The selective binding of a particular compound to another is a lock-and-key principle omnipresent in living organisms and an indispensable means of information transport and triggering responses. Derived from the biological archetype, synthetic receptors imitate nature’s idea for tailor-made functionalities such as detection (sensing), signaling, and triggering. This book provides systematically organized information on all three important aspects of artificial receptor design as well as the knowledge on an exceptionally hot and multidisciplinary field of research. Strong emphasis is placed on the methodology for discovering artificial receptors, with both definitions for chemosensitivity as well as experimental setups supplied. Numerous classes of artificial receptors are covered, as well as their synthesis, immobilization on surfaces, and quantitative data on their properties. The final chapter with all relevant quantitative data on artificial receptors complete this well-rounded book.

Vladimir M. Mirsky is Professor at Lausitz University of Applied Sciences, Senftenberg, Germany. He graduated from Moscow Medical University in Biophysics and went on to study Physical Chemistry and Electrochemistry at the Frumkin Institute of Electrochemistry of the Soviet Academy of Sciences, obtaining there his PhD in 1986. He subsequently held an Alexander-von-Humboldt Research Fellowship and a research position at the CNRS Centre of Molecular Biology in France prior to joining the Institute of Analytical Chemistry, Chemical Sensors and Biosensors at Regensburg University in 1993. After habilitation he became Professor of Nanotechnology and moved to Lausitz. He is editor of two recent books, “Ultrathin Electrochemical Chemo- and Biosensors” and “Combinatorial Methods for Chemical and Biological Sensors”. His work has led to about 20 patents and patent applications as well as 120 peer-reviewed scientific papers.

Anatoly K. Yatsimirsky is Professor of Chemistry at the National Autonomous University of Mexico in Mexico City. He obtained his PhD and Dr. Sc. degrees from Moscow Lomonosov State University, where he was Professor prior to his move to Mexico in 1993. He spent Visiting Scholar/Professor stays at Milan University, Italy, in 1980/81 and at the University of California at Santa Barbara in 1998/99. His research is focused on physical organic chemistry and metal complex catalysts and he is the author of 160 peer-reviewed scientific publications including a monograph “Principles and Methods in Supramolecular Chemistry” by John Wiley & Sons and further book contributions.
Edited by
Vladimir M. Mirsky and
Anatoly K. Yatsimirsky

