Plasma Technology for Hyperfunctional Surfaces

Food, Biomedical and Textile Applications

Edited by
Hubert Rauscher, Massimo Perucca, and Guy Buyle
Plasma Technology for Hyperfunctional Surfaces

Edited by
Hubert Rauscher, Massimo Perucca, and Guy Buyle
Related Titles

Kawai, Y., Ikegami, H., Sato, N., Matsuda, A., Uchino, K., Kuzuya, M., Mizuno, A. (eds.)

Industrial Plasma Technology
Applications from Environmental to Energy Technologies
2010
ISBN: 978-3-527-32544-3

Heimann, R. B.

Plasma Spray Coating
Principles and Applications
2008
ISBN: 978-3-527-32050-9

Hippler, R., Kersten, H., Schmidt, M., Schoenbach, K. H. (eds.)

Low Temperature Plasmas
Fundamentals, Technologies and Techniques
2008
ISBN: 978-3-527-40673-9

d'Agostino, R., Favia, P., Kawai, Y., Ikegami, H., Sato, N., Arefi-Khonsari, F. (eds.)

Advanced Plasma Technology
2008
ISBN: 978-3-527-40591-6

Smirnov, B. M.

Plasma Processes and Plasma Kinetics
580 Worked-Out Problems for Science and Technology
2007
ISBN: 978-3-527-40681-4
Contents

Preface XV
List of Contributors XIX
List of Contacts XXIII

Part I Introduction to Plasma Technology for Surface Functionalization 1

1 Introduction to Plasma and Plasma Technology 3
 Massimo Perucca
 1.1 Plasma: the Fourth State of Matter 3
 1.2 Historical Highlights 4
 1.3 Plasma Fundamentals 6
 1.3.1 Free Ideal Gas 7
 1.3.2 Interacting Gas 8
 1.3.3 The Plasma as a Fluid 11
 1.3.4 Waves in Plasmas 12
 1.3.5 Relevant Parameters that Characterize the State of Plasma 14
 1.4 Classification of Technological Plasmas 17
 1.4.1 Hot (Thermal) Plasmas and Their Applications 18
 1.4.2 Cold (Nonthermal) Plasmas and Their Applications 19
 1.5 Reactive Plasmas 22
 1.5.1 Elementary Plasma—Chemical Reactions 22
 1.5.2 Elastic Scattering and Inelastic Thomson Scattering: Ionization Cross-section 24
 1.5.3 Molecular Ionization Mechanisms 25
 1.5.4 Stepwise Ionization by Electron Impact 26
 1.6 Plasma Sheaths 28
 1.7 Summary 31
 References 31

Edited by Hubert Rauscher, Massimo Perucca, and Guy Buyle
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32654-9
2 Plasma Systems for Surface Treatment

Guy Buyle, Joachim Schneider, Matthias Walker, Yuri Akshev, Anatoly Napartovich, and Massimo Perucca

2.1 Introduction 33
2.2 Low Pressure Plasma Systems 34
2.2.1 Microwave Systems 35
2.2.1.1 Introduction 35
2.2.1.2 Standard Microwave System for Textile Treatment 36
2.2.1.3 Example: Duo-Plasmaline—a Linearly Extended Plasma Source 36
2.2.1.4 Electron Cyclotron Resonance Heated Plasmas 40
2.2.2 Capacitively Coupled Systems 43
2.2.2.1 Introduction 43
2.2.2.2 Capacitive Coupled Plasma for Biomedical Applications 44
2.2.3 Physical Vapor Deposition Plasma: LARC®
2.2.3.1 Background 45
2.2.3.2 Cathodic Arc PVD Systems 45
2.2.3.3 Example: Treatment of Food Processing Tools by LARC® PVD System 48
2.3 Atmospheric Pressure Plasma Systems 49
2.3.1 Corona-type Surface Treatment 51
2.3.1.1 Standard Corona Treatment 51
2.3.1.2 Controlled Atmosphere Corona Treatment—Aldyne Treatment 52
2.3.1.3 Liquid Deposition 52
2.3.2 Remote Surface Treatment 54
2.3.2.1 Plasma Sources Used for Modeling 55
2.3.2.2 Example: AcXys Plasma Jet 57
2.4 Summary 58
Acknowledgment 59
References 59

3 Plasma-surface Interaction

Domenico D’Angelo

3.1 Introduction 63
3.2 Polymer Etching 65
3.3 Plasma Grafting 66
3.4 Chemical Kinetics 68
3.4.1 Chain Polymerization 68
3.4.2 Plasma Polymerization 70
3.5 Example: Plasma Polymerization 71
3.5.1 Plasma Polymerization of HEMA 72
3.5.1.1 Theoretical Background 72
3.5.1.2 Example: Polymerization of HEMA on PET Fabric 73
3.5.2 Plasma Polymerization of HDMSO 75
3.6 Conclusion 76
References 77
4 Process Diagnostics by Optical Emission Spectroscopy
Giacomo Piacenza

