William Happer, Yuan-Yu Jau, and Thad Walker

Optically Pumped Atoms
William Happer, Yuan-Yu Jau, and Thad Walker

Optically Pumped Atoms
Related Titles

Hill, W. T., Lee, C.

Light-Matter Interaction
Atoms and Molecules in External Fields and Nonlinear Optics
2007
ISBN 978-3-527-40661-6

Riehle, F.

Frequency Standards
Basics and Applications
2004
ISBN 978-3-527-40230-4

Stolze, J., Suter, D.

Quantum Computing
A Short Course from Theory to Experiment
2004
ISBN 978-3-527-40438-4

Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.

Atom-Photon Interactions
Basic Processes and Applications
1992
William Happer, Yuan-Yu Jau, and Thad Walker

Optically Pumped Atoms
Contents

Preface IX
Index to Codes XI

1 Introduction 1

2 Alkali-Metal Atoms 15
2.1 Electronic Energies 15
2.2 Valence-Electron Wave Functions 18
2.3 Hyperfine Structure 20

3 Wave Functions and Schrödinger Space 25
3.1 Uncoupled States 25
3.1.1 Kronecker Products 25
3.1.2 Angular Momentum Matrices 27
3.2 Energy States 28
3.3 Zero-Field States 30

4 Density Matrix and Liouville Space 33
4.1 Purity and Entropy 35
4.2 Ground State, Excited State, and Optical Coherence 35
4.3 Column-Vector and Row-Vector Transforms 36
4.3.1 Column-Vector Transforms 36
4.3.2 Row-Vector Transforms 37
4.3.3 Expectation Values 38
4.4 Superoperators 39
4.4.1 Transposition Matrix 39
4.4.2 Evolution Matrices 40
4.5 Eigendecomposition of G 41
4.5.1 Nullspace 42
4.5.2 Critical Damping 43
4.6 Matrix Transformations from Schrödinger Space to Liouville Space 44
4.6.1 Flat and Sharp Superoperators 44
4.6.2 Square Matrices 46
4.6.3 Commutator Superoperators 47
4.6.4 O-Dot Superoperators 47

5 **Optical Pumping of Atoms** 49
5.1 The Electric Field of Light 49
5.2 The Electric Dipole Moment of Atoms 50
5.2.1 Spherical Tensors 50
5.2.2 Hermitian Conjugates 51
5.2.3 Addition of Angular Momentum 52
5.2.4 Spherical Basis Tensors 53
5.2.5 Identities for Δ and Δ^\dagger 53
5.2.6 Amplitude D 56
5.2.7 Energy Basis 56
5.3 Spontaneous Emission 57
5.4 Electric Dipole Interaction 58
5.5 Rotating Coordinate System 59
5.6 Net Evolution 62
5.6.1 The Amagat Unit of Density 64
5.6.2 Normalization 64
5.6.3 Notation and Coding 65
5.7 Optical Bloch Equations 65
5.8 Liouville Space 66
5.8.1 Transients 68
5.8.2 Steady State 69
5.8.3 Steady State Versus Detuning 70

6 **Quasi-Steady-State Optical Pumping** 73
6.1 Ground-State Evolution 74
6.2 Excited-State Evolution 76
6.3 Collisions 77
6.4 Saturation 78
6.5 Identities 78
6.6 Net Evolution 80
6.7 Negligible Stimulated Emission 81
6.8 High-Pressure Pumping 82
6.8.1 Liouville Space 84
6.9 Spectral Width of Pumping Light 87
6.9.1 Gaussian Spectral Profiles 88
6.9.2 Plasma Dispersion Function 89
6.10 Doppler Broadening 90

7 **Modulation** 93
7.1 Magnetic Resonance 94
7.2 Modulated Light 94
7.2.1 High Pressure 95
7.2.2 Lower Pressure 95
7.2.3 Modulated Optical Pumping Matrices 96
7.3 Secular Approximation 97
7.4 Attenuation of Modulated Coherence in Passing through the Excited State 100
7.5 Examples 102
7.5.1 Isolated Magnetic Resonances 102
7.5.2 Zeeman Magnetic Resonances 103
7.5.3 Push–Pull Pumping 106

8 Light Propagation 109
8.1 Induced Electric Dipole Moment 109
8.2 Absorption Cross Section 111
8.3 Small Magnetic Fields 112
8.4 Evolution of a Beam in Space and Time 114
8.5 First-Order Propagation Equation 115
8.6 Propagation of Weak Probe Light 116
8.7 Faraday Rotation 117
8.8 Specific Absorption 118
8.9 Fluorescent Light 119

