Handbook of Synthetic Photochemistry

Edited by
Angelo Albini and Maurizio Fagnoni
Handbook of Synthetic Photochemistry

Edited by
Angelo Albini and Maurizio Fagnoni
Further Reading

S. Ma (Ed.)
Handbook of Cyclization Reactions
2 Volume Set
2010
ISBN: 978-3-527-32088-2

B. Wardle
Principles and Applications of Photochemistry
2010
ISBN: 978-0-470-01493-6

G.I. Likhtenshtein
Stilbenes
Applications in Chemistry, Life Sciences and Materials Science
2010
ISBN: 978-3-527-32388-3

M. Bandini, A. Ronchi-Umani (Eds.)
Catalytic Asymmetric Friedel-Crafts Alkylations
2009
ISBN: 978-3-527-32380-7

N. Mizuno (Ed.)
Modern Heterogeneous Oxidation Catalysis
Design, Reactions and Characterization
2009
ISBN: 978-3-527-31859-9

E.M. Carreira, L. Kvaerno
Classics in Stereoselective Synthesis
2009
ISBN: 978-3-527-32452-1 (Hardcover)
ISBN: 978-3-527-29966-9 (Softcover)
Handbook of Synthetic Photochemistry

Edited by
Angelo Albini and Maurizio Fagnoni
From its origin over a century ago, organic photochemistry has undergone a transformation from an area of science populated by a few specialized organic and physical chemists to a field that now attracts the interest of members of the broad synthetic organic chemistry community. Along the way, the basic chemical and physical foundations of the science were developed and the full synthetic potential of photochemical reactions of organic substrates has been realized.

The science of organic photochemistry can be traced back to observations made in the nineteenth century, which showed that ultraviolet irradiation of certain organic substances leads to formation of products that have unique and sometimes highly strained structures. An example of this is found in studies in the early 1800s, which demonstrated that irradiation of the naturally occurring, cross-conjugated cyclohexadienone, α-santonin, in the crystal state induces a deep-seated, multisteped rearrangement reaction. It is fair to conclude that at that time observations like this could only have been attributed to the magic of Nature, since little if anything was known about the fundamental principles of the light absorption process and the relationships between structures and decay pathways of electronic excited states.

The science of organic photochemistry experienced a significant transformation in the middle part of the twentieth century when it began to attract the interest of organic chemists, who were skilled in the use of valence bond theory, and physical chemists, who were able to probe and theoretically analyze the properties of electronic excited states. These efforts led to a basic mechanistic framework for understanding and predicting how electronic excited states of organic substrates undergo reactions to form products. Clear examples of the insight provided by organic chemists during this era are found in ground-breaking investigations performed independently by Zimmerman and Chapman that probed the photochemistry of simple, cross-conjugated cyclohexadienones. The realization that these processes could be described by utilizing Lewis electron-dot-line structures of excited states and reactive intermediates brought organic photochemistry into the intellectual sphere of organic chemists, who already had learned the benefits of writing arrow-pushing mechanisms for ground-state reactions.

Another important contribution to the field of organic photochemistry arose from investigations of excited state redox processes in the latter part of the twentieth
century. These efforts showed that when the oxidation and reduction potentials and excited state energies of interacting electron donors and acceptors are appropriate, thermodynamically and kinetically favorable excited state single electron transfer (SET) will take place to produce ion radical intermediates. This phenomenon expanded the vista of organic photochemistry, since it enabled the unique and predictable reactivity profiles of charged radicals to be included in the concept library used to design new photochemical transformations. Many examples of the exceptional impact that SET has had on the field of organic photochemistry came from the pioneering work of Arnold and a cadre of other organic chemists who developed synthetic applicable SET photochemical processes.

It is clear that studies in the area of organic photochemistry have led to the discovery of a large number of novel reactions, and that some of these processes meet the high standards needed for use as preparative methodologies. The compilation in this Handbook, which begins with a useful chapter describing practical experimental methods used in photochemistry, reviews several of the more synthetically prominent photochemical reactions of organic substrates.

There is no doubt that the field of organic photochemistry was subjected to intense scrutiny in the latter half of the twentieth century, and that efforts during this period led to a firm understanding of basic photochemical principles and to the discovery of a wealth of highly unique chemical reactions. Moreover, during this period members of the synthetic organic chemistry community recognized that several photochemical processes could be applied as key steps in routes for the construction of complex target molecules. It is likely that activity in the area of organic photochemistry will not diminish in the twenty-first century where it will be used in finding matchless solutions to challenging chemical problems. Thus, rather than being caused by the need to prepare sophisticated organic substances made by Nature, problems in the new century are likely to revolve about the search for green methods for promoting chemical reactions and for processes that can be performed in confined spaces (e.g., cells), defined patterns (e.g., lithography), and precisely controlled time domains (e.g., triggers). Organic photochemistry is uniquely applicable to these types of challenges and, as a result, it should continue to be an interesting area in which to work.