4.1 Introduction

4.2 Optical Emission Spectroscopy
4.2.1 Theory of Optical Emission
4.2.2 Spectroscopy
4.2.3 OES Bench and Set-up

4.3 Optical Absorption Spectroscopy
4.3.1 Actinometry

4.4 Laser Induced Fluorescence (LIF)

4.5 Conclusion

References

5 Surface Analysis for Plasma Treatment Characterization
Amandine David, Yves de Puydt, Laurent Dupuy, Séverine Descours, Françoise Sommer, Minh Duc Tran, and Jocelyn Viard

5.1 Introduction to Surface Characterization Techniques

5.2 X-ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis (ESCA)
5.2.1 Principles of XPS
5.2.2 XPS Core Level Chemical Shift
5.2.3 Quantitative Analysis
5.2.4 Quantitative Analysis of Nitrogen Plasma-Treated Polypropylene
5.2.5 Angle-Resolved XPS Depth Profiling and Surface Sensitivity Enhancement by Grazing Angle XPS Detection
5.2.6 Determination of Thin Coating Thickness by Angle-Resolved XPS
5.2.7 Mapping
5.2.8 Summary of XPS

5.3 Static Secondary Ion Mass Spectrometry by Time of Flight (ToF-SSIMS)
5.3.1 Principles of ToF-SSIMS
5.3.2 Secondary Ion Emission
5.3.3 Static and Dynamic Modes
5.3.4 Molecular SIMS
5.3.5 Applications of ToF-SSIMS
5.3.6 Spectrometry Mode
5.3.7 Secondary Ion Imaging
5.3.8 Depth Profiling
5.3.9 Data Treatment by Multivariate Methods: Multi-Ion SIMS
5.3.10 Examples
5.3.11 Poly(ethylene terephthalate) Tissue
5.3.12 Polypropylene Packaging
5.3.13 SiO$_x$ Barner Coating on PET
5.3.14 Anti-UV Additive qualification on PET Films

5.4 Atomic Force Microscopy 114
 5.4.1 Operating Modes in AFM 114
 5.4.1.1 Contact Mode 115
 5.4.1.1.1 Constant Force Mode 115
 5.4.1.2 Resonant Modes 117
 5.4.1.2.1 The Contact – No Contact Mode 118
 5.4.1.2.2 Phase Contrast Mode 118
 5.4.1.3 Other Modes 119
 5.4.2 Summary and Outlook 119
5.5 Scanning Electron Microscopy (SEM) 121
 5.5.1 Principles of SEM 121
 5.5.2 Imaging in SEM 122
 5.5.3 New Generation of SEM 122
 5.5.4 Chemical Analysis 123
 5.5.5 Sample Preparation and Applications 124
5.6 Transmission Electron Microscopy (TEM) 124
 5.6.1 Principles of TEM 124
 5.6.2 Resolution 126
 5.6.3 Image Contrast 126
 5.6.4 Chemical Analysis 126
 5.6.5 Typical Applications of TEM 127
 5.6.6 Sample Requirements 127
 5.7 Contact Angle Measurement 129
 5.7.1 Owens and Wendt Model for Surface Energy Calculation 130
 5.7.1.2 Good and Van Oss Model for Surface Energy Calculation 131
5.8 Conclusions 132
 References 132

Part II Hyperfunctional Surfaces for Textiles, Food and Biomedical Applications 133