Artificial Receptors
for Chemical Sensors
<table>
<thead>
<tr>
<th>Related Titles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Plasmonics</td>
</tr>
<tr>
<td>Fritzsche, W.</td>
</tr>
<tr>
<td>2011</td>
</tr>
<tr>
<td>ISBN: 978-3-527-32765-2</td>
</tr>
<tr>
<td>Smart Sensor Systems</td>
</tr>
<tr>
<td>Meijer, G. (ed.)</td>
</tr>
<tr>
<td>2008</td>
</tr>
<tr>
<td>ISBN: 978-0-470-86691-7</td>
</tr>
<tr>
<td>Biosensor Nanomaterials</td>
</tr>
<tr>
<td>Li, S., Singh, J., Li, H., Banerjee, I. A. (eds.)</td>
</tr>
<tr>
<td>2011</td>
</tr>
<tr>
<td>ISBN: 978-3-527-32841-3</td>
</tr>
<tr>
<td>Nuclear Receptors as Drug Targets</td>
</tr>
<tr>
<td>Ottow, E., Weinmann, H. (eds.)</td>
</tr>
<tr>
<td>2008</td>
</tr>
<tr>
<td>ISBN: 978-3-527-31872-8</td>
</tr>
<tr>
<td>Series: Nanomaterials for the Life Sciences (Volume 7)</td>
</tr>
<tr>
<td>Kumar, C. S. S. R. (ed.)</td>
</tr>
<tr>
<td>Biomimetic and Bioinspired Nanomaterials</td>
</tr>
<tr>
<td>2010</td>
</tr>
<tr>
<td>ISBN: 978-3-527-32167-4</td>
</tr>
<tr>
<td>Modern Supramolecular Chemistry</td>
</tr>
<tr>
<td>Diederich, F., Stang, P. J., Tykwinski, R. R. (eds.)</td>
</tr>
<tr>
<td>Strategies for Macrocycle Synthesis</td>
</tr>
<tr>
<td>2008</td>
</tr>
<tr>
<td>ISBN: 978-3-527-31826-1</td>
</tr>
<tr>
<td>Optical Sensors</td>
</tr>
<tr>
<td>Haus, J.</td>
</tr>
<tr>
<td>Basics and Applications</td>
</tr>
<tr>
<td>2010</td>
</tr>
<tr>
<td>ISBN: 978-3-527-40860-3</td>
</tr>
<tr>
<td>Handbook of Biosensors and Biochips</td>
</tr>
<tr>
<td>2 Volume Set</td>
</tr>
<tr>
<td>2007</td>
</tr>
<tr>
<td>ISBN: 978-0-470-01905-4</td>
</tr>
<tr>
<td>Mass Spectrometry of Non-Covalent Complexes</td>
</tr>
<tr>
<td>Schalley, C. A., Springer, A.</td>
</tr>
<tr>
<td>Supramolecular Chemistry in the Gas Phase</td>
</tr>
<tr>
<td>2009</td>
</tr>
<tr>
<td>Nanobiotechnology II</td>
</tr>
<tr>
<td>Mirkin, C. A., Niemeyer, C. M. (ed.)</td>
</tr>
<tr>
<td>More Concepts and Applications</td>
</tr>
<tr>
<td>2007</td>
</tr>
<tr>
<td>ISBN: 978-3-527-31673-1</td>
</tr>
<tr>
<td>Carbon Nanotube Devices</td>
</tr>
<tr>
<td>Brand, O., Fedder, G. K., Hierold, C., Korvink, J. G., Tabata, O. (eds.)</td>
</tr>
<tr>
<td>Properties, Modeling, Integration and Applications</td>
</tr>
<tr>
<td>2008</td>
</tr>
<tr>
<td>ISBN: 978-3-527-31720-2</td>
</tr>
</tbody>
</table>
Artificial Receptors for Chemical Sensors
Contents

Preface XI
List of Contributors XIII

1 **Quantitative Characterization of Affinity Properties of Immobilized Receptors** 1
 Vladimir M. Mirsky
1.1 Introduction 1
1.2 Measurements Under Equilibrium Conditions 3
1.3 Kinetic Measurements 7
1.4 Analysis of Temperature Dependencies 10
1.5 Experimental Techniques 12
 References 14