Patrick S. Mariano
Department of Chemistry and Chemical Biology
University of New Mexico
Albuquerque, NM, USA
Contents

Foreword V
Preface XV
List of Contributors XVII

1 Photochemical Methods 1
Angelo Albini and Luca Germani
1.1 Photochemical Methods 1
1.1.1 Photochemistry and Organic Synthesis 1
1.2 Irradiation Apparatus 2
1.2.1 General 2
1.2.2 Low-Pressure Mercury Arcs 3
1.2.3 Medium- and High-Pressure Mercury Arcs 7
1.2.4 Other Light Sources 9
1.3 Further Experimental Parameters 11
1.3.1 Concentration and Scale 11
1.3.2 Effect of Impurities, Oxygen, and Temperature 15
1.3.3 Safety 17
1.3.4 Planning a Photochemical Synthesis 17
1.4 Photochemical Steps in Synthetic Planning 19
References 22

2 Carbon–Carbon Bond Formation by the Photoelimination of Small Molecules in Solution and in Crystals 25
Saori Shiraki and Miguel A. Garcia-Garibay
2.1 Introduction 25
2.1.1 Synthesis of Unstable Molecules 27
2.2 Photochemical C–C Bond Formation in Solution 30
2.2.1 Concerted Reactions 30
2.2.2 Photoelimination of N2 31
2.2.2.1 Synthesis of Three-Membered Rings 31
2.2.2.2 Synthesis of Cyclobutanes and Polycyclic Compounds 33
2.2.3 Photoelimination of CO from Ketones in Solution 35
2.2.4 Photoelimination of CO$_2$ from Lactones 39
2.2.5 Photoelimination of Sulfur from Sulfides, Sulfoxides, and Sulfones 40

2.3 Reactions in the Solid State 41
2.3.1 Reactivity and Stability in the Solid State 42
2.3.2 Restricting the Fate of the Radical Intermediates in Solids 43
2.3.3 Crystalline Diacyl Peroxides 44
2.3.4 Decarbonylation of Crystalline Ketones 50

2.3.4.1 Early Observations 50
2.3.4.2 Reactivity and Stability 51
2.3.4.3 The RSE > 11 kcal mol$^{-1}$ Condition 53
2.3.4.4 Scope of the Reaction 55
2.3.4.5 Reaction Enantiospecificity 56
2.3.4.6 Synthesis of Natural Products 57
2.3.4.7 Quenching Effects 57
2.3.4.8 Reaction Scale and Experimental Conditions 59

2.4 Concluding Remarks 60

References 60

3 Intermolecular Addition Reactions onto C–C Multiple Bonds 67
Valentina Dichiarante and Maurizio Fagnoni

3.1 Introduction 67
3.1.1 Scope and Mechanism 68

3.2 Addition to C–C Double Bonds 69
3.2.1 H–C Addition (Hydroalkylation Reactions) 69
3.2.1.1 Addition of Alkanes 70
3.2.1.2 Addition of Alcohols (Hydrohydroxymethylation), Ethers, and (2-substituted) 1,3-Dioxolane(s) 71
3.2.1.3 Addition of Amines (Hydroaminomethylation) or Amides 72
3.2.1.4 Hydrofluoromethylation 74
3.2.1.5 Addition of Nitriles or Ketones 75
3.2.1.6 Hydroacylation and Hydrocarboxylation Reactions 75
3.2.1.7 Hydroarylation (Photo-EOCAS) 76
3.2.2 H–N Addition (Hydroamination) 76
3.2.3 H–P Addition 78
3.2.4 H–O Addition 80
3.2.5 H–S Addition 82
3.2.6 Addition of X–Y Reagents to Alkenes 83
3.2.6.1 Halogenation 84
3.2.6.2 Addition with the Formation of C–C Bonds 84

3.3 Addition to C–C Triple Bonds 86
3.3.1 Hydroalkylation Reactions 87
3.3.2 Addition of X–Y Reagents 87
4 Formation of a Three-Membered Ring 95
Takashi Tsuno

4.1 Introduction 95
4.2 Di-π-Methane Rearrangement 96
4.2.1 Di-π-Methane Rearrangement of Barrelene, Benzobarrelene, Dibenzobarrelene, and Related Derivatives 96
4.2.2 Di-π-Methane Rearrangement of Acyclic Systems 100
4.2.3 Di-π-Methane Rearrangement in Natural Compounds 103
4.3 Oxa-di-π-Methane Rearrangement and Related Rearrangements 105
4.3.1 Oxa-di-π-Methane Rearrangement of β,γ-Unsaturated Ketones and Aldehydes 105
4.3.2 Aza-di-π-Methane Rearrangement 109
4.3.3 Synthetic Applications of Oxa-di-π-Methane Rearrangement 110
4.4 [2+1] Cycloaddition of Alkenes with Carbenes 111
4.4.1 Intramolecular [2+1] Cycloaddition 111
4.4.2 Novel Triplet Sensitizers for the Generation of Carbenes 111
4.4.3 Metal-Catalyzed Cyclopropanation-Supported Photochemistry 112
4.4.4 Novel Precursors of Carbenes 113
4.5 Formation of a Cyclopropane via Intramolecular Hydrogen Abstraction 114
4.5.1 Formation of Cyclopropanol via Intramolecular β-Hydrogen Abstraction 115
4.5.2 Formation of Cyclopropane Ring via Intramolecular γ-Hydrogen Abstraction 117
4.6 [3+2] Cycloaddition of Arenes with Alkenes 119
4.6.1 Intermolecular [3+2] Cycloaddition 119
4.6.2 Intramolecular [3+2] Cycloaddition 119
4.6.3 Application of the Photochemical [3+2] Cycloaddition in the Synthesis of Natural Products 122
4.7 Photochemical Synthesis of Three-Membered Heterocycles 123
4.7.1 Epoxides 123
4.7.2 Aziridines 123
References 126