6 Tuning the Surface Properties of Textile Materials 135
 Guy Buyle, Pieter Heyse, and Isabelle Ferreira
 6.1 Introduction 135
 6.1.1 Potential Impact of Plasma on the Textile Industry 135
 6.1.2 Plasma Basics 137
 6.1.3 Fundamental Advantage of Plasma Processing 138
 6.1.4 Classification of Plasmas from the Textile Viewpoint 138
 6.1.4.1 Pressure-based 140
 6.1.4.2 Substrate-based 141
 6.2 Plasma Treatment of Textile Materials 142
 6.2.1 Overview of Functionalizations 142
 6.2.2 Effect of Plasma Treatment on Textile Substrates 143
 6.2.2.1 Interaction of Active Plasma Species with a Surface 143
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.2.2 Basic Plasma Effect on Substrate</td>
<td>143</td>
</tr>
<tr>
<td>6.2.2.3 Aging</td>
<td>144</td>
</tr>
<tr>
<td>6.3 Integration of Plasma Processes into the Textile Manufacturing</td>
<td></td>
</tr>
<tr>
<td>6.3.1 Fiber Level</td>
<td>147</td>
</tr>
<tr>
<td>6.3.2 Filament Level</td>
<td>148</td>
</tr>
<tr>
<td>6.3.3 Yarn Level</td>
<td>149</td>
</tr>
<tr>
<td>6.3.3.1 Natural Materials</td>
<td>149</td>
</tr>
<tr>
<td>6.3.3.1.1 Cotton</td>
<td>149</td>
</tr>
<tr>
<td>6.3.3.1.2 Wool</td>
<td>149</td>
</tr>
<tr>
<td>6.3.3.1.3 Other Natural Fibers</td>
<td>149</td>
</tr>
<tr>
<td>6.3.3.2 Non-natural Materials</td>
<td>150</td>
</tr>
<tr>
<td>6.3.4 Fabric Level</td>
<td>150</td>
</tr>
<tr>
<td>6.3.4.1 Woven Textiles</td>
<td>151</td>
</tr>
<tr>
<td>6.3.4.1.1 Natural Materials</td>
<td>151</td>
</tr>
<tr>
<td>6.3.4.1.2 Non-natural Materials</td>
<td>152</td>
</tr>
<tr>
<td>6.3.4.2 Knitted Textiles</td>
<td>152</td>
</tr>
<tr>
<td>6.3.4.3 Non-wovens</td>
<td>153</td>
</tr>
<tr>
<td>6.3.5 Intermediate/Finished Textile Material</td>
<td>154</td>
</tr>
<tr>
<td>6.4 Specific Requirements for the Textile Industry</td>
<td>155</td>
</tr>
<tr>
<td>6.4.1 Chemical Composition</td>
<td>155</td>
</tr>
<tr>
<td>6.4.2 Surface Cleanliness</td>
<td>155</td>
</tr>
<tr>
<td>6.4.3 Three-dimensional Structure of Textiles</td>
<td>156</td>
</tr>
<tr>
<td>6.4.4 Large Surface Area</td>
<td>157</td>
</tr>
<tr>
<td>6.4.5 Moisture Regain and Air Adsorption</td>
<td>158</td>
</tr>
<tr>
<td>6.5 Case Studies</td>
<td>158</td>
</tr>
<tr>
<td>6.5.1 Assessing the Surface Energy of Textiles</td>
<td>158</td>
</tr>
<tr>
<td>6.5.1.1 Introduction to Methods for Evaluating the Surface Energy and</td>
<td></td>
</tr>
<tr>
<td>Wetting of Textiles</td>
<td>159</td>
</tr>
<tr>
<td>6.5.1.1.1 Wilhelmy Method</td>
<td>159</td>
</tr>
<tr>
<td>6.5.1.1.2 Washburn Method</td>
<td>160</td>
</tr>
<tr>
<td>6.5.1.2 Evaluation of Methods for Measuring Hydrophilic Properties</td>
<td>161</td>
</tr>
<tr>
<td>6.5.1.2.1 Wilhelmy Method</td>
<td>161</td>
</tr>
<tr>
<td>6.5.1.2.2 Washburn Method</td>
<td>162</td>
</tr>
<tr>
<td>6.5.1.3 Summary of Evaluation</td>
<td>163</td>
</tr>
<tr>
<td>6.5.1.3.1 Tests and Standards for Evaluating Hydrophobic/Oleophobic</td>
<td></td>
</tr>
<tr>
<td>Properties</td>
<td>163</td>
</tr>
<tr>
<td>6.5.1.3.1.1 Water Repellency: Spray Test</td>
<td>164</td>
</tr>
<tr>
<td>6.5.1.3.2 Water/Alcohol Repellency</td>
<td>165</td>
</tr>
<tr>
<td>6.5.1.3.3 Oil Repellency</td>
<td>166</td>
</tr>
<tr>
<td>6.5.2 Hydrophilic Properties Impacted by Plasma</td>
<td>167</td>
</tr>
<tr>
<td>6.5.2.1 Plasma Experiments at Low Pressure</td>
<td>167</td>
</tr>
<tr>
<td>6.5.2.1.1 First Screening of Precursors</td>
<td>168</td>
</tr>
<tr>
<td>6.5.2.1.2 Aging of the Samples</td>
<td>169</td>
</tr>
<tr>
<td>6.5.2.2 Plasma Experiments at Atmospheric Pressure (Aldyne System)</td>
<td>170</td>
</tr>
</tbody>
</table>
6.5.3 Hydrophobic/Oleophobic Properties Imparted by Plasma
6.5.3.1 Preliminary Experiments
6.5.3.2 Washing Durability
6.5.3.3 Abrasion Durability
6.5.3.4 Summary of Oleophobic Properties
6.6 Transferring Plasma Technology to Industrial Processes
6.6.1 Textile Sector Related Issues
6.6.2 Fundamental Aspects Regarding Industrialization
6.7 Summary
References

7 Preventing Biofilm Formation on Biomedical Surfaces
Virendra Kumar, Hubert Rauscher, Frédéric Brétagnol, Farzaneh Arefi-Khonsari, Jerome Pulpytel, Pascal Colpo, and François Rossi
7.1 Bacterial Adhesion to Biomaterials: Biofilm Formation
7.1.1 ‘Biofilm’ and Its Implications in the Biomedical Field
7.1.2 Mechanism for Bacterial Adhesion to Surfaces
7.1.3 Biofilm Formation – a Multistep Process
7.1.4 Factors Influencing Biofilm Formation
7.1.4.1 Role of the Conditioning Film
7.1.4.2 Material Surface Characteristics
7.1.4.3 Micro-organism Characteristics
7.1.4.4 Environmental Factors
7.2 Biofilm Prevention Strategies
7.2.1 Pre-surgery Precautionary Approach
7.2.2 Antimicrobial-releasing Biomaterials
7.2.3 Surface-engineering Approach
7.2.3.1 High Surface Energy Approach
7.2.3.2 Low Surface Energy Approach
7.2.3.3 Surfaces with Bound Tethered Antimicrobial Agents
7.2.4 ‘Antibiofilm’ Approach
7.3 Role of Plasma Processing in Biofouling Prevention
7.3.1 Plasma Surface Functionalization
7.3.2 Plasma-Induced Grafting
7.3.3 Plasma Polymerization
7.3.4 Plasma Sterilization
7.4 Case Study: Plasma-deposited Poly(ethylene oxide)-like Films for the Prevention of Biofilm Formation
7.4.1 PEO Films and Plasma Deposition
7.4.2 Plasma Polymerization by Continuous Wave Plasma
7.4.2.1 Retention of the PEO Character and Film Stability
7.4.2.2 Protein Adsorption
7.4.2.3 Cell Attachment and Proliferation
7.4.2.4 Aging
7.4.3 Plasma Polymerization in Pulsed Mode
Contents