9 Radiation Forces 121
9.1 Mean Force 121
9.2 Forces from Monochromatic Light 123
9.3 Forces in Magneto-Optical Traps 124
9.3.1 Repump Lasers 130
9.4 Pointing Probability 132
9.5 Momentum Space 135
9.6 Evolution in Spin-Momentum Space 138
9.7 Liouville Space 140
9.8 Compactification 140
9.8.1 Compactified pq Space 141
9.8.2 Compactification within a Tile 143
9.9 Displays 147
9.9.1 Momentum-Space Displays 147
9.9.2 Position-Space Displays 149
9.10 Momentum Diffusion 151
9.11 Momentum Diffusion Due to Spontaneous Emission 152
9.12 Momentum Diffusion from Pumping 153

10 Relaxation of Polarized Atoms 159
10.1 S-Matrix 160
10.2 Collisions in the Gas 163
10.3 Weak Collisions 164
10.4 Relative Power Spectrum 166
10.5 Sudden Collisions 167
10.6 Strong Collisions 168
10.7 Hyperfine-Shift Interaction 171
10.8 Spin–Rotation Interaction 175
10.8.1 Binary Collisions 176
10.8.2 Experimental Measurements 178
10.9 Spin Exchange between Alkali-Metal Atoms and Noble Gas Atoms 178
10.9.1 Binary Collisions 181
10.9.2 Spin Temperature 184
10.9.3 Experimental Measurements 186
10.10 Spatial Diffusion 189
10.11 Adsorption on the Walls 194
10.12 Spin Exchange between Pairs of Alkali-Metal Atoms 198
10.12.1 Partial-Wave Analysis 198
10.12.2 Semiclassical Calculation of Partial-Wave Cross Sections 207
10.13 Pressure Dependence of Relaxation in the Dark 208
10.14 Collisions of Excited Atoms 212

11 Mathematical Appendix 219
11.1 Electronic Multipoles 219
11.2 Projection Operators in Terms of S or J 221
11.3 Recoupling Example 223

References 225
Index 231
Preface

The authors of this book have done experimental work in many areas related to optical pumping, for example, precision spectroscopy, atomic clocks, magnetometers, hyperpolarized noble gas nuclei, and trapped atoms. One might legitimately wonder why we would write a book with so little discussion of experimental detail and with so many equations and computer codes. The reason is that few professional theoreticians work in areas related to optical pumping, and experimentalists are usually left to their own devices. No special expertise is needed to model optically pumped systems as two- or three-level atoms, and these simplified models often give good qualitative insight into observed phenomena. But such models are often inadequate for quantitative analysis, they have limited predictive value, and they can lead to very serious errors in the determination of resonance lineshapes, transient responses, key experimentally determined parameters that account for relaxation phenomena, and so on. In this book, we show that modern computer software makes it possible to model real, multilevel atoms in much the same way as two-level atoms.

Throughout the book, the presentation is structured to allow translation of the key formulas into practical, concise, and readable computer codes. Included are many examples of practical computer codes that have been used with success in our research. With minor changes, these codes can be modified to model very sophisticated modern experiments using optically pumped atoms. For the convenience of the readers, we have set up an open-source Web site (http://minds.wisconsin.edu/handle/1793/35675) to archive the computer codes contained in this book. Also included are additional codes that can be used to model a wide range of optical-pumping and spin-relaxation phenomena.

We are grateful to our families for patience and support while we were writing this book. Special thanks are due to Prof. Kiyoshi Ishikawa and Mr. Ben Olsen for reading drafts of the book and for providing many helpful suggestions. We thank Princeton University and the University of Wisconsin for giving us the opportunity to complete this book. We hope that the book falls into the traditional three missions of universities, the creation, transmission, and preservation of knowledge. Special thanks are due to the University of Wisconsin for maintaining the permanent Web site. Finally, we could not have acquired the background knowledge to write this book without the generous, long-term support of the Air Force Office.
of Scientific Research, the Army Research Office, the Defense Advance Research Projects Agency, the National Science Foundation, the Department of Energy, and the National Institutes of Health.