2 **Selectivity of Chemical Receptors** 17
 Hans-Jörg Schneider and Anatoly K. Yatsimirsky
2.1 Introduction 17
2.2 Some General Considerations on Selectivity 18
2.3 Correlation Between Selectivity and Affinity 21
2.4 Crown Ether and Cryptand Complexes: Hole Size Fitting and Other Effects 24
2.5 Recognition of Transition and Heavy Metal Ions 29
2.6 Recognition via Ion Pairing 31
2.7 Hydrogen Bonded Complexes and Solvent Effects 37
2.8 Lewis Acid Receptors 41
2.8.1 Associations with Transition Metal Complexes 41
2.8.2 Associations with Other Lewis Acids 45
2.9 Complexes with Stacking and van der Waals Interactions 46
2.10 Multifunctional Receptors for Recognition of Complex Target Molecules 48
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10.1 Complexation of Amino Acids and Peptides</td>
<td>48</td>
</tr>
<tr>
<td>2.10.2 Complexation of Nucleotides and Nucleosides</td>
<td>54</td>
</tr>
<tr>
<td>2.11 Conclusions</td>
<td>60</td>
</tr>
<tr>
<td>References</td>
<td>61</td>
</tr>
<tr>
<td>3 Combinatorial Development of Sensing Materials</td>
<td>67</td>
</tr>
<tr>
<td>Radislav A. Potyrailo</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>67</td>
</tr>
<tr>
<td>3.2 General Principles of Combinatorial Materials Screening</td>
<td>68</td>
</tr>
<tr>
<td>3.3 Opportunities for Sensing Materials</td>
<td>69</td>
</tr>
<tr>
<td>3.4 Designs of Combinatorial Libraries of Sensing Materials</td>
<td>71</td>
</tr>
<tr>
<td>3.5 Discovery and Optimization of Sensing Materials Using Discrete Arrays</td>
<td>73</td>
</tr>
<tr>
<td>3.5.1 Radiant Energy Transduction Sensors</td>
<td>73</td>
</tr>
<tr>
<td>3.5.2 Mechanical Energy Transduction Sensors</td>
<td>79</td>
</tr>
<tr>
<td>3.5.3 Electrical Energy Transduction Sensors</td>
<td>84</td>
</tr>
<tr>
<td>3.6 Optimization of Sensing Materials Using Gradient Arrays</td>
<td>92</td>
</tr>
<tr>
<td>3.6.1 Variable Concentration of Reagents</td>
<td>92</td>
</tr>
<tr>
<td>3.6.2 Variable Thickness of Sensing Films</td>
<td>93</td>
</tr>
<tr>
<td>3.6.3 Variable 2D Composition</td>
<td>94</td>
</tr>
<tr>
<td>3.6.4 Variable Operation Temperature and Diffusion Layer Thickness</td>
<td>95</td>
</tr>
<tr>
<td>3.7 Emerging Wireless Technologies for Combinatorial Screening of Sensing Materials</td>
<td>97</td>
</tr>
<tr>
<td>3.8 Summary and Outlook</td>
<td>102</td>
</tr>
<tr>
<td>References</td>
<td>104</td>
</tr>
<tr>
<td>4 Fluorescent Cyclodextrins as Chemosensors for Molecule Detection in Water</td>
<td>113</td>
</tr>
<tr>
<td>Hiroshi Ikeda</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>113</td>
</tr>
<tr>
<td>4.2 Pyrene-Appended Cyclodextrins</td>
<td>114</td>
</tr>
<tr>
<td>4.2.1 Pyrene-Appended γ-Cyclodextrins as Molecule Sensors</td>
<td>114</td>
</tr>
<tr>
<td>4.2.2 Pyrene-Appended γ-Cyclodextrin as a Bicarbonate Sensor</td>
<td>115</td>
</tr>
<tr>
<td>4.2.3 Bis-Pyrene-Appended γ-Cyclodextrins</td>
<td>116</td>
</tr>
<tr>
<td>4.3 Fluorophore–Amino Acid–CD Triad Systems</td>
<td>118</td>
</tr>
<tr>
<td>4.3.1 Dansyl-Leucine-Appended CDs</td>
<td>118</td>
</tr>
<tr>
<td>4.3.2 Dansyl-Valine-Appended and Dansyl-Phenylalanine-Appended CDs</td>
<td>122</td>
</tr>
<tr>
<td>4.4 Molecular Recognition by Regioisomers of Dansyl-Appended CDs</td>
<td>123</td>
</tr>
<tr>
<td>4.4.1 6-O, 2-O, and 3-O-Dansyl-γ-CDs</td>
<td>123</td>
</tr>
<tr>
<td>4.4.2 6-O, 2-O, and 3-O-Dansyl-β-CDs</td>
<td>125</td>
</tr>
<tr>
<td>4.5 Turn-On Fluorescent Chemosensors</td>
<td>125</td>
</tr>
<tr>
<td>4.6 Effect of Protein Environment on Molecule Sensing</td>
<td>127</td>
</tr>
<tr>
<td>4.7 CD–Peptide Conjugates as Chemosensors</td>
<td>128</td>
</tr>
</tbody>
</table>
8 Fullerene Receptors Based on Calixarene Derivatives 249
Pavel Lhoták and Ondřej Kundrát
8.1 Introduction 249
8.2 Calixarenes 251
8.3 Solid State Complexation by Calixarenes 252
8.4 Complexation in Solution 257
8.5 Calixarenes as Molecular Scaffolds 263
8.6 Outlook 268
References 269