7.4.4 Sterilization of PEO-like Films 210
7.4.5 Composite Films: Ag Nanoparticles in a PEO-like Matrix 211
7.4.5.1 Synthesis of Ag Nanoparticles and Deposition on Surfaces 212
7.4.5.2 Composite AgNP/PEO Surfaces and Their Antibacterial Activity 213
7.5 Summary 216
References 217

8 Oxygen Barriers for Polymer Food Packaging 225
Joachim Schneider and Matthias Walker
8.1 Introduction 225
8.2 Fundamentals of Gas Diffusion through Polymers 225
8.2.1 Diffusion, Solubility, and Permeability of Polymers 227
8.2.2 Diagnostic Methods 230
8.2.3 Barrier Concepts 233
8.3 Case Study: Plasma Deposition of SiOₓ Barrier Films on Polymer Materials Relevant for Packaging Applications 234
8.3.1 Materials and Measurements 234
8.3.1.1 Selection of Two-dimensional and Three-dimensional Polymer Substrates 234
8.3.1.2 Measurement of the Steady-state O₂ Particle Flux 235
8.3.1.3 Measurement of the Coating Thickness 235
8.3.2 SiOₓ Barrier Films on PET Foil 236
8.3.2.1 SiOₓ Barrier Films Deposited from O₂: HMDSO Gas Mixtures 236
8.3.2.1.1 O₂ Permeation Measurements: Determination of the Diffusion Coefficient 237
8.3.2.1.2 O₂ Permeation Measurements: Variation of the O₂: HMDSO Gas Mixture Ratio 238
8.3.2.1.3 FTIR Analysis: Chemical Composition of the Surface of the SiOₓ Barrier Films Deposited from Different O₂: HMDSO Gas Mixtures 239
8.3.2.2 SiOₓ Barrier Films Deposited from O₂: HMDSN Gas Mixtures 243
8.3.2.2.1 O₂ Permeation Measurements: Variation of the O₂: HMDSN Gas Mixture Ratio 243
8.3.2.2.2 FTIR Analysis: Comparing Best Performing SiOₓ Barrier Films Deposited from O₂ : HMDSO and from O₂ : HMDSN Gas Mixtures 245
8.3.2.2.3 O₂ Permeation Measurements: Variation of the Film Thickness 246
8.3.2.3 SiOₓ Barrier Films on PP Foil 247
8.3.3 ECR Plasma Source: Comparing the Barrier Properties of SiOₓ Films Deposited on PP and on PET Foil by Variation of the O₂ : HMDSO Gas Mixture Ratio 247
8.3.3.1 ECR Plasma Source: Comparing the Barrier Properties of SiOₓ Films Deposited on PP and on PET Foil by Variation of the O₂ : HMDSN Gas Mixture Ratio 249
8.3.3.2 Duo-Plasmaline Plasma Source: SiOₓ Barrier Films Deposited from O₂ : HMDSN Gas Mixtures 249
8.3.4 ECR Plasma Deposition of SiOₓ Barrier Films on Polymer Trays Designed for Food Packaging 251
8.3.4.1 ECR Plasma Deposition of SiO$_x$ Barrier Films Without Directed Gas Supply and Customized Magnet Configuration: Variation of the Plasma Deposition Time and of the Distance between Sample and Plasma 252

8.3.4.2 Achieving Industrially Relevant Plasma Deposition Times by Directed Gas Supply and Customized Magnet Configuration 255