Princeton and Madison, October 2009

William Happer
Yuan-Yu Jau
Thad G. Walker
Index to Codes

1.1: Schroedinger matrix conversion to Liouville vector 4
1.2: Liouville vector to Schroedinger matrix conversion 4
1.3: Transient response by matrix exponentiation 8
1.4: Use of nullfast() to speed null space computation 10
1.5: Evaluate and plot steady-state spin polarizations 10
1.6: Logical column vector for populations 12
1.7: Units ... 14
2.1: Atomic parameter values ... 23
3.1: Spin matrices .. 27
3.2: Schroedinger energies and unitary matrices 30
3.3: Dot product of matrices .. 30
3.4: Clebsch-Gordan coefficients .. 31
3.5: Delta symbol .. 31
3.6: Zero-field energies .. 32
4.1: Projection operators .. 38
4.2: Liouville energy basis states and transposition operator 39
4.3: Flat matrices ... 46
4.4: Sharp matrices ... 46
5.1: 6-j symbols ... 55
5.2: Spherical and Cartesian components of dimensionless dipole operator 56
5.3: Energy basis matrices .. 57
5.4: Coupling matrix for spontaneous emission 58
5.5: Light-atom interaction matrix ... 60
5.6: Resonant frequency shift matrices 65
5.7: Uniform relaxation matrix and damping operator 67
5.8: Transient response of Optical Bloch Equations 68
5.9: Evaluate and plot steady-state populations 69
5.10: State populations vs detuning .. 70
6.1: Transients and steady state of high pressure optical pumping ... 85
6.2: Cross product of matrices ... 86
6.3: Fadeeva function .. 90
7.1: Sublevel populations for microwave magnetic resonance 103
7.2:	Sublevel populations for Zeeman magnetic resonance	105
7.3:	Sublevel populations for push-pull pumping	107
8.1:	Absorption cross sections for unpolarized atoms	113
9.1:	Matrices for quasi steady-state analysis of a MOT	128
9.2:	MOT sublevel populations and forces	129
9.3:	MOT forces including repumper	131
9.4:	Matrices assuming perfect repumping, cycling transition	136
9.5:	Momentum and azimuthal labels for compactified momentum space	144
9.6:	Left and right momentum and spin quantum numbers	144
9.7:	Coupling coefficients for momentum space optical pumping	145
9.8:	Optical pumping matrix for momentum space	145
9.9:	Steady-state of momentum space optical pumping	146
9.10:	Momentum-space displays	147
9.11:	Pointing probability plot	149
9.12:	Momentum diffusion coefficients	157
1 Introduction

The basic idea of optical pumping [1], for which Kastler [2] received the 1966 Nobel Prize in physics, is that the photons in a beam of light can transfer order to atoms or molecules by scattering. Originally the term “optical pumping” referred to ordering the spin degrees of freedom. More recently, optical pumping has been widely used to order the translational as well as the spin degrees of freedom for cooling and trapping experiments.

Optical pumping experiments can be quite simple and inexpensive and still yield precise spectroscopic information. They can also be quite intricate and require substantial resources. Optical pumping is a fascinating area of study in its own right, but in addition it has many applications (clocks, magnetometers, quantum optics, spin-polarized nuclei) where the central focus is elsewhere. We will assume that the reader of this book already has a basic understanding of quantum mechanics, atomic physics, optics, and magnetic resonance. There are many excellent books that discuss these issues. Familiarity with linear algebra, complex analysis, Fourier and Laplace transforms, and the quantum theory of angular momentum would be helpful for following some of the mathematics in this book.

Because real atoms can have a large number of spin sublevels, because the optical interactions, especially at low buffer-gas pressures, depend in a detailed way on the spectral profile and polarization of the light, and because of the complicated collisional relaxation mechanisms, realistic numerical modeling of optically pumped atoms is a computational challenge. Consequently, the system is often represented with models [3–5] that consider only a few spin sublevels and greatly simplify the physics of optical pumping and spin relaxation. Such simplified models can be valuable for conceptual insights and can give results in qualitative agreement with observations. A major aim of this book is to show that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms under most experimental conditions, for example, magnetic resonance with one or more oscillating magnetic fields, coherent-Raman-scattering (coherent population trapping) resonances induced by modulated light, magneto-optical forces on multilevel atoms, and various spin-relaxation processes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville space of density matrices, ρ, rather than in the traditional Schrödinger (Hilbert) space of wave functions.
Introduction

Liouville space has long been used, either explicitly or implicitly, to analyze physics like that of optical pumping. A good general introduction to Liouville space from a viewpoint similar to ours can be found in the book *Principles of Magnetic Resonance in One and Two Dimensions*, by Ernst et al. [6]. Another good introduction with more emphasis on lasers is *The Liouville Space Formalism in Atomic Spectroscopy*, by Schuller [7]. The focus of our book on aspects of Liouville space that are particularly well adapted to computer programming appears to be unique.

To make the discussion of the book less abstract, we have illustrated key points with sections of MATLAB code, which can be assembled to generate fairly sophisticated programs. We have tried to write the codes for brevity and maximum clarity, not for maximum speed. Many sections of code will run much faster with minor modifications. Analogous code can be written for other scientific-computing software, for example, Mathematica. Some familiarity with scientific-computing software would be helpful to a reader interested in writing specialized programs based on these illustrative codes. The codes can be downloaded from http://minds.wisconsin.edu/handle/1793/35675

Wherever possible, we have tried to use traditional symbols for familiar physical quantities. Regrettably, this means that we use the same symbols to represent quite different physical quantities, for example, E for the energy or for the amplitude of the electric field, ρ for electric charge density or for the density matrix of quantum mechanics, and S for the electric spin quantum number or for the Poynting vector (electromagnetic energy flux). Wherever the context is sufficient to make the meaning of the symbol clear, we have avoided introducing new fonts, superscripts, or subscripts to resolve the ambiguity.

