23.4 National Regulations 452
23.4.1 Germany 453
23.4.1.2 Wassergefährdungsklassen (Water-Hazard Classes) 453
23.4.1.3 Dioxin Limits 454
23.4.2 France 455
23.4.3 Switzerland 457
23.5 Future Enlargement of the EU (PHARE and similar programs) 458
23.6 Nonregulatory Initiatives 460
23.6.1 High Production Volume (HPV) Chemicals Testing Initiative 460
23.6.2 Precautionary Principle 460
23.6.3 Black-listing 461
23.7 Confidentiality 462
23.8 Availability of Information on Current Regulations 462
23.9 Future Outlook 463

24 Infrared Reflecting Complex Inorganic Colored Pigments 467
Terry Detrie and Dan Swiler

24.1 Introduction 467
24.2 Background/Physics 468
24.2.1 Source of Infrared Light 468
24.2.2 Heating Mechanisms 469
24.2.3 Cooling Mechanisms 470
24.3 Measurement 471
24.3.1 ASTM E903: Integrating Sphere Spectrophotometer [3] 471
24.3.3 ASTM E1918: Pyranometer [5] 472
24.4 Pigments 473
24.4.1 Introduction 473
24.4.2 Doped Rutile Titanate Yellows and Tans 473
24.4.3 CICP Tans and Browns 475
24.4.4 CrFe and Other CICP IR Blacks 476
24.4.5 New Inorganic IR Black Pigments 479
24.4.6 Blue Pigments 480
24.4.7 Green CICP Pigments 481
24.5 Formulation with IR Pigments 482
24.5.1 Opacity 483
24.5.2 Absorptions 484
24.6 Market Driving Forces 485
24.6.1 Studies 485
24.6.2 Specifications on “Cool Roof” 486
24.6.3 Rebate Programs 486
24.7 Conclusions 487

25 Toxicology and Ecotoxicology Issues with High Performance Pigments 489
Robert Mott (revision of original chapter by Hugh M. Smith)

25.1 Introduction 489
25.2 Recent Toxicological Testing of High Performance Pigments 489
25.3 Past Confusion in Assessment of HPPs 490
25.3.1 Confusion between Water Soluble Salts of Inorganic Metals and Related but Insoluble Pigments 490
25.3.2 Confusion Between Pigments and their Associated Impurities 491
25.3.3 False Positives in Genotoxicity Testing of Organic HPPs 491
25.3.3 Over-Reliance on Structure Activity Relationship (SAR) Assessment of HPPs 491
25.3.4 Confusion over Inaccurate “PBT” Classifications of HPPs 492
25.3.4 Inadequacy of Recent Computer-Driven Models for Substance Profiling 492
25.3.5 Inadequacy of Partition Coefficient Calculations in Evaluating Bioaccumulation 492
25.3.6 Continued Polarization Between Environmental NGOs and Industry Groups 493
25.4 Current Programs for Toxicological and Ecotoxicological Assessment of HPPs 493
25.5 The Way Ahead 494
25.5.1 Future Protocols for HPPs 494
25.5.2 Implementation of the Prior Informed Consent (PIC) Treaty 494

Appendix 497

Index 503
Preface

High performance pigments are an important segment of the diverse and rich field of color and visual effect technology. The sub-category of pigments referred to as “high performance” generally denotes members of the larger body of pigments, both organic and inorganic, that exhibit enhanced durability. The most salient durability feature is generally regarded as resistance to visible and ultraviolet radiation (lightfastness), but heat stability and chemical resistance are also critical attributes.

The distinctions within the various pigment sub-classes are not always consistent with this definition and can cause some confusion to new participants in the field. For example, copper phthalocyanine pigments typically exhibit the excellent fastness characteristics associated with high performance pigments but are often relegated to the category of classical or commodity pigments due to their prolific use in lower cost applications (e.g. publication printing inks) where durability is of minimal consequence or value. The characterization of pigments as high performance or classical types by cost is unreliable and ill advised.