8.4 Conclusions 258

Acknowledgments 259

References 259

9 Anti-wear Coatings for Food Processing 263

Maddalena Rostagno and Federico Cartasegna

9.1 Introduction 263

9.2 Recent Developments in PVD Coatings 264

9.3 Coatings Trends and Market Share 267

9.4 Coatings Application in the Food Processing Sector 268

9.5 Coating Requirements in the Food Sector 269

9.5.1 Wear Resistance 270

9.5.2 Coefficient of Friction (COF) 271

9.6 Selection of Methodologies for Effective Characterization of Coatings for the Food Sector 271

9.6.1 Chemical and Structural Characterization 273

9.6.1.1 Scanning Electron Microscopy (SEM) 273

9.6.1.1.1 Application to Anti-wear Coatings for Food Processing Tools 273

9.6.1.2 Energy Dispersive X-ray Spectrometry (EDX) 274

9.6.1.2.1 Application to Anti-wear Coatings 274

9.6.1.3 Calotest and Optical Microscopy (OM) 275

9.6.1.3.1 Application to Anti-wear Coatings for Food Processing Tools 276

9.6.2 Mechanical Characterization 276

9.6.2.1 Hardness 276

9.6.2.1.1 Application to Anti-wear Coatings for Food Processing Tools 277

9.6.2.2 Pin-on-disk 279

9.6.2.2.1 Application to Anti-wear Coatings for Food Processing Tools 280

9.6.3 Atoxicity and Corrosion Characterization 280

9.6.3.1 Food Compatibility: Heavy Metals Release 280

9.6.3.2 Food Compatibility: Oxidation Test 280

9.6.3.3 Salt Spray Test 280

9.7 Case Studies: Development and Characterization of Ceramic Coatings for Food Processing Applications 281

9.7.1 Relevant Substrates and Functionalities Required for Cutting Applications 281

9.7.2 Technical Analysis and Choice of the Proper Coating Chemistry and Technique 282

9.7.3 Coating Development 285

9.7.4 Case Study: PVD Coating of Saw Blades 288
11.2 Case Study: Up-Scaling of the Plasma Treatment of Hammers for Meat Milling 340

11.2.1 Analysis of the Reference Scenario 341
11.2.2 Analysis of Scenario 2 – Outsourcing 341
11.2.3 Analysis of Scenario 3 – In-house 342
11.2.4 Investment and Operating Cost 343
11.2.5 Comparative Analysis of All Three Scenarios 344
11.2.6 Final Considerations 345

References 346

12 Environment and Safety 347

Massimo Perucca and Gabriela Benveniste

12.1 Introduction to LCA 347
12.2 Environmental Impact of Traditional Surface Processing: the Reason for Developing Innovative Solutions Supported by Dedicated LCA 350
12.3 LCA Applied to Plasma Surface Processing: Case Studies 353
12.3.1 Scope, Functional Unit, and System Boundaries 354
12.3.2 Life Cycle Inventory (LCI) and Hypothesis 356
12.3.3 Inventory Data and Results 360
12.3.3.1 The Anti-corrosion Process 361
12.3.3.2 Textile Processes 364
12.3.3.2.1 Total Energy Requirement 364
12.3.3.2.2 Output of the Oleophobic PET Processes 366
12.3.3.2.3 Output of the Hydrophobic PET/Cotton Processes 367
12.3.4 Impact Assessment 369
12.3.5 Sensitivity Analysis 371
12.3.5.1 Managing Uncertainties 371
12.3.5.2 Example 1: General Sensitivity Analysis for the LCA Study of the Textile Processes 371
12.3.5.3 Example 2: Design of Plasma Processes via LCA 375
12.3.6 Concluding Considerations on LCA Study 375
12.4 Process Safety for the Working Environment 378
12.4.1 Atmospheric Pressure Plasma Unit: Standard Configuration 379
12.4.2 Devising Safe Processes for Industrial Applications Maintaining the Semi-continuous Feeding 381
12.4.3 Final Considerations on Process Safety 388

References 389

Index 391
Preface

The principal aim of this book is the promotion and dissemination of knowledge on plasma technology, underlining its technical applicability, economic sustainability, and minimal environmental impact. This is illustrated via plasma processes that are implemented in traditional or innovative industrial applications in the textile, food packaging and/or processing and biomedical sector. A further objective of this book is to provide selected application examples and case studies deriving from the research, development and technology transfer experienced within ACTECO, a project supported by the European Commission under the 6th Framework Programme. The project provided environmentally friendly, economically sustainable solutions for specific surface functionalities (hyperfunctional surfaces).

This book promotes a broader perspective in the exploitation of plasma technology by thoroughly evaluating the competitive advantages and limitations leading to a new concept of eco-design. In this view, components and products are engineered starting from their functional needs and specifications, rather than from traditional material choice. In this framework, hyperfunctional surfaces, through sustainable dry plasma processing may represent a powerful technique to provide added value via dedicated surface finishing while, at the same time, preserving the beneficial physico-chemical characteristics of the bulk material. Additionally, plasma surface processing can overcome the need for complex composite materials or materials whose specific bulk chemical composition is actually only required at the very surface (e.g., for wear and oxidation resistance of steels).

As a matter of fact, the performance of materials used in major industrial applications in the field of health, food, textile, and environment depends very strongly on the physico-chemical properties of the surfaces. For instance, the very functioning of several biomedical devices is linked to the ability of their surfaces to repel proteins and to avoid biofilm formation. Likewise, textiles for clothing and technical applications are a major target for finishing techniques because imparting, for example, durable hydrophobicity, hydrophilicity, or oleophobicity is a major challenge for several applications. Improved recyclable and/or biodegradable food packaging for a longer shelf life can be realized via more advanced surface barrier properties, while efficient and safe food processing benefits from components whose surfaces are treated against wear, corrosion, and heavy metal migration.
In general, providing breakthrough competitive and innovative solutions requires a radical new vision for the development of the technological fields involved. Such a new vision should stem from cutting edge scientific knowledge (e.g., from latest progress in nanosciences and nanotechnologies) and be followed by the transfer of exploitable content into up-scalable, industrial solutions. However, the feasibility of a specific surface treatment on the laboratory scale does not necessarily imply its applicability as an industrial process.