An Example

Some of the most important ideas of Liouville space can be illustrated by the familiar example of the hypothetical spin-1/2 atom shown in Figure 1.1. The probability of finding the atom in sublevel $|\alpha\rangle$ with azimuthal quantum number $m_s = \alpha = +1/2$ is $\rho_{\alpha\alpha} = 1/2 + \langle S_z \rangle$ and the probability of finding the atom in sublevel $|\beta\rangle$ with $m_s = \beta = -1/2$ is $\rho_{\beta\beta} = 1/2 - \langle S_z \rangle$. Here $\langle S_z \rangle$ is the expectation value of the longitudinal spin of the atom. The off-diagonal elements (coherences) of the density matrix, $\rho_{\alpha\beta} = \langle S_x - i S_y \rangle$ and $\rho_{\beta\alpha} = \langle S_x + i S_y \rangle$, describe transverse components of the spin. For the conditions outlined in the caption of Figure 1.1, the elements of the density matrix change at the rates

$$\frac{d}{dt} \rho_{\alpha\alpha} = 2 f \frac{\Gamma_p}{2} \rho_{\beta\beta} - \frac{\Gamma_c}{2} (\rho_{\alpha\alpha} - \rho_{\beta\beta}) - \frac{\omega}{2} (\rho_{\beta\alpha} + \rho_{\alpha\beta}),$$

$$\frac{d}{dt} \rho_{\beta\alpha} = -(\Gamma_p + \Gamma_c) \rho_{\beta\alpha} + \frac{\omega}{2} (\rho_{\alpha\alpha} - \rho_{\beta\beta}),$$

$$\frac{d}{dt} \rho_{\alpha\beta} = -(\Gamma_p + \Gamma_c) \rho_{\alpha\beta} + \frac{\omega}{2} (\rho_{\alpha\alpha} - \rho_{\beta\beta}),$$

$$\frac{d}{dt} \rho_{\beta\beta} = -2 f \frac{\Gamma_p}{2} \rho_{\beta\beta} + \frac{\Gamma_c}{2} (\rho_{\alpha\alpha} - \rho_{\beta\beta}) + \frac{\omega}{2} (\rho_{\beta\alpha} + \rho_{\alpha\beta}).$$

(1.1)
Figure 1.1 Pumping of a hypothetical alkali-metal atom with no nuclear spin. The quantization (x) axis is defined by the propagation direction of a circularly polarized light beam that pumps atoms out of the ground-state sublevel with \(m_S = \beta = -1/2 \) at a rate \(2\Gamma_p \). The light is weak enough for stimulated emission of excited atoms to be neglected. Owing to spontaneous radiative emission and quenching collisions, a fraction \(f \) of excited atoms decays to the sublevel with \(m_S = \alpha = +1/2 \), and the remaining fraction returns to the initial sublevel. For pure spontaneous emission we would have \(f = 1/3 \). Spin-changing collisions damp the ground-state spin polarization at the rate \(\Gamma_c \). An externally applied magnetic field causes the ground-state atoms to rotate about the y axis at rate \(\omega \).

We can group the elements \(\rho_{\mu\nu} \) as a \(2 \times 2 \) matrix, \(\rho \), in Schrödinger space

\[
\rho = \begin{bmatrix} \rho_{\alpha\alpha} & \rho_{\alpha\beta} \\ \rho_{\beta\alpha} & \rho_{\beta\beta} \end{bmatrix} = \sum_{\mu\nu} |\mu\rangle\langle\nu| \rho_{\mu\nu},
\] (1.2)

or as a \(4 \times 1 \) column vector, \(|\rho\rangle \), in Liouville space

\[
|\rho\rangle = \begin{bmatrix} \rho_{\alpha\alpha} \\ \rho_{\beta\alpha} \\ \rho_{\alpha\beta} \\ \rho_{\beta\beta} \end{bmatrix} = \sum_{\mu\nu} |\mu\nu\rangle \rho_{\mu\nu}.
\] (1.3)

The column vector \(|\rho\rangle \) of (1.3) is formed from the matrix \(\rho \) of (1.2) by placing each column of \(\rho \) below the one to its left.