5 Formation of a Four-Membered Ring 137
Norbert Hoffmann

5.1 Introduction 137
5.2 [2+2]-Photocycloaddition of Nonconjugated Alkenes 137
5.3 [2+2]-Photocycloaddition of Aromatic Compounds 144
5.4 Photochemical Electroyclic Reactions 150
5.5 Intramolecular γ-Hydrogen Abstraction (Yang Reaction) 153
6 Formation of a Four-Membered Ring: From a Conjugate Alkene 171

Jörg P. Hehn, Christiane Müller, and Thorsten Bach

6.1 Introduction 171
6.2 [2+2]-Photocycloaddition of Enones (Substrate Type A1) 173
6.2.1 Cyclopentenones 173
6.2.2 Cyclohexenones 177
6.2.3 para-Quinones and Related Substrates 181
6.3 [2+2]-Photocycloaddition of Vinylogous Amides and Esters (Substrate Classes A2 and A3) 182
6.3.1 Endocyclic Heteroatom Q in β-Position (Substrate Class A2) 183
6.3.1.1 4-Hetero-2-Cyclopentenones 183
6.3.1.2 4-Hetero-2-Cyclohexenones 185
6.3.2 Exocyclic Heteroatom Q in β-Position (Substrate Class A3) 186
6.4 [2+2]-Photocycloaddition of α,β-Unsaturated Carboxylic Acid Derivatives (Substrate Classes A4, A5, and A6) 189
6.4.1 No Further Heteroatom Q in β-Position (Substrate Class A4) 189
6.4.1.1 α,β-Unsaturated Lactones 189
6.4.1.2 α,β-Unsaturated Lactams 192
6.4.1.3 Coumarins 193
6.4.1.4 Quinolones 194
6.4.1.5 Maleic Anhydride and Derivatives 196
6.4.1.6 Sulfur Compounds 197
6.4.2 Endocyclic Heteroatom Q in β-Position (Substrate Class A5) 198
6.4.2.1 1,3-Dioxin-4-Ones 198
6.4.2.2 4-Pyrimidinones 200
6.4.3 Exocyclic Heteroatom Q in β-Position (Substrate Class A6) 201
6.4.3.1 Lactones 202
6.4.3.2 Lactams 203
6.5 Concluding Remarks 205
References 205

7 Formation of a Four-Membered Ring: Oxetanes 217

Manabu Abe

7.1 Introduction 217
7.2 The Generally Accepted Mechanism of the Paternò–Büchi Reaction 220
7.3 Regioselective and Site-Selective Syntheses of Oxetanes 221
7.4 Stereoselective Syntheses of Oxetanes 226
7.5 Concluding Remarks 233
References 233
8 **Formation of a Five-Membered Ring** 241
Ganesh Pandey and Smita R. Gadre

8.1 Introduction 241

8.2 Formation of Five-Membered Rings: Intramolecular δ-H Abstraction 241

8.2.1 Formation of Cyclopentanol Ring System 242

8.2.1.1 Synthesis of Indanols 243

8.2.2 Synthesis of Tetrahydrofuranols 247

8.2.2.1 Formation of Benzofuranols 250

8.2.3 Synthesis of Pyrrolidine Derivatives 250

8.3 Formation of Five-Membered Rings via [3+2]-Cycloadditions 254

8.3.1 Photofragmentation of Oxiranes to Carbonyl Ylides: Synthesis of Tetrahydrofurans 254

8.3.2 Generation of Azomethine Ylides by the Photolysis of Aziridines: Synthesis of the Pyrrolidine Framework 258

8.3.3 Vinyl Cyclopropane to Cyclopentene Rearrangement 260

8.4 Photochemical Electrocyclization Reactions: Synthesis of Fused, Five-Membered Ring Compounds 261

8.5 Photoinduced Electron Transfer-Mediated Cyclizations: Synthesis of Five-Membered Carbocyclic and Heterocyclic Ring Systems 266

8.5.1 Radical Cation-Mediated Carbon–Carbon Bond Formation 266

8.5.2 Radical Anion-Mediated Cyclizations 272

8.5.3 Intramolecular Trapping of Radical Cations by Nucleophiles 276

References 279

9 **Formation of Six-Membered (and Larger) Rings** 287
Julia Pérez-Prieto and Miguel Angel Miranda