For this reason, this book provides a thorough analysis of the developments made for several applications in the form of case studies, thus delivering the stepping stones for wider, more industrial take-up. In particular, the selected examples illustrate that controlling the surface properties has a major impact on the eco-efficiency of the industrial sectors concerned via the reduction of energy and water consumption. Industrial solutions are presented to provide control of adhesion, barrier properties, and wear resistance of materials.

In summary, this book suggests tools and basic knowledge to support the development of novel, knowledge-based added value products and processes, also in traditional industries, less dependent on research and technological development. Its content has been selected to stimulate process design based on eco-innovation and eco-efficiency criteria. Additionally, this book considers modern general demands on novel industrial processes, meaning that the book not only discusses state-of-the-art approaches but also presents a discussion of economic, ecological, and safety issues related to plasma surface processing.

This book consists of three parts. The first part starts with an introduction to plasma technology through plasma fundamentals (Chapter 1) and includes plasma sources (Chapter 2), plasma-surface interactions (Chapter 3), plasma diagnostics (Chapter 4), and surface characterization techniques (Chapter 5).

The second part covers applications studied within ACTECO and, therefore, covers the three domains (food, biomedical, and textile) targeted within the project. These fields currently experience some of the most innovative applications of surface processing by plasma. We will discuss how plasma treatment can be used to tune the surface properties of textiles (Chapter 6), prevent biofilm formation on biomedical surfaces (Chapter 7), provide oxygen barriers for food packaging (Chapter 8) and obtain anti-wear coatings in food processing machines (Chapter 9). A comprehensive theoretical approach is provided to model the interactions of nonthermal atmospheric pressure plasma with surfaces (Chapter 10).

The third part is dedicated to the technical and economic aspects of plasma technology. It includes an analysis of the market potential as well as the economic impact arising from the introduction of plasma technology into the textile, food, and biomedical sectors (Chapter 11). This part concludes with a discussion of environmental and safety issues related to plasma surface treatments (Chapter 12). This includes a comparative life cycle analysis to assess the eco-efficiency of surface plasma functionalization with respect to traditional surface treatment and an assessment of plasma processing safety in terms of process reliability for environmental working conditions as well as the potential local impact due to emissions.
Within this book we have tried to achieve a sufficient cohesion and self consistency. Internal referencing among chapters, although written by different authors, is provided to enable the reader to browse through the content via different pathways, even starting from different points, according to different interests, needs, and background.

This philosophy was followed when putting the manuscript together. Clearly, we cannot list all these chapter interconnections in the preface but we want to highlight an example as a possible suggestion for a path through the book. One of the applications mentioned in the book regards tuning of the surface energy of textiles by plasma treatment. Starting from the specific application discussed in Chapter 6 the reader may move up-stream to Chapter 2 in order to find out details related to plasma systems used for textile processing. Further on the reader may explore the related economic and ecological aspects connected to these processes by visiting Chapters 11 and 12, respectively. Furthermore, additional information can be found in Chapter 5, which illustrates some of the surface characterization techniques employed to assess the physico-chemical changes induced by plasma treatment. A similar approach may be followed for the other main applications dealt with in this book. Nevertheless, the reader may follow a more orthodox approach by sequentially going through each chapter, which provides a more general perspective of the topics treated. The sequential approach is particularly recommended to readers completely new to plasma surface functionalization.

This work has been partially funded by the European Commission in the 6th Research Framework programme through the integrated project ACTECO for small and medium enterprises (IP 515859-2), contract number NMP-CT-2005-515859, launched on 1 May 2005 and ended on 30 April 2009. The full project title is: ‘Eco efficient activation for hyperfunctional surfaces’; this highlights its main focus: addressing the use of plasma technology for efficient and effective surface functionalization and activation (http://www.acteco.org/).

The consortium, whose composition evolved during the course of the project, consisted of several partners that can be grouped into different categories. The first are end-users within the different application areas: food related (Diad s.r.l., Tops Foods), biomedical applications (PlasMATec, Covidien-Sofradim), and textile companies (Jovertex, Creat-Chargeurs, Luxilon). Another group of companies were the plasma technology providers related to atmospheric as well as low pressure plasma (Muegge, CPI, AcXys, Dow Corning Plasma Solutions, Environment Park, and Europlasma, the project coordinator). Also high-tech SME companies dedicated to surface analysis formed part of the project (CSMA, Biophy, Biomatech). Further, several research centers and universities supported the R&D activities (UPMC, TRINITI, USTUTT-IPF, IFTH, EC-JRC, Centexbel). ACTECO also included a partner to perform market studies (Nodal) and sector associations covering the three targeted domains via IVLV, Clubtex, and Eucomed. A full list with the contact details of the project partners, according to the situation at the end of the project, can be found at the end of the preface.
We would like to thank all ACTECO partners, whose valuable contributions throughout the project created a synergy that made ACTECO a success story. Without them, their precious work carried out within the project and their input during the writing of the manuscript, this book could not have been written.

We tried our best to design and write a book that is useful for people already working in plasma technology as well as for those whose focus is more on one of the application fields discussed. Moreover, suggestions may be found for the application of plasma technology in industrial sectors not explicitly treated here.