Bases The basis matrices \(|\mu\rangle\langle\nu| \) of the expansion (1.2) are

\[
|\alpha\rangle\langle\alpha| = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad |\beta\rangle\langle\alpha| = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},
\]

\[
|\alpha\rangle\langle\beta| = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad |\beta\rangle\langle\beta| = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.
\] (1.4)
and the basis vectors of the expansion (1.3) are

\[
|\alpha\alpha\rangle = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad |\beta\alpha\rangle = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix},
\]

\[
|\alpha\beta\rangle = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad |\beta\beta\rangle = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.
\]

(1.5)

In accordance with the ordering convention of (1.2) and (1.3) we can denote the transformation of a basis matrix to a basis vector by

\[
|\mu\nu\rangle = |\langle \mu | v \rangle|.
\]

(1.6)

Expansion Amplitudes
The expansion amplitudes of (1.2) can be written as

\[
\rho_{\mu\nu} = \text{Tr} \left[(|\mu\rangle \langle v|)^\dagger \rho \right] = \langle \mu | \rho | v \rangle.
\]

(1.7)

Similarly, the expansion amplitudes of (1.3) can be written as

\[
\rho_{\mu\nu} = \langle \mu | \nu | \rho \rangle,
\]

(1.8)

where the row vectors, \((\mu | \nu | = |\mu\rangle \langle v|\)\), are

\[
(\alpha\alpha) = [1 \ 0 \ 0 \ 0],
\]

\[
(\beta\alpha) = [0 \ 1 \ 0 \ 0],
\]

\[
(\alpha\beta) = [0 \ 0 \ 1 \ 0],
\]

\[
(\beta\beta) = [0 \ 0 \ 0 \ 1].
\]

(1.9)

In MATLAB, the coding statement to generate the column vector \(\text{crho}\), representing \(|\rho\rangle\) of (1.3), from \(\rho\), representing \(|\rho\rangle\) of (1.2), is

Code 1.1

\[
\text{crho} = \rho(:)
\]

The inverse coding statement, to convert the column vector \(\text{crho}\) back to a \(2 \times 2\) matrix, is

Code 1.2

\[
\rho = \text{reshape} (\text{crho}, 2, 2)
\]
The Damping Matrix. We can write (1.1) as the matrix equation

\[\frac{d}{dt} |\rho\rangle = -G |\rho\rangle . \]

(1.10)

The damping matrix is

\[G = \Gamma_p A_p + \Gamma_c A_c + i\omega S_y^\text{©} \],

\[= \frac{1}{2} \begin{bmatrix} \Gamma_c & \omega & \omega & -4f \Gamma_p - \Gamma_c \\ -\omega & 2\Gamma_p + 2\Gamma_c & 0 & \omega \\ -\omega & 0 & 2\Gamma_p + 2\Gamma_c & \omega \\ -\Gamma_c & -\omega & -\omega & 4f \Gamma_p + \Gamma_c \end{bmatrix}. \]

(1.11)

The symbols \(A_p, A_c, \) and \(S_y^\text{©} \) represent “superoperators” for Liouville space. The superoperators that account for optical pumping and damping are

\[A_p = \begin{bmatrix} 0 & 0 & 0 & -2f \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2f \end{bmatrix} \]

(1.12)

and

\[A_c = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \]

(1.13)

The \(y \) component of the Liouville-space spin operator, a “commutator superoperator” that we will discuss in more detail below, is

\[S_y^\text{©} = \frac{1}{2i} \begin{bmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & -1 & 0 \end{bmatrix} \]

(1.14)

In the body of this book, we will discuss systematic ways to generate superoperators such as \(A_p, A_c, \) and \(S_y^\text{©} \).

Alternative Basis. Instead of using the simple basis matrices of (1.4), we will often find it convenient to use other linearly independent (but not necessarily orthonormal) bases. For example, we can use unit matrix \(1^{(s)} \) and the spin operators,

\[1^{(s)} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad S_x = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \]

\[S_y = \frac{1}{2i} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad S_z = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}. \]

(1.15)
In analogy to (1.2) and (1.3), the column-vector equivalents of the matrices in (1.15) are

\[
|1^{\text{f}}\rangle = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad |S_x\rangle = \frac{1}{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix},
\]

\[
|S_y\rangle = \frac{1}{2i} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \quad |S_z\rangle = \frac{1}{2} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.
\]

(1.16)

The Hermitian conjugate row vectors corresponding to (1.16) are

\[
(1^{\text{f}})\dagger = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix},
\]

\[
(S_x)\dagger = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix},
\]

\[
(S_y)\dagger = \frac{1}{2i} \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix},
\]

\[
(S_z)\dagger = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix}.
\]

(1.17)