9 Guanidinium Based Anion Receptors 273
Carsten Schmuck and Hannes Yacu Kuchelmeister
9.1 Introduction 273
9.2 Instructive Historical Examples 275
9.3 Recent Advances in Inorganic Anion Recognition 283
9.4 Organic and Biological Phosphates 287
9.5 Polycarboxylate Binding 292
9.6 Amino Acid Recognition 297
9.7 Dipeptides as Substrate 301
9.8 Polypeptide Recognition 303
9.9 Conclusion 312
References 313

10 Artificial Receptors Based on Spreader-Bar Systems 319
Thomas Hirsch
References 331

11 Potential of Aptamers as Artificial Receptors in Chemical Sensors 333
Bettina Appel, Sabine Müller, and Sabine Stingel
11.1 Introduction 333
11.2 Generation and Synthesis of Aptamers 334
11.2.1 Selection of Aptamers from Combinatorial Libraries (SELEX) 334
11.2.2 SELEX Variations 336
11.2.2.1 SELEX Using Modified Oligonucleotide Libraries 336
11.2.2.2 PhotoSELEX 336
11.2.2.3 Automated SELEX 337
11.2.3 Alternative Approaches for Selection of Aptamers from Combinatorial Libraries 338
11.2.3.1 Capillary Electrophoresis Techniques 338
11.2.3.2 AFM Techniques 339
11.2.4 Synthesis of Aptamers and Stabilization 339
11.2.4.1 Chemical Synthesis of Aptamers 339
11.2.4.2 Stabilization of Aptamers 340
11.3 Aptamer Arrays 341
11.4 Techniques for Readout of Ligand Binding to the Aptamer 343
11.4.1 Conformational Effects 343
11.4.2 Aptazymes 344
11.4.3 Methods of Sensing 345
11.4.3.1 Optical Sensing 345
11.4.3.2 Electrochemical Sensing 350
11.4.3.3 Acoustic Sensing 353
11.4.3.4 Quartz Crystal Microbalance Based Sensing 354
11.4.3.5 Cantilever Based Sensing 354
11.5 Outlook/Summary 354

References 355

12 Conducting Polymers as Artificial Receptors in Chemical Sensors 361
Ulrich Lange, Nataliya V. Roznyatovskaya, Qingli Hao, and Vladimir M. Mirsky

12.1 Introduction 361
12.2 Transducers for Artificial Receptors Based on Conducting Polymers 362
12.3 Intrinsic Sensitivity of Conducting Polymers 366
12.3.1 Sensitivity to pH Changes 366
12.3.2 Affinity to Inorganic Ions 368
12.3.3 Affinity to Gases and Vapors 368
12.4 Conducting Polymers Modified with Receptor Groups 369
12.4.1 Conducting Polymers with Receptor Groups Attached to the Monomer 369
12.4.1.1 Receptors for Ions 369
12.4.1.2 Receptors for Organic/Bioorganic Molecules 381
12.4.2 Conducting Polymers Doped with Receptor 382
12.4.3 Molecular Imprinting of Conducting Polymers 383
12.5 Conclusion 383

References 384

13 Molecularly Imprinted Polymers as Artificial Receptors 391
Florian Meier and Boris Mizaikoff

13.1 Introduction 391
13.2 Fundamentals of Molecular Imprinting 393
13.2.1 What are MIPs? 393
13.2.2 Approaches toward Molecular Imprinted Polymers 394
13.2.2.1 Noncovalent Imprinting (Self-Assembly Approach) 394
13.2.2.2 Covalent Imprinting (Preorganized Approach) 395
13.2.2.3 Semi-Covalent Imprinting 395
13.2.2.4 Advantages and Disadvantages of Different Imprinting Approaches 396
13.2.3 Reagents and Solvents in Molecular Imprinting Technology 396
13.2.3.1 Functional Monomers 396
13.2.3.2 Crosslinkers 397
Preface