The situation is further complicated by the relatively broad range of durability within the high performance pigment class. Though many organic high performance pigments exhibit sufficient stability for long-term outdoor applications, they are still not as lightfast or heat stable as the most durable inorganic members of the field. Yet another complicating factor is that application systems can significantly influence the performance. For example, copper phthalocyanine pigment may exhibit extremely poor resistance to sodium hypochlorite in one paint system and excellent resistance in another, while a mixed metal oxide performs equally well in both. Pigment surface treatments can also confound the classification situation. Lead chromate and aluminum pigments can be rendered more stable by encapsulating them with a dense amorphous layer of silica. Without this surface treatment these pigments could hardly be considered high performance in many applications.

Though it is challenging to summarize trends in such a technically diverse industry there are a two worth mentioning because they may provide some relevance and context with regard to the ongoing technical evolution. The first is that as product stewardship has gained a more prominent role in the chemical industry it has influenced the technical efforts of companies and universities engaged
in high performance pigment research and development. The Dyes & Pigments journal reported that over 60% of the research papers it receives pertain to environmental and product stewardship issues such as effluent treatment and toxicology. Most high performance pigments fall into the category of nano-particles which recently have been defined by the United States Environmental Protection Agency as particles having at least one dimension less than 100 nm. Nano-particle technology is receiving intensive scrutiny due to concerns over possible toxicological effects. The second trend is an increase in research directed toward elaborating high performance pigments for enhanced performance in emerging technologies such as digital printing, electronic displays, and solar cells, to name a few.

The chapters to follow are authored by some of the most knowledgeable innovators and practitioners in the field. Collectively, they have hundreds of patents and many have lectured throughout the world in their respective areas of expertise. Of equal importance to their technical depth is their knowledge of the commercial aspects which will influence the future of the technology and the industry. Their insights will hopefully prove to be valuable to the reader and their contributions to this collection are greatly appreciated.

Finally, thank you to Sun Chemical Corporation for its commitment and support of the project.

November 2008
Ed Faulkner
Russell Schwartz
List of Contributors

Jean-Noel Berte
Rhodia
Electronics & Catalysis
Pigments, Ceramics and Additives
21-26 rue Chef de Baie
La Rochelle, Cedex 1
France

Fritz Brenzikofer
Pigments and Additives Division
Clariant International Ltd.
65926 Frankfurt/Main
Germany

Gunter Buxbaum
Consultant
Holzapfelweg 2
47802 Krefeld
Germany

Terence Chamberlain
Sun Chemical Corporation
Colors Group
5020 Spring Grove Avenue
Cincinnati, Ohio 45232
USA

Eric Clarke
ETAD
4005, Basel 5
Switzerland

Terry Detrie
Ferro Corporation
251 W. Wylie Avenue
PO Box 519
Washington, PA 15301
USA

Paul Dunning
Johnson Matthey
Pigments and Dispersions
Liverpool Road East
Kidsgrove, Stoke-on-Trent
ST7 3AA
UK

Hartmut Endriss
BASF AG
67056 Ludwigshafen
Germany

Harold F. Fitzpatrick Esq.
Fitzpatrick & Waterman
333 Meadowlands Parkway, 4th Floor
P.O. Box 3159
Secaucus, New Jersey 07096
USA

Michael Greene
Bayer Corporation
Coating & Colorants Division
P.O. Box 118088
Charleston, South Carolina 29423
USA

Fritz Herren
Ciba Inc.
4002 Basel
Switzerland

Abul Iqbal
IQChem. Inc.
PO Box 212
4005 Basel
Switzerland
List of Contributors

Roman Lenz
Ciba Inc.
4002 Basel
Switzerland

John Maloney
Ferro Corporation
P.O. Box 6550
Cleveland, Ohio 44101
USA

Glenn C. Merritt Esq.
Fitzpatrick & Waterman
333 Meadowlands Parkway, 4th Floor
P.O. Box 3159
Secaucus, New Jersey 07096
USA