9.1 Introduction 287

9.2 Photoelectron Transfer-Initiated Cyclizations 287

9.2.1 Phthalimides as Electron Acceptors 287

9.2.2 Aromatic Ketones as Electron Acceptors 291

9.2.3 Chloroacetamides as Electron Acceptors 292

9.2.4 Electron-Deficient Aromatic Compounds as Electron Acceptors 293

9.3 Photoinduced 6π-Electrocyclization 295

9.3.1 stilbene-Like Photocyclization 295

9.3.2 Vinyl-Biphenyls Photocyclization 299

9.3.3 Anilides and Enamides Photocyclization 299

9.4 Photocycloaddition Reactions 300

9.4.1 Photochemical Diels–Alder Reaction 301

9.4.2 Photoenolization/Diels–Alder Reaction 302

9.4.3 [4+4]-Photocycloaddition 302

9.4.4 Transition Metal Template-Controlled Reactions 304

9.5 Remote Intramolecular Hydrogen Abstraction 307

9.6 Ring Contraction and Ring Enlargement 308

9.7 Other Reactions 311
9.7.1 Intramolecular [2+2]-Cycloadditions 311
9.7.2 Photocyclization of Cinnamylanilides 311
9.7.3 Photocycloaddition of Aromatic Compounds 311
9.8 Concluding Remarks 313
References 313

10 Aromatic and Heteroaromatic Substitution by S_{RN1} and S_{N1} Reactions 319
Alicia B. Peñéñory and Juan E. Argüello
10.1 Introduction 319
10.2 General Mechanistic Features 320
10.2.1 S_{RN1} Mechanism 320
10.2.2 S_{N1} Mechanism 322
10.3 Carbon–Carbon Bond Formation 323
10.3.1 Carbanions from Ketones, Esters, Acids, Amides, and Imides as the Nucleophiles 323
10.3.2 Alkenes, Alkynes, Enols, and Vinyl Amines as the Nucleophiles 326
10.3.3 Aryl Alkoxide and Aryl Amide Anions as the Nucleophiles 329
10.3.4 Cyanide Ions as the Nucleophile 331
10.4 Carbon–Heteroatom Bond Formation 332
10.4.1 Tin Nucleophiles 332
10.4.2 Sulfur Nucleophiles 333
10.5 Synthesis of Bi-, Tri-, and Polyaryls 334
10.5.1 Consecutive S_{RN1}–Pd(0)-Catalyzed Crosscoupling Reactions 334
10.5.2 Photo-S_{N1} as an Alternative to Metal Catalysis 336
10.6 Synthesis of Carbocycles and Heterocycles 338
10.6.1 Carbocycles 338
10.6.2 Nitrogen Heterocycles 341
10.6.3 Oxygen Heterocycles 344
10.6.4 Sulfur Heterocycles 346
References 346

11 Singlet Oxygen as a Reagent in Organic Synthesis 353
Matibur Zamadar and Alexander Greer
11.1 Introduction 353
11.2 Dioxetanes 354
11.2.1 Background Information 354
11.2.2 adamantyl-Substituted Alkenes 355
11.2.3 Alkoxy-Substituted Alkenes 356
11.2.4 Phenyl- or Methyl-Substituted Alkenes 357
11.2.4.1 Diphenyldiindene Photooxidation 357
11.2.4.2 Electron-Transfer Photooxidation 357
11.2.5 Summary 358
11.3 Endoperoxides 358
11.3.1 Background Information 358
11.3.2 Arenes 359
 11.3.2.1 Benzenes 359
 11.3.2.2 Naphthalenes 361
 11.3.2.3 Anthracenes, Polyacenes, and Carbon Nanotubes 362
11.3.3 Electron-Transfer Photooxidation 364
11.3.4 Conjugated Dienes 364
 11.3.4.1 Acyclic Dienes 364
 11.3.4.2 Cyclopentadienes and Cyclohexadienes 364
 11.3.4.3 Heterocycles and Cyclohexatriene 365
11.3.5 Summary 368
11.4 Allylic Hydroperoxides 368
 11.4.1 Background Information 368
 11.4.2 Simple Alkenes 368
 11.4.3 "Ene" Reactions Confined in Zeolites 370
 11.4.4 Summary 370
11.5 Tandem Singlet Oxygen Reactions 371
 11.5.1 Background Information 371
 11.5.2 Bisperoxides 371
 11.5.2.1 Phenyl-Substituted Alkenes 371
 11.5.2.2 Cyclic Alkenes 372
 11.5.3 Rearrangement to a Hemiketal Hydroperoxide 374
 11.5.4 Rearrangements to Spiro Compounds 374
 11.5.5 Summary 376
11.6 Concluding Remarks 377
References 377

12 Synthesis of Heteroaromatics via Rearrangement Reactions 387
 Nicolò Vivona, Silvestre Buscemi, Ivana Pibiri,
 Antonio Palumbo Piccionello, and Andrea Pace
12.1 Introduction 387
12.2 Synthesis of Five-Membered Rings with One Heteroatom 388
 12.2.1 Pyrroles 388
 12.2.2 Furans 391
 12.2.3 Thiophenes 392
 12.3 Synthesis of Five-Membered Rings with Two Heteroatoms 393
 12.3.1 Pyrazoles 393
 12.3.2 Imidazoles 394
 12.3.3 Oxazoles 398
 12.3.4 Thiazoles 400
 12.4 Synthesis of Five-Membered Rings with Three Heteroatoms 402
 12.4.1 Oxadiazoles 402
 12.4.2 Triazoles 404
 12.4.3 Thiadiazoles 405
 12.5 Synthesis of Six-Membered Rings 406
 12.6 Synthesis of Seven-Membered Rings 406
12.6.1 Azepines 406
12.6.2 Diazepines 407
12.6.3 Oxazepines 409
12.7 Concluding Remarks 410
References 411