One of the great achievements in modern chemistry is the development of artificial synthetic receptors, which are typically low molecular weight compounds that perform selective binding (recognition) of a compound of interest. Such compounds are used for the design and chemically addressed assembly of supramolecular structures. Another important application of these compounds is the development of chemical sensors. Over the past few decades affinity assays have been based mainly on immunological techniques: antibodies are used routinely in clinical applications or in food analysis. However, they are expensive, unstable, and cannot be prepared for some types of analytes. For example, one cannot immunize animals with highly toxic compounds or with compounds that are present in all animals (such as glucose, sodium ion). The solution is to use artificial receptors. Recent years have seen intensive development in this field. Traditional approaches based on the chemical synthesis of small molecules with high affinity have been completed by molecularly imprinted polymerization and by biotechnological preparation and selection of natural macromolecules with such properties.

Syntheses, structures, and recognition properties of artificial receptors are touched on in many monographs in the field of supramolecular chemistry. The book *Functional Synthetic Receptors* edited by Thomas Schräder and Andrew D. Hamilton (Wiley-VCH Verlag GmbH, 2005) provides deep insight into fundamental aspects of the subject. There is little literature, however, discussing artificial receptors with the emphasis on their practical applications as components of chemical sensors and assays. This book intends to fill this gap.

The book starts with two chapters discussing the most relevant quantitative characteristics of receptors – binding affinity and selectivity. Chapter 3, on the combinatorial development of sensing materials, deals with an advanced technological approach to the discovery of new receptors. Chapters 4–9 discuss particular types of receptors (cyclodextrins, cyclopeptides, boronic acids, chiral receptors, calixarenes, and guanidinium derivatives) of significant current importance. Finally, Chapters 10–13 deal with receptors based on organized (spreader-bar approach) or polymeric (aptamers, conducting polymers, and molecular imprinting) structures.
Chapter 14 provides an extensive compilation of the affinity properties of different receptors taken from current literature.

We hope that this book will be useful as a handbook for scientists (from universities and industry) and graduate and post-graduate students working in analytical and supramolecular chemistry, chemical sensors and biosensors, and in material science. It will also be of interest to experts and students working/studying surface chemistry, physical chemistry, and in some fields of organic chemistry, pharmacology, medical diagnostics, biotechnology, chemical technology, food, and environmental monitoring.

Finally, we express our gratitude to the authors of this book and hope that readers also find these contributions enjoyable, interesting, and useful.

February 2010

Vladimir M. Mirsky, Senftenberg
and
Anatoly K. Yatsimirsky, Mexico City
List of Contributors

Bettina Appel
Ernst-Moritz-Arndt Universität
Institut für Biochemie
Felix-Hausdorff-Str. 4
17487 Greifswald
Germany

Yunfeng Cheng
Georgia State University
Department of Chemistry and Center
for Biotechnology and Drug Design
Atlanta, GA 30302-4098
USA

Qingli Hao
Nanjing University of Science
and Technology
Key Laboratory of Soft Chemistry
and Functional Materials
Ministry of Education
210094 Nanjing
China

Thomas Hirsch
University of Regensburg
Institute of Analytical Chemistry
Chemo- and Biosensors
Universitätsstraße 31
93040 Regensburg
Germany

Hiroshi Ikeda
Tokyo Institute of Technology
Graduate School of Bioscience
and Biotechnology
Department of Bioengineering
4259-B-44 Nagatsuta-cho, Midori-ku
Yokohama 226-8501
Japan

Shan Jin
Georgia State University
Department of Chemistry and Center
for Biotechnology and Drug Design
Atlanta, GA 30302-4098
USA

Stefan Kubik
Technische Universität Kaiserslautern
Fachbereich Chemie - Organische
Chemie
Erwin-Schrödinger-Strasse
67663 Kaiserslautern
Germany

Hannes Yacu Kuchelmeister
University of Duisburg-Essen
Institute for Organic Chemistry
Universitätsstraße 7
45141 Essen
Germany
List of Contributors