Plasma Technology for Hyperfunctional Surfaces: Food, Biomedical and Textile Applications addresses industry professionals, researchers, academic teachers and PhD students specializing in the field of plasma physics and chemistry, as well as people entering the field of plasma surface treatments and technical staff involved in economic sustainability and ecology. Our intention is that also policy makers in the field of clean, environmentally friendly, and economically efficient technological innovations will find useful information here on trends and potentials of plasma surface engineering.

Hubert Rauscher

Massimo Perucca

Guy Buyle
List of Contributors

Yuri Akishev
State Research Center of the Russian Federation
Troitsk Institute for Innovation and Fusion Research
Pushkovekh st., domain 12
Troitsk 142190
Moscow region
Russia

Farzaneh Arefi-Khonsari
Université Pierre et Marie Curie
Laboratoire de Génie des Procédés Plasmas et Traitement de Surface
ENSCP
11 rue Pierre et Marie Curie
75231 Paris cedex 05
France

Gabriela Benveniste
Environment Park S.p.A.
Clean NT Lab
Via Livorno 60
10144 Torino
Italy

Elisa Aimo Boot
Environment Park S.p.A.
Clean NT Lab
Via Livorno 60
10144 Torino
Italy

Frédéric Brétagnol
European Commission
Joint Research Centre
Institute for Health and Consumer Protection
Via E. Fermi 2749
21027 Ispra (VA)
Italy

Guy Buyle
Centexbel
Technologiepark 7
9052 Zwijnaarde
Belgium

Federico Cartasegna
Environment Park S.p.A.
Clean NT Lab
Via Livorno 60
10144 Torino
Italy

Pascal Colpo
European Commission
Joint Research Centre
Institute for Health and Consumer Protection
Via E. Fermi 2749
21027 Ispra (VA)
Italy
List of Contributors

Domenico D’Angelo
Environment Park S.p.A.
Clean NT Lab
Via Livorno 60
10144 Torino
Italy

Amandine David
Biophy Research
Actipôle Saint Charles
131 Av. de l’Etoile
13710 Fuveau
France

Séverine Descours
Biophy Research
Actipôle Saint Charles
131 Av. de l’Etoile
13710 Fuveau
France

Laurent Dupuy
Biophy Research
Actipôle Saint Charles
131 Av. de l’Etoile
13710 Fuveau
France

Nikolay Dyatko
State Research Center of the
Russian Federation
Troitsk Institute for Innovation
and Fusion Research
Pushkovykh st., domain 12
Troitsk 142190
Moscow region
Russia

Isabelle Ferreira
Institut Français du Textile et de
L’Habillement–IFTH
Direction Régionale Rhône-Alpes
PACA
Avenue Guy de Collongue
69134 Ecully Cedex
France

Michail Grushin
State Research Center of the
Russian Federation
Troitsk Institute for Innovation
and Fusion Research
Pushkovykh st., domain 12
Troitsk 142190
Moscow region
Russia

Pieter Heyse
Centexbel
Technologiepark 7
9052 Zwijnaarde
Belgium

Igor Kochetov
State Research Center of the
Russian Federation
Troitsk Institute for Innovation
and Fusion Research
Pushkovykh st., domain 12
Troitsk 142190
Moscow region
Russia

Virendra Kumar
Université Pierre et Marie Curie
Laboratoire de Génie des
Procédés Plasmas et Traitement
de Surface
ENSCP
11 rue Pierre et Marie Curie
75231 Paris cedex 05
France
Anatoly Napartovich
State Research Center of the
Russian Federation
Troitsk Institute for Innovation
and Fusion Research
Pushkovykh st., domain 12
Troitsk 142190
Moscow region
Russia

Massimo Perucca
Environment Park S.p.A.
Clean NT Lab
Via Livorno 60
10144 Torino
Italy

Giacomo Piacenza
Environment Park S.p.A.
Clean NT Lab
Via Livorno 60
10144 Torino
Italy

Jerome Pulpytel
Université Pierre et Marie Curie
Laboratoire de Génie des
Procédés Plasmas et Traitement
de Surface
ENSCP
11 rue Pierre et Marie Curie
75231 Paris cedex 05
France

Yves de Puydt
Biophy Research
Actipôle Saint Charles
131 Av. de l’Étoile
13710 Fuveau
France

Hubert Rauscher
European Commission
Joint Research Centre
Institute for Health and
Consumer Protection
Via E. Fermi 2749
21027 Ispra (VA)
Italy

François Rossi
European Commission
Joint Research Centre
Institute for Health and
Consumer Protection
Via E. Fermi 2749
21027 Ispra (VA)
Italy

Maddalena Rostagno
Diad s.r.l.
St., Della Praia 12/C
0090 Buttigliera Alta (TO)
Italy

Joachim Schneider
Institut für Plasmaforschung der
Universität Stuttgart
Pfaffenwaldring 31
70569 Stuttgart
Germany

Françoise Sommer
Biophy Research
Actipôle Saint Charles
131 Av. de l’Étoile
13710 Fuveau
France

Minh Duc Tran
Biophy Research
Actipôle Saint Charles
131 Av. de l’Étoile
13710 Fuveau
France
List of Contributors

Nikolay Trushkin
State Research Center of the
Russian Federation
Troitsk Institute for Innovation
and Fusion Research
Pushkoykh st., domain 12
Troitsk 142190
Moscow region
Russia