13 Photolabile Protecting Groups in Organic Synthesis 417
Christian G. Bochet and Aurélien Blanc

13.1 Introduction 417
13.2 Photolabile Protecting Groups 418
13.2.1 Ortho-Nitrobenzyl Alcohol Derivatives 418
13.2.2 Benzyl Alcohol Derivatives 421
13.2.3 Other Types of Protecting Group 423
13.2.3.1 Norrish Type II 423
13.2.3.2 Norrish Type I 424
13.2.3.3 Thioketals 424
13.2.3.4 Silicon Ethers 424
13.2.4 Z/E Photoisomerization 425
13.2.4.1 Cinnamyl Esters 425
13.2.5 Phenacyl Derivatives 426
13.2.5.1 Mechanism 426
13.2.6 Benzoin Derivatives 428
13.2.6.1 Mechanism 428
13.2.7 Indolines 429
13.3 Chromatic Orthogonality 430
13.4 Two-Photons Absorption 431
13.5 Concluding Remarks 432
13.6 Appendix 433
References 439

Index 449
Preface

Practitioners of organic photochemistry feel that this science has a great potential for synthesis. Indeed, nowadays many reactions are known that lead to useful transformations and have been exploited as key steps in complex synthetic plans. These achievements attract the interest of synthetic chemists. However, photochemical methods are probably less often adopted than they may be, and are still less familiar to the broad chemical community than other methods. In the present handbook it has been attempted to offer an easy approach to the use of photochemical methods in synthesis. Thus, rather than discussing the chemistry of the various chromophores, as usual in photochemistry books, reactions have been grouped according to the molecular transformation involved and care has been given that experimental aspects (much less elaborate with many other methods) are clearly presented. We are convinced that a more general application in nonspecialized laboratories will lead to the discovery of new applications and even new reactions.

It was chosen to have a multiauthor book because this allows a breadth of approaches that could not otherwise be reached. The distinguished photochemists who accepted to participate in this project patiently tolerated the long work required to avoid the risk of discontinuity. We thank them heartily and any deficiency in the book is certainly not their fault. Thanks go to Dr. Heike Nöthe, a friendly and capable help during both the preparation and production phases and to Davide Ravelli and Matteo Albini for the pictures.

Angelo Albini and Maurizio Fagnoni
List of Contributors

Manabu Abe
Hiroshima University (HIRODAI)
Graduate School of Science
Department of Chemistry
1-3-1 Kagamiyama
Higashi-Hiroshima
Hiroshima 739-8526
Japan

Angelo Albini
University of Pavia
Department of Organic Chemistry
Via Taramelli 10
27100 Pavia
Italy

Juan E. Argüello
Universidad Nacional de Córdoba
Facultad de Ciencias Químicas
INFIQC – Dpto Química Orgánica
Ciudad Universitaria
5000 Córdoba
Argentina

Thorsten Bach
Technische Universität München
Lehrstuhl für Organische Chemie I
85747 Garching
Germany

Aurélien Blanc
University of Strasbourg
Institut de Chimie, UMR 7177/CNRS
Laboratoire de Synthèse et Réactivité Organiques
4 rue Blaise Pascal
67000 Strasbourg
France

Christian G. Bochet
University of Fribourg
Department of Chemistry
9 Ch. du Musee
1700 Fribourg
Switzerland

Silvestre Buscemi
Università degli Studi di Palermo
Dipartimento di Chimica Organica
“E. Paternò”
Viale delle Scienze, Parco d’Orleans II
Edificio 17
90128 Palermo
Italy

Valentina Dichiarante
University of Pavia
Department of Organic Chemistry
Via Taramelli 10
27100 Pavia
Italy
List of Contributors

Maurizio Fagnoni
University of Pavia
Department of Organic Chemistry
Via Taramelli 10
27100 Pavia
Italy

Smita R. Gadre
National Chemical Laboratory
Division of Organic Chemistry
Dr. Homi Bhabha Road
Pune 411008
India

Miguel A. Garcia-Garibay
University of California
Department of Chemistry and
Biochemistry
Los Angeles, CA 90095
USA

Luca Germani
University of Pavia
Department of Organic Chemistry
Via Taramelli 10
27100 Pavia
Italy

Alexander Greer
Graduate Center and
The City University of New York (CUNY)
Brooklyn College
Department of Chemistry
Brooklyn, NY 11210
USA

Jörg P. Hehn
Technische Universität München
Lehrstuhl für Organische Chemie I
85747 Garching
Germany

Norbert Hoffmann
Université de Reims Champagne-
Ardenne, CNRS
Institut de Chimie Moléculaire de
Reims, UMR 6229
Groupe de Photochimie, UFR Sciences
B.P. 1039
51687 Reims
France

Patrick S. Mariano
University of New Mexico
Department of Chemistry and
Chemical Biology
Albuquerque, NM 87131
USA

Miguel Angel Miranda
Universidad Politécnica de Valencia
Instituto de Tecnología Química UPV-CSIC
Departamento de Química
Camino de Vera sn
46071 Valencia
Spain

Christiane Müller
Technische Universität München
Lehrstuhl für Organische Chemie I
85747 Garching
Germany