Hans-Joachim Metz
Clariant GmbH
Pigments and Additives Division
PTEF 6G384
65926 Frankfurt/Main
Germany

Frank Morgenroth
Clariant GmbH
Pigments and Additives Division
PTEF 6G384
65926 Frankfurt/Main
Germany

Herbert Motschi
ETAD
4005, Basel 5
Switzerland

Robert Mott
Sun Chemical Corporation
5020 Spring Grove Avenue
Cincinnati, OH 45232
USA

Constantinos Nicolaou
Sun Chemical Corporation
Colors Group
5020 Spring Grove Avenue
Cincinnati, Ohio 45232
USA

Gerhard Pfaff
Merck KGaA
Pigments Division
Postfach
64271 Darmstadt
Germany

Volker Radtke
BASF AG
EF0/MP-JA50
67056 Ludwigshafen
Germany

Benno Sens
BASF AG
ZDP/P-J550
67056 Ludwigshafen
Germany

Martin U. Schmidt
Goethe University
Institute of Inorganic and Analytical Chemistry
Max-von-Laue-Straße 7
60438 Frankfurt am Main
Germany

Dan Swiler
Ferro Corporation
251 West Wylie Avenue
PO Box 519
Washington, PA 15301
USA

Masao Tanaka
Dainippon Ink & Chemicals
18 Higashifukashiba Kamisu-Machi
Kashima-Gun, Ibaraki-Ken 314-02
Japan

Brian Thompson
Sun Chemical Corporation
5020 Spring Grove Avenue
Cincinnati, OH 45232
USA

Olof Wallquist
Ciba Inc.
4002 Basel
Switzerland

James White
The Shepherd Color Co.
4539 Dues Drive
Cincinnati, Ohio 45246
USA
Part I
1

Introduction to Inorganic High Performance Pigments

Gunter Buxbaum

1.1
Introduction

In 2005 the world production of inorganic pigments was approximately 6 million tonnes, representing a value of about $14 billions. For high performance pigment applications the market in paints and coatings is of special interest and was estimated at 2.4 million tonnes representing a value of about $5.6 billions. Some years ago the British Color Makers Association estimated the economic value of downstreamed colored industrial products using inorganic pigments at about the 80-fold of the pigment value.

In writing an introductory chapter to colored Inorganic High Performance Pigments, one is faced with a definitional dilemma, as the term “high performance pigment” is more usually met with in organic rather than inorganic literature. Cost alone is not the determining factor, otherwise the natural semiprecious stone lapis lazuli would have to be included, with its deep blue characteristics. One of the problems with high performance inorganic pigments is the limitation in available chemistry, so that very few really new compounds have been developed in recent decades.

Most inorganic pigment applications have thus been achieved by the well-known “workhorses” of conventional pigments, but the economic pressures of the last decade have dictated two main directions for product development: on the one hand an economization of existing pigment manufacture, in line with world price competition, and on the other hand, discovery and development of “new” and “improved” inorganic pigments with higher performing characteristics. Even in the more “commodity” or conventional inorganics such as chrome yellow, titanium dioxide, iron oxide, and carbon black, incrementally improved performance is required, e.g., in dust free preparations for the construction industry.

A third development started earlier. Driven by national laws and regulations in the ecological and toxicological area, “sustainable development” and substitution pressures have resulted in the replacement of formerly well known, and highly recommended inorganic pigments, such as red lead, lead molybdate, and chrome orange, by more “environmentally friendly” or less toxic substances, which can surely be considered as “high performance” pigments.
Finally, in the field of “functional pigments” such as corrosion inhibiting or optically variable types, the development of “high performance” types has been necessary.