Matthias Walker
Institut für Plasmaphysik und
Plasmaphysik der
Universität Stuttgart
Pfaffenwaldring 31
70569 Stuttgart
Germany

Jocelyn Viard
Biophy Research
Actipôle Saint Charles
131 Av. de l’Etoile
13710 Fuveau
France
List of Contacts

Europlasma (Belgium)
www.europlasma.be
Mr. Filip Legein
email: filip.legein@europlasma.be
tel: +32-55-303205
fax: +32-55-318753

AcXys Technologies (France)
www.acxys.com
Mr. Thierry Sindzingre
email: thierry.sindzingre@acxys.com
tel: +33-476-756079
fax: +33-476-759275

Muegge Electronics (Germany)
www.muegge.de
Mr. Horst Muegge
email: hmuegge@muegge.de
tel: +49-6164-930736
fax: +49-6164-930793

Biophy Research (France)
www.biophyresearch.com
Ms. Françoise Sommer
email: fsommer@biophyresearch.com
tel: +33-442-538326
fax: +33-442-538319

CSMA - CERAM Surface and Materials Analysis (United Kingdom)
www.csma.ltd.uk
Mr. Alan Paul
email: alanpaul@ceram.com
tel: +44-1782-764440
fax: +44-1782-412331

Jovertex (Spain)
www.jover.es
Mr. Miguel Jover Perez
email: mjover@jover.es
tel: +34-965-590507
fax: +34-965-500402

Luxilon (Belgium)
www.luxilon.be
Mr. Herbert De Breuck
email: herbert.debreuck@luxilon.be
tel: +32-3-3263388
fax: +32-3-3263324

Biomatech (France)
www.biomatech.fr
Ms. Rosy Eloy
email: r.eloy@biomatech.fr
tel: +33-478-079234
fax: +33-472-240812
List of Contacts

Covidien – Sofradim Production (France)
www.covidien.com
Mr. Olivier Lefranc
email: olivier.lefranc@covidien.com
 tel: +33-474-089000
fax: +33-474-089230

Diad (Italy)
www.diadsrl.com
Ms. Maddalena Rostagno
email: maddalena.rostagno@diadgroup.com
tel: +39-347-3302727
fax: +39-011-9319173

Tops Foods (Belgium)
www.topsfoods.com
Mr. Rudy Tops
email: Rudy.Tops@topsfoods.com
tel: +32-14-285560
fax: +32-14-226150

Environment Park (Italy)
www.envipark.com
Mr. Massimo Perucca
email: massimo.perucca@envipark.com
tel: +39-011-2257523
fax: +39-011-2257221

Nodal (France)
www.nodal.fr
Mr. Benoit Rivollet
email: benoit.rivollet@nodal.fr
tel: +33-146-027555
fax: +33-146-027544

IFTH (France)
www.ifth.org
Ms. Isabelle Ferreira
email: iferreira@ifth.org
tel: +33-472-861655
fax: +33-478-433966

Centexbel (Belgium)
www.centexbel.eu
Mr. Guy Buyle
email: gbu@centexbel.be
tel: +32-9-2204151
fax: +32-9-2204955

European Commission – Joint Research Centre (Belgium)
ec.europa.eu/dgs/jrc
Mr. Hubert Rauscher
email: hubert.rauscher@jrc.ec.europa.eu
tel: +39-0332-785128
fax: +39-0332-785787

University of Stuttgart – Institut für Plasmaforschung (Germany)
www.ipf.uni-stuttgart.de
Mr. Matthias Walker
email: walker@ipf.uni-stuttgart.de
tel: +49-711-6852156
fax: +49-711-6853102

University of Pierre et Marie Curie (France)
www.enscp.fr/labos/LGPPTS/
Ms. Farzaneh Arefi-Khonsari
email: farzi-arefi@enscp.fr
tel: +33-146-334283
fax: +33-143-265813
Clubtex (France)
www.clubtex.com
Ms. Edith Degans
e-mail: contact@clubtex.com
tel: +33-320-994612
fax: +33-320-994613

Eucomed (Belgium)
www.eucomed.org
Mr. John Brennan
e-mail: John.Brennan@eucomed.be
tel: +32-2-7759232
fax: +32-2-7713909

IVLV – Industrievereinigung für Lebensmitteltechnologie and Verpackung (Germany)
www.ivlv.de
Mr. Rainer Brandsch
e-mail: rainer.brandsch@ivlv.org
tel: +49-89-1490090
fax: +49-89-14900980

TRINITI – State Research Center of the Russian Federation, Troitsk Institute for Innovation and Fusion Research (Russian Federation)
www.triniti.ru
Mr. Yuri Akishev
e-mail: akishev@triniti.ru
tel: +7-095-3345236
fax: +7-095-3345776

Mat PlasMATec (Germany)
www.mat-dresden.de
Mr. Andreas Mucha
e-mail: mucha@mat-dresden.de
tel: +49-351-207720
fax: +49-351-2077222

CPI – Coating Plasma Industrie (France)
www.cpi-plasma.com
Mr. Tran Minh Duc
e-mail: tranminh@cpi-plasma.com
tel: +33-442-538311
fax: +33-442-538329
Part I
Introduction to Plasma Technology for Surface Functionalization