Andrea Pace
Università degli Studi di Palermo
Dipartimento di Chimica Organica
“E. Paternò”
Viale delle Scienze, Parco d’Orleans II
Edificio 17
90128 Palermo
Italy
List of Contributors

Ganesh Pandey
National Chemical Laboratory
Division of Organic Chemistry
Dr. Homi Bhabha Road
Pune 411008
India

Alicia B. Peñéñory
Universidad Nacional de Córdoba
Facultad de Ciencias Químicas
INFIQC – Dpto Química Orgánica
Ciudad Universitaria
5000 Córdoba
Argentina

Julia Pérez-Prieto
Universidad de Valencia
Instituto Ciencia Molecular
Polígono La Coma sn
46980 Paterna, Valencia
Spain

Ivana Pibiri
Università degli Studi di Palermo
Dipartimento di Chimica Organica
“E. Paternò”
Viale delle Scienze, Parco d’Orleans II
Edificio 17
90128 Palermo
Italy

Antonio Palumbo Piccionello
Università degli Studi di Palermo
Dipartimento di Chimica Organica
“E. Paternò”
Viale delle Scienze, Parco d’Orleans II
Edificio 17
90128 Palermo
Italy

Saori Shiraki
University of California
Department of Chemistry and
Biochemistry
Los Angeles, CA 90095
USA

Takashi Tsuno
Nihon University
College of Industrial Technology
Department of Applied Molecular
Chemistry
Narashino, Chiba 275-8575
Japan

Nicolò Vivona
Università degli Studi di Palermo
Dipartimento di Chimica Organica
“E. Paternò”
Viale delle Scienze, Parco d’Orleans II
Edificio 17
90128 Palermo
Italy

Matibur Zamadar
Graduate Center and
The City University of New York
(CUNY)
Brooklyn College
Department of Chemistry
Brooklyn, NY 11210
USA
1
Photochemical Methods

Angelo Albini and Luca Germani

1.1
Photochemical Methods

1.1.1
Photochemistry and Organic Synthesis

A cursory look to the literature shows that only about 1% of the published papers classed as organic syntheses by Chemical Abstracts involve a photochemical step. On the other hand, in photochemistry courses it is often stated that excitation by light multiplies by 3 the accessible reaction paths, because the chemistry of the excited singlet and triplet states are added to that of the ground state. It thus appears that photochemical reactions are less used as they may be. As it has been again recently remarked, this limited diffusion may be due to ill-founded prejudices [1].

Two conditions should be verified in order that the potential of photochemical reactions is more extensively exploited. These are:

- That the knowledge of the main classes of such reactions is more largely diffused among synthetic practitioners, so that a photochemical step comes more often into consideration when discussing a synthetic plan.

- That the prejudice that photochemical reactions are mostly unselective, experimentally cumbersome and at any rate difficult to generalize is overcome, so that there is no hesitation in considering the introduction of a photochemical step on the basis of the analogy with known examples, just as one would do with a thermal reaction.

The connection between synthesis and photochemistry is vital. As long as photochemistry is felt as a “sanctuary” of the small group of “professional” photochemists, many synthetic perspectives will be ignored, and this is a negative impact also on mechanistic photochemistry that loses part of its interest. As a matter of fact, this remark is not new. In a talk in Leipzig in 1908, Hans Stobbe, a pioneer of photochemistry (well known for his innovative studies on the photochromism of
fulgides), stressed the importance of devising new photochemical applications in organic chemistry [2]. “Then probably…” he hoped “…organic chemists would become interested and take into account the effect of light on their experiments. Known photoreaction would become better known and new photoreactive compounds will be looked for. Final products and intermediates would be isolated, their structure demonstrated and on the basis of the chemical structure the process will be understood. In this way the physical chemist would always have in his hands a wealth of material for his favorite studies of kinetics and for investigating the relation between radiation and chemical energy.”

Stobbe’s wish has been only partially fulfilled in the century which has elapsed in the meantime. Whilst many photochemical reactions have been discovered, certainly many more wait to be uncovered, and it still holds true that more photochemistry carried out by synthetic chemists would contribute to the growth of photochemistry as a whole. This Handbook represents a modest attempt to contribute towards this aim and to foster the synthetic use of photochemistry. The presentation is referred to the small-scale laboratory synthesis of fine chemicals. In this aspect, the photochemical literature does not differ from the large majority of published synthetic work, most of which is carried out on the 100 mg scale for exploratory studies. However, there is no reason to think that a photochemical reaction is unfit for scaling up. As will shown below, an increase up to the 100 g scale can be obtained in the laboratory by simple arrangements. Furthermore, while the presently running industrial applications are limited in number, they are nonetheless rather important [3]. Some of these are well established, an example being the synthesis of vitamin D₃ which has been produced at the several tons level each year for several decades, and for which dedicated plants continue to be built. This indeed demonstrates that photochemical syntheses are commercially viable.