1.2 Survey of Inorganic Pigments

When we consider a short survey of today’s major inorganic pigments, we are faced with the realization that the three major pigment families: titanium dioxide, carbon black, and iron oxides, accounting for more than 90% of the worldwide tonnage, as shown in Table 1.1, are all outside of our subject matter. They are well known to everyone, and have already been discussed in depth in recent handbooks [1, 2].

Further inspection of Table 1.1, however, reveals a selection of “high performance” pigments classified according to their chemical composition. In particular, the families of complex (or mixed) metal oxides, and functional pigments show a wide variety in their chemical composition.

Table 1.1 Inorganic pigments, classified by composition.

<table>
<thead>
<tr>
<th>Class</th>
<th>Pigment</th>
<th>High performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements</td>
<td>Carbon black</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Al-flakes</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Oxide coated Al, Zn/Cu flakes</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Zn-dust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nanoscale silicon</td>
<td>#</td>
</tr>
<tr>
<td>Oxides/hydroxides</td>
<td>Metal-oxide flakes</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>TiO₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe₃O₄</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FeOOH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe₂O₄</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cr₂O₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pb₃O₄</td>
<td></td>
</tr>
<tr>
<td>Mixed metal oxides</td>
<td>ZnFe₂O₄</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>CoAl₂O₄</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Co,Ni,Zn)₂TiO₄</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Ti(Ni,Nb)O₂</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Ti(Cr,Nb)O₂</td>
<td>+</td>
</tr>
</tbody>
</table>
1.3 New Candidates on the Catwalk of Color

In every pigment class illustrated, one will find at least one grade with a high performance characteristic, which may be the determining factor, or driver, for the end user to purchase this pigment in their application. It is self-evident, therefore, that degree of performance for a pigment depends on the demands imposed upon it for its intended application.

1.3 New Candidates on the Catwalk of Color

Bearing in mind the limitation in the color of inorganic pigments, one has to be surprised at the numbers of new compounds introduced with good pigment performance. More and more, specialized physical effects appear to dominate over variation in chemical composition. In Table 1.1, for example, we must point out that mica-based effect pigments, being still a “young” pigment class, have already become well established since their “breakthrough” introduction. Again, while bismuth vanadate yellow is in the early stages of its growth potential, cerium sulfides...
are in their industrial infancy, and are attempting to carve out a niche for themselves in applications where the well-established cadmium sulfide family is no longer the pigment of choice. On the more experimental side, “nanoscale silicon,” with particle size below 5 nm, is now available as a laboratory curiosity in microgram quantities as the first in the series of “quantum effect pigments” predicted by theoretical physicists [3]. Nearer to introduction is another new family, the calcium, lanthanum, tantalum oxide-nitrides [4]. Reproducibility, however, must be proven first. Their published properties, viz., brilliance of color coupled with non-toxicity, appear ideal for inclusion in the high-performance category.

A study of the “old fashioned” and almost forgotten workhorse pigment ultramarine blue could also be significant in the light of its revival through recently introduced new manufacturing technology. And so it is possible that, in the future, development of new manufacturing processes for “old” pigments and enhancement of their properties might well revitalize these products to the point where they could also join the ranks of truly high performance pigments.

1.4 Challenges for the Future

This leads us to consider challenges for new high performance pigments, which can be designated as Three Essential Es:

Effectiveness = Technical performance
Economy = Benefits for the customer
Ecology = Environmental and toxicological safety

Better effectiveness could include higher tinting strength, greater ease of dispersion, better fineness of grind, higher saturation, and so on.

Better economy could include widening the fields of application for known high performance pigments by giving the customer enhanced value-in-use. And better ecology is today’s task for industry as a whole, and is self-evident.

All three “E” will be optimized further on. New inventions will be made, hand-in-hand with steady process and product development. And as we can learn from a study of today’s lowercost pigments, such as lead chromate, where the encapsulated specialties of yesteryear are now the norm for coatings application, the high performance pigments of today will become the conventional standards of tomorrow, with those of tomorrow having to be invented now. And so the development of high performance inorganic pigments is, in reality, a never-ending story.

References