Ondřej Kundrát
Prague Institute of Chemical Technology
Department of Organic Chemistry
Technická 5
166 28 Prague 6
Czech Republic

Ulrich Lange
University of Regensburg
Institute of Analytical Chemistry, Chemo- and Biosensors
Universitätsstraße 31
93040 Regensburg
Germany

Pavel Lhoták
Prague Institute of Chemical Technology
Department of Organic Chemistry
Technická 5
166 28 Prague 6
Czech Republic

Florian Meier
University of Ulm
Institute of Analytical and Bioanalytical Chemistry
Albert-Einstein-Allee 11
89061 Ulm
Germany

Vladimir M. Mirsky
Lausitz University of Applied Sciences Nanobiotechnology-BCV
Grossenhainer str. 57
01968 Senftenberg
Germany

Boris Mizaikoff
University of Ulm
Institute of Analytical and Bioanalytical Chemistry
Albert-Einstein-Allee 11
89069 Ulm
Germany

Sabine Müller
Ernst-Moritz-Arndt Universität Greifswald
Institut für Biochemie
Felix-Hausdorff-Str. 4
17487 Greifswald
Germany

Ngoc H. Pham
Bates College
Department of Chemistry
S. Andrews Road
Lewiston, ME 04240
USA

Radislav A. Potyrailo
General Electric Global Research
Chemical and Biological Sensing Laboratory
Chemistry Technologies and Material Characterization
1 Research Circle
Niskayuna, NY 12309
USA

Nataliya V. Roznyatovskaya
Fraunhofer Institute of Chemical Technology
Joseph-von-Fraunhofer-Straße 7
76327 Pfinztal-Berghausen
Germany

Carsten Schmuck
University of Duisburg-Essen
Institute for Organic Chemistry
Universitätsstraße 5
45141 Essen
Germany

Hans-Jörg Schneider
Universität des Saarlandes
FR Organische Chemie
66041 Saarbrücken
Germany
Sabine Stingel
Ernst-Moritz-Arndt Universität
Greifswald
Institut für Biochemie
Felix-Hausdorff-Str. 4
17487 Greifswald
Germany

Binghe Wang
Georgia State University
Department of Chemistry and Center for Biotechnology and Drug Design
Atlanta, GA 30302-4098
USA

Xiaochuan Yang
Georgia State University
Department of Chemistry and Center for Biotechnology and Drug Design
Atlanta, GA 30302-4098
USA

Thomas J. Wenzel
Bates College
Department of Chemistry
S. Andrews Road
Lewiston, ME 04240
USA

Anatoly K. Yatsimirsky
Universidad Nacional Autónoma de México
Facultad de Química
04510 México D.F.
México
Quantitative Characterization of Affinity Properties of Immobilized Receptors

Vladimir M. Mirsky

1.1 Introduction

Affinity as a tendency of molecules (ligands) to associate with another type of molecules or polymers (receptor) can be described by a set of kinetic and thermodynamic parameters. These parameters include the adsorption (or binding, or association) constant, which can be recalculated as the free energy of binding, binding enthalpy and entropy, kinetic adsorption and desorption constants, and activation energies for binding and for dissociation.

There are several reasons for a quantitative characterization of affinity. The first is due to possible applications of these receptors in affinity sensors. The sensors are intended to measure volume concentrations of analytes. However, transducers of affinity sensors (refractometric, interferometric, mechano-acoustical, capacitive, and others) provide information on the surface concentration of analytes (ligands) on a layer of immobilized receptors (Figure 1.1). Therefore, it is important to obtain a calibration curve – the dependence between volume concentration of an analyte and its surface concentration. Such relations are named in physical chemistry as adsorption isotherms (the binding is usually performed at constant temperature). Several adsorption isotherms can be obtained from simple physical models. A mathematical description of these isotherms allows one not only a better understanding of binding process but also provides a mathematical basis for interpolation and extrapolation of the calibration curve, which is of importance for analytical applications.