We see that the total probability of finding the atom in some ground-state sublevel is

\[
\text{Tr}[1^{\text{f}}\rho] = \rho_{\alpha\alpha} + \rho_{\beta\beta} = (1^{\text{f}}|\rho). \tag{1.18}
\]

In (1.18) we have assumed that the pumping rate \(\Gamma_p\) is so small compared with the spontaneous decay rate and collisional quenching rates of the excited atoms that the probability of finding atoms in the excited state is negligibly small, and we can write

\[
(1^{\text{f}}|\rho) = 1. \tag{1.19}
\]

The expectation value of the longitudinal spin \(S_z\) of the atom is

\[
\langle S_z \rangle = \text{Tr}[S_z\rho] = \frac{1}{2}(\rho_{\alpha\alpha} - \rho_{\beta\beta}) = \langle S_z|\rho\rangle. \tag{1.20}
\]

In like manner, we find \(\langle S_x \rangle = (S_x|\rho)\) and \(\langle S_y \rangle = (S_y|\rho)\). The expectation value of an arbitrary (not necessarily Hermitian) operator \(X\) is

\[
\langle X \rangle = \langle X^\dagger|\rho\rangle. \tag{1.21}
\]

Constraints From inspection of (1.11)–(1.14) we see that

\[
(1^{\text{f}}|A_p = 0, \quad (1^{\text{f}}|A_c = 0,
\]

\[
(1^{\text{f}}|S_y = 0, \quad \text{and} \quad (1^{\text{f}}|G = 0. \tag{1.22}
\]
In view of (1.22) and (1.11), we can multiply (1.10) by \((1^{S_1}|)\) to find
\[
\frac{d}{dt} \text{Tr}[\rho] = \frac{d}{dt} (1^{S_1}|\rho) = -(1^{S_1}|G|\rho) = 0 .
\] (1.23)

We see that the constraints (1.22) ensure that the number of atoms neither increases nor decreases as a result of the various evolution mechanisms, pumping, collisional relaxation, or Larmor precession. The evolution described by (1.10) must also keep the density matrix Hermitian. This implies an additional constraint on \(G\) that we will discuss in more detail in the body of this book, but which we will outline here. Define a transposition matrix, \(T\), a superoperator that transforms the basis states (1.5) of Liouville space as
\[
T|\mu\nu\rangle = |\nu\mu\rangle .
\] (1.24)

For the example discussed here we have
\[
T = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} .
\] (1.25)

We define the Liouville conjugate, \(G^{\dagger}\), of a superoperator \(G\) by
\[
G^{\dagger} = T G^* T .
\] (1.26)

Here \(G^*\) is the complex conjugate of \(G\). As we will discuss in more detail below, in order that the evolution equation (1.10) keep \(\rho\) Hermitian we must have
\[
G = G^{\dagger} .
\] (1.27)

The constraints (1.22) and (1.27) on \(G\), and additional constraints that we will mention later, are analogous to the constraint \(H = H^\dagger\) for the Hamiltonian \(H\) of Schrödinger space, which ensures that the wave function \(|\psi\rangle\) changes in a way that keeps \(\langle \psi | \psi \rangle = 1\).

Eigenvectors Except for unusual situations of “critical damping”, the damping matrix \(G\) of (1.11) will have four linearly independent right (column) eigenvectors, \(|\gamma_j\rangle\), and a corresponding set of left (row) eigenvectors, which we denote by \(\langle \gamma_j |\). These are defined, aside from normalization factors, by
\[
G|\gamma_j\rangle = \gamma_j|\gamma_j\rangle \quad \text{and} \quad \langle \gamma_j |G = \langle \gamma_j |\gamma_j .
\] (1.28)

As long as the eigenvectors are linearly independent, we can use them as a basis for Liouville space and we can normalize them such that
\[
\langle \gamma_j |\gamma_k \rangle = \delta_{jk} .
\] (1.29)

Then we can write the eigenvector expansion of \(G\) as
\[
G = \sum_j \gamma_j|\gamma_j\rangle \langle \gamma_j | .
\] (1.30)
Transients The formal solution of (1.10) is

\[
|\rho_t\rangle = e^{-Gt}|\rho_0\rangle. \tag{1.31}
\]

Here \(|\rho_0\rangle\) is the value of \(|\rho\rangle\) at time \(t = 0\), and \(|\rho_t\rangle\) is the value at time \(t \geq 0\). If the atoms are unpolarized at time \(t = 0\), we would have

\[
\rho_0 = \frac{1}{2} 1^{(s)}, \quad \text{or} \quad |\rho_0\rangle = \frac{1}{2} |1^{(s)}\rangle. \tag{1.32}
\]

A MATLAB code that carries out the matrix exponentiation of (1.31) to evaluate the transient response of the model atom is