1.2
Irradiation Apparatus

1.2.1
General

As the name implies, photochemical reactions result from the absorbance of light by the starting reagent. Conditions for a successful course of the photoreaction are that:

- There is good matching between the emission of the light source and the absorption by the reagent; that is, the wavelength emitted by the lamp falls within the absorption band of the reagent.
- Nothing interferes with the photons before they reach the target molecule; for example, the wall of the vessel and the solvent are transparent to \(\lambda_{ex} \).
- Nothing interferes with the electronically excited states and quench them before they react (see Scheme 1.1).
In other cases, rather than irradiating the reagent ("direct" excitation), a photosensitizer or photocatalyst is irradiated and activates the reagent by some mechanism (energy transfer, a redox step, hydrogen abstraction). In this case, the above conditions apply to the sensitizer.

Today, there are several companies which supply lamps as well as complete photochemical reactors (lamp + power supply + reaction flask with accessories, e.g. for gas inlet). However, the complete set may be rather expensive and not necessarily provide the most convenient solution. The most widely used light sources are mercury vapor arcs, both in photochemistry and in indoor and outdoor illumination, and which are classed according to the operating pressure. It is important that the wattage on the lamp label is not confused with the amount of light emitted. The efficiency of conversion into light is low, and the lamp output is dispersed over a range of wavelengths and towards all directions; thus, only a part of the light emitted (in turn, a fraction of the electrical power dissipated) is absorbed. Therefore, it is important to take care of the geometry of the lamp/reaction vessel system as well as of the wavelength matching between lamp emission and reagent absorption, because these factors are at least as important as the lamp power in determining how many molecules of the reagent will be excited. The quantum yield then indicates the fraction of excited states that reacts \(\Phi = \text{molecules reacted}/\text{photons absorbed} \), provided that no competitive quenching occurs. The main characteristics of lamps used for photochemical synthesis are presented in the following sections.

1.2.2 Low-Pressure Mercury Arcs

The most widely used lamps are low-pressure \((10^{-5} \, \text{atm under operating conditions}) \) Hg arcs, of 6–16 W, that are often identified as germicidal lamps or mercury resonance lamps. These are supplied as quartz (or rather “fused silica,” a synthetic amorphous SiO\(_2\)) tubes of various lengths, typically 20–60 cm (although lamps >1 m long are available), and with 1.0–2.4 cm diameter (see Figure 1.1). In these lamps, >80% of the emission occurs at 254 nm (and a fraction at 185 nm, a wavelength to which the common “quartz” is not transparent and thus is available only if a high-purity “UV-grade” quartz is used).

Under these conditions, the excitation of most classes of organic compounds (including many solvents!) is ensured. It must be taken into account that, given the large size of the lamp, the amount of photons emitted per surface unity is low. Therefore, these lamps are most useful for external irradiation by using (quartz!) tubes for the irradiated solutions. The heating under operating conditions is modest.
Multilamp apparatus are commercially available where between eight and 12 lamps are arranged in a circular fashion (40–60 cm diameter), with room inside to accommodate the vessel in which the solution to be irradiated is contained. These were initially marketed by the Southern New England Ultraviolet Co. under the name of “Rayonet,” now the name is often used for similar devices by other companies. These units are fitted with a fan which maintains the temperature below 40°C; otherwise, this might increase in such a confined space (see Figure 1.2).

Figure 1.1 Lamps used for photochemical syntheses. (a) Low-pressure mercury arc; (b, c) phosphor-coated lamps, emission centered at 305 and 370 nm; (d, e) medium- and high-pressure mercury arcs, respectively.

Figure 1.2 Multilamp apparatus fitted with low-pressure mercury lamps and a rotating “merry-go-round” that ensures the uniform illumination of several test tubes. Alternatively, test tubes or other vessel(s) containing the solution to be irradiated can be accommodated.
However, anybody can build an “amateur” version of the irradiation apparatus, simply by placing one to three pairs of lamps (with each pair mounted on a normal lamp holder for household “fluorescent” lamps) around a small space where two to four test tubes or a single cylindrical vessel of larger diameter can be placed. This home-made apparatus can be easily installed (but well separated from the laboratory, in order to maintain appropriate safety precautions, or better still under a ventilated hood to remove ozone; see below and Figure 1.3). In order to maximize the fraction of light absorbed, it is convenient that the tubes are as long as the lamps, or even slightly shorter. The manufacturers can provide lamps of this type in different shapes (U-shaped, coiled) with a more concentrated emission; this makes their use possible in different set-ups, an example being an immersion well apparatus with internal irradiation (see Figure 1.4).

Figure 1.3 Two pairs of lamps used for external irradiation. In the arrangement shown, only a small fraction of the light flux is used.
Low-pressure mercury arcs are manufactured for much more widespread use than preparative photochemistry, and therefore are by far the cheapest light source (particularly if buying them from companies selling optical components can be avoided). Furthermore, these lamps are long-lived (>10,000 h, depending on how they are used), consume less energy, and require only an inexpensive transformer and a starter for operation.

Whilst there is no doubt that these are the most convenient sources, their geometric optimization is difficult and part of the lamp emission may be lost. In the external irradiation set-up, the most convenient choice is to use tubes which are about the same length as the lamps, and contain 20 ml of solution. In fact, this set-up works very well for small-scale photochemical syntheses, with irradiated volumes in the region of 100 ml distributed in a number of quartz test tubes or in a single cylindrical vessel. This set-up is also convenient for optimizing the reactions, since results can easily be compared under different conditions but constant irradiation when placing different solutions in the tubes. One available accessory for these multilamp apparatuses is a “rotating merry-go-round”; this can hold several tubes and ensures equivalent irradiation in all positions (see Figure 1.2).