The second reason includes material science aspects. Quantitative information can be used to make an appropriate choice of synthetic receptors for different applications and for prediction of the detection limit and selectivity of analytical devices based on these receptors. Additionally, these data can be used as descriptors for combinatorial optimization and for discovery of new sensing materials (the combinatorial approach is discussed in Chapter 3) [1–3].

The association can be investigated in the bulk phase (in the solution or suspension of the ligand and receptor molecules) or on a surface. Ligand–receptor interactions
can be investigated in a bulk phase by titration and application of any analytical technique that is sensitive to the concentration of free or bound ligands or receptors. For example, the binding of dye molecules can be determined by colorimetry or fluorescence, while ions or redox-active species can be measured by potentiometric techniques. One of the most commonly used techniques that can be applied for various ligand–receptor systems is a NMR titration. Another general approach is based on isothermal calorimetry; in this case the heat produced during the ligand–receptor interaction is measured. This technique has the advantage of providing the enthalpy of binding in a single titration experiment. Analysis of ligand–receptor binding in bulk phases is well described in literature [4–7] and, therefore, is not covered in this chapter.

Applications of artificial receptors for chemical sensors require an immobilization of these receptors on a surface. In the 1980s to the beginning of 1990s there were many attempts to induce physical immobilization of chemoreceptors, for example, by using the Langmuir–Blodgett technique or electrostatically driven adsorption. Nowadays, receptor immobilization is performed mainly by formation of chemical bonds with some surface groups (e.g., peptide bond) or by introduction of surface anchoring groups into the receptor molecules. Chemical aspects of covalent receptor immobilization have been described [8–15]. The most widely used technology of chemical immobilization is based on the formation of an amide bond through activation by either EDC [1-ethyl-3-(3-dimethylaminopropyl)carbodiimide] [14, 15] or an EDC–NHS (N-hydroxysuccinimide) mixture. The most widely used surface anchor group is the thiol group, which forms, spontaneously, an extremely strong bond with gold, silver, palladium, copper, and some other materials [13, 16–19].

Chemical immobilization of a receptor may influence its affinity properties. This chapter is focused on the characterization of affinity properties of immobilized receptors.
1.2 Measurements Under Equilibrium Conditions

Binding of a ligand (A) with a receptor (B) leading to the formation of a complex can be considered using a formal kinetic approach:

\[A + B \rightleftharpoons AB \]

The rate of association (adsorption onto the receptor layer) is proportional to the ligand concentration \((c_L)\) and to the fraction of uncoated binding sites \((1 - \theta)\), where \(\theta\) is the fraction of occupied binding sites. Therefore, the association rate is \(k_{ads}c_L(1 - \theta)\), where \(k_{ads}\) is the kinetic adsorption constant (also indicated as the kinetic association constant or kinetic binding constant). The rate of dissociation is \(k_{des}\theta\), where \(k_{des}\) is the kinetic constant of desorption (also indicated as the kinetic constant of dissociation). At equilibrium conditions:

\[
k_{ads} \cdot c_L (1 - \theta_{eq}) = k_{des} \cdot c_L \theta_{eq}
\]

therefore:

\[
\theta_{eq} = \frac{c_L K}{1 + c_L K}
\]

where:

\[
K = \frac{k_{ads}}{k_{des}}
\]

This model, well known as the Langmuir adsorption isotherm, is valid for most cases of ligand–receptor binding. The model is based on the following assumptions: (i) all binding sites are equivalent; (ii) the ability of a ligand molecule to bind a binding site is independent of the occupation of neighboring sites; (iii) the number of binding sites is limited; and (iv) there is a dynamic equilibrium between bound molecules and free molecules in aqueous environment.

At low ligand concentration \((c_L K \ll 1)\) this equation is linearized: \(\theta = c_L K\) (Henry adsorption isotherm). Physically, it corresponds to binding at low surface coverage.

Analysis of the literature on chemical sensors, biosensors, and supramolecular chemistry demonstrates that the Langmuir