Code 1.3

```matlab
Gmp=input('Gmp=');%optical pumping rate
Gmc=input('Gmc=');%collisional relaxation rate
f=input('f=');%fractional transfer rate
w=input('w=');%rotation rate about y axis
PS=[1 0; 0 1];%unit operator for Schrodinger space
cPS=PS(:); rPS=cPS';%column, row vectors from PS
Ap=[0 0 0 -2*f;0 1 0 0 0 0 1 0; 0 0 0 2*f];%pumping operator
Ac=[1 0 0 -1;0 2 0 0;0 0 2 0;-1 0 0 1]/2;%collision operator
%Spin operators in Schrodinger space
Sx=[0 1;1 0]/2; Sy=[0 1;1 0]/(2*i); Sz=[1 0; 0 -1]/2;
cSx=Sx(:);cSz=Sz(:); rSx=cSx';rSz=cSz';%column, row vectors from Sj
SyC=[0 1 1 0;-1 0 0 1;-1 0 0 1;0 -1 -1 0]/(2*i);%spin superoperator
G=Gmp*Ap+Gmc*Ac+i*w*SyC;%damping superoperator
nt=100; t=linspace(0,5,nt);%sample times
rho=zeros(4,nt);
for k=1:nt
    rho(:,k)=expm(-G*t(k))*cPS/2;
end
cf; plot(t,real(rSz*rho),'b-'); hold on; grid on;
plot(t,real(rSx*rho),'r:'); xlabel('time t');
legend('
\langle S_z \rangle', '
\langle S_x \rangle');
```

Figure 1.2 shows a representative transient calculated with Code 1.3.

Eigenvector Expansions For situations where \(G\) can be written as an eigenvector expansion, we can substitute (1.30) into (1.31) to find

\[
|\rho_t\rangle = \sum_j |\gamma_j\rangle\langle\gamma_j|\rho_0\rangle e^{-\gamma_j t}. \tag{1.33}
\]

Here \(\langle\gamma_j|\rho_0\rangle\) is the “weight” of the \(j\)th mode at time \(t = 0\). The solution is the sum of decaying exponentials with damping rates \(\gamma_j\) that may be complex. For critical damping, when the particular value of some parameter, such as the damping rate or the magnetic field, causes two eigenvalues of \(G\) to converge to a common value, \(\gamma_c\),
Figure 1.2 Transient calculated with Code 1.3 on page 8 for the parameters $I_p = 1$, $I_c = 0.1$, $f = 0.4$, and $\omega = 5$. The horizontal lines are the steady-state spin polarizations calculated with Code 1.5 on page 10.

and when the corresponding right eigenvectors also converge to the same vector, $|\gamma_c\rangle$, there are not enough independent eigenvectors of G to span Liouville space, and the eigenvector expansion (1.30) of G does not exist. This makes no difference if transients are calculated with (1.31), but the expression (1.33) must be revised to include not only a term with the simple exponential time dependence, $e^{-\gamma_c t}$, but also a term with the “critically damped time dependence”, $te^{-\gamma_c t}$. We will discuss critical damping in more detail below.

Steady State For time evolution governed by (1.10), the steady-state solution, $|\rho_\infty\rangle$, is defined by

$$G |\rho_\infty\rangle = 0,$$

with

$$(1^{S1}|\rho_\infty\rangle = 1.$$ \hspace{1cm} (1.34) (1.35)

In linear algebra, (1.34) is said to define the null space, $|\rho_\infty\rangle$, of G. With the exception of unusual, multistable conditions, there is a unique steady state for optical pumping problems, so the null space is one-dimensional. Modern mathematical software finds null spaces very efficiently, and when the null space is known to be one-dimensional, even faster algorithms are available. For example, the following MATLAB code nullfast() can find the one-dimensional null space more than 10 times faster than the conventional MATLAB built-in routine null().
Code 1.4

function [NV invM]= nullfast(M)
K=max(max(abs(M)))*1e-15; warning off;%search the largest matrix element
invM=K*inv(M+K*eye(length(M)));%find the dominant matrix column
[i j]=max(sum(invM));%pick up the matrix column as the null vector
NV=invM(:,j);%normalize the null vector

If the following MATLAB statements are appended to Code 1.3 on page 8 the resulting program will evaluate and plot the steady-state spin polarizations.