The lamp emission can be changed by means of a coating made from a phosphor (or a combination of phosphors) that absorbs the almost monochromatic Hg radiation and emits a range of longer wavelengths. Phosphor-coated lamps maintain the same advantages of “quartz” lamps (including price, due to their large-scale manufacture for different uses, including household illumination), and are available in a variety of wavelength ranges. Apart from “fluorescent” lamps for household illumination, which emit over most of the visible (and are useful for dye-photosensitized irradiations), lamps with emission centered at 305, 350 and 370 nm (half-height width 20–40 nm; the last one is known as “Wood” or “black light” lamp) that are most useful for photochemical applications are commercially available (as well as lamps with the emission centered at various wavelengths in the visible). Except for the 305 nm type, Pyrex glassware (transparency limit 300–310 nm, but take into account that the transparency changes somewhat with the use) [4] can be used with phosphor-coated lamps, as there is no emission below that wavelength. The phosphor coating does not alter the electrical characteristics, and these lamps can be interchanged with germicidal lamps in all of the settings mentioned above. Having available three to four pairs each of 254, 305, and 350 (or 370) nm lamps, as well as lamps emitting in the visible range, allows one to carry out any type of small-scale photochemical reaction with negligible financial investment.

One subcategory of low-pressure lamp that might become more important in the future is the electrodeless discharge lamp, which is energized by an external field. These lamps comprise a quartz tube that has been evacuated, leaving behind a small pressure of argon and mercury or other metal or metal halide. Emission is obtained by placing the lamp in a microwave field, for example. Whilst these lamps are available commercially, they may also be built in-house rather easily [5].
1.2.3 Medium- and High-Pressure Mercury Arcs

Medium-pressure (sometimes dubbed “high pressure,” 1–10 atm) mercury arcs are available in different types, ranging from 100 to 1000 W. They are supplied as small ampoules (from 3 to 15 cm in length, depending on the power; see Figure 1.1). The emission consists of a range of lines (the most prominent are those at 313, 366, 405, and 550 nm) over a continuum, while the 254 nm line is strongly diminished. The emission from these lamps is at least 10-fold stronger than that of low-pressure arcs, and occurs over a much smaller surface. In contrast to the previous type, these sources develop a considerable amount of heat, and require several minutes to achieve their optimal temperature, where the emission reaches full intensity. Cooling is required, but running tap water is normally sufficient to maintain the temperature at about 20 °C. Due to these characteristics, these lamps are typically used in an immersion well apparatus with circulating water. If the cooling well is made from Pyrex, the (small) fraction of emission below 300 nm is lost, which may make a difference (see below and Figure 1.4a). The most powerful lamps require a forced circulation for cooling. A suitable power supply is also required for operation, the lifetime is limited, and overall the system is considerably more expensive than the low-pressure lamps. There may also be some concern regarding safety aspects; it is suggested that the reactor is provided with a switch that will cut the power supply in case of an increase in temperature.

Figure 1.4 (a) Immersion well irradiation apparatus; (b) a refrigerated apparatus for conducting reactions at low temperature.
These compact and rather powerful sources are convenient for internal irradiation of volumes of between 100 and 1000 ml, where the emission in any direction is exploited (obviously within the range of absorbed λ); and are well suited for preparative irradiations up to the gram scale. The apparatus can be easily adapted to low-temperature experiments (e.g., at -80°C) by circulating a refrigerant liquid through the lamp jacket (in this case, the lamp must be ignited outside and placed in position when lit, otherwise it will not function) and adding an external cooling bath (see Figure 1.4b) [6]. Lamps doped with different metals are also available; these yield an emission which is richer in some regions of spectrum, and may be better suited to particular photoreactions, although they are generally more expensive.

High-pressure (or “very high” pressure, 200 atm; see Figure 1.1) arcs, ranging from 150 to 1000 W and above, operate at higher temperatures. In this case, the contribution of the continuum is much more important than that at a lower pressure, although the maxima may still be distinguished. The optimal temperature requires several minutes before it is reached, and must be maintained by appropriate cooling. These Hg-lamps are the most powerful and the smallest sources, with a distance between the electrodes of only a few millimeters. In view of the severe operating conditions, such lamps are used in explosion-proof cases (finned for cooling, unless forced cooling is required) that are fitted with mirror and lenses. In this way a collimated emission is obtained, typically 5 cm in diameter, and the lamp is mounted on a optical bench where other optical components can be added (see Figure 1.5).

By inserting either an interference filter or a colored filter, it is possible to select a more or less extended region of the spectrum; likewise, by adding an optical fiber it is possible to direct the beam where desired. This set-up best exploits the characteristics of these powerful lamps, and offers an excellent choice for the irradiation of small surfaces. Consequently, spectrophotometric cuvettes or cylindrical cuvettes are used for the irradiation, which involves small volumes. Such restrictions, as well as the high price and short lifetime of the lamp and its accessories, favors the use of these arcs for kinetics studies and quantum yield measurements, rather than for preparative photochemistry.

![Figure 1.5](image.png)