Code 1.5

rhoin = null(G); rhoin = rhoin/(rPS*rhoin);
plot(t,real(rSz*rhoin)*ones(1,nt),'b-');
plot(t,real(rSx*rhoin)*ones(1,nt),'r-.');

Analytic Formulas for Eigenvectors From inspection of (1.34) and (1.28) we see that we can interpret the steady-state solution \(|\rho_\infty \rangle \) as the right eigenvector, \(|\gamma_1 \rangle = |\rho_\infty \rangle \), of \(G \) with zero eigenvalue, \(\gamma_1 = 0 \). From inspection of (1.22) we see that the corresponding left eigenvector is \(\langle \gamma_1 | = (1^{1S}) \). Solving (1.34) with the matrix \(G \) from (1.11), we find that the steady-state mode has the properties

\[
\gamma_1 = 0, \quad |\gamma_1 \rangle = \frac{1}{2} \begin{bmatrix} 1 + 2b \\ 2a \\ 2a \\ 1 - 2b \end{bmatrix}, \\
\langle \gamma_1 | = (1^{1S}) = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}.
\]

The coefficients \(a \) and \(b \) are

\[
a = \langle S_x \rangle = \frac{f \Gamma_p \omega}{(2f \Gamma_p + \Gamma_c)(\Gamma_p + \Gamma_c) + \omega^2},
\]

\[
b = \langle S_z \rangle = \frac{f \Gamma_p (\Gamma_p + \Gamma_c)}{(2f \Gamma_p + \Gamma_c)(\Gamma_p + \Gamma_c) + \omega^2}.
\]

The steady-state solution \(|\gamma_1 \rangle \) represents an ensemble of atoms with a spin polarization in the \(zx \) plane, perpendicular to the axis of rotation (the \(y \) axis) of the magnetic field.

Field-Aligned Mode By symmetry it is clear that another mode (eigenvector) must represent spins polarized parallel to the magnetic field. From inspection of (1.11)
we see that
\[\gamma_2 = \Gamma_p + \Gamma_c, \quad |\gamma_2\rangle = |S_y\rangle = \frac{1}{2i} \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \]
\[\langle \gamma_2 | = 2(S_y| = [0 \quad -i \quad i \quad 0]. \] (1.38)

Critical-Damping Modes Like the steady-state mode (1.36), the remaining two modes, \(|\gamma_-\rangle = |\gamma_3\rangle \) and \(|\gamma_+\rangle = |\gamma_4\rangle \), represent ensembles of atoms with spin polarization in the \(zx \) plane, perpendicular to the axis of rotation (the \(y \) axis) of the magnetic field. They can be written as
\[|\gamma_{\pm}\rangle = c_{\pm}|S_x\rangle + d_{\pm}|S_z\rangle = \frac{1}{2} \begin{bmatrix} d_{\pm} \\ c_{\pm} \\ c_{\pm} \\ -d_{\pm} \end{bmatrix}. \] (1.39)

Using (1.39) with (1.28), we find that the eigenvalues are
\[\gamma_{\pm} = \gamma_c \pm \sqrt{\omega_c^2 - \omega^2}. \] (1.40)

We can write the critical damping frequency and the critical damping rate \(\gamma_c \) as
\[\omega_c = (1/2 - f)\Gamma_p \quad \text{and} \quad \gamma_c = (1/2 + f)\Gamma_p + \Gamma_c, \] (1.41)
and with the relative value of the coefficients given by
\[\begin{bmatrix} c_{\pm} \\ d_{\pm} \end{bmatrix} = \begin{bmatrix} \omega_c \pm \sqrt{\omega_c^2 - \omega^2} \\ \omega \end{bmatrix}. \] (1.42)

The eigenvalues \(\gamma_{\pm} \) are real and distinct for \(\omega^2 < \omega_c^2 \), and they are complex-conjugate pairs if \(\omega^2 > \omega_c^2 \). At the critical damping frequency, when \(\omega^2 = \omega_c^2 \), the rates \(\gamma_+ \) and \(\gamma_- \) become identical, and from (1.42) we see that there is a single eigenvector for the degenerate damping rate \(\gamma_c \).

Compactification If the transverse magnetic field is zero (if \(\omega = 0 \)), the system has symmetry about the \(z \) axis and (1.11) reduces to
\[G = \Gamma_p A_p + \Gamma_c A_c \]
\[= \frac{1}{2} \begin{bmatrix} \Gamma_c & 0 & 0 & -4f\Gamma_p - \Gamma_c \\ 0 & 2\Gamma_p + 2\Gamma_c & 0 & 0 \\ 0 & 0 & 2\Gamma_p + 2\Gamma_c & 0 \\ -\Gamma_c & 0 & 0 & 4f\Gamma_p + \Gamma_c \end{bmatrix}. \] (1.43)

From inspection of (1.10) and (1.43) we see that for zero transverse field, the population \(\rho_{aa} \) couples only to the other population \(\rho_{bb} \) and vice versa. The coherences \(\rho_{a\beta} \) and \(\rho_{\beta a} \) couple only to themselves. In such cases it is useful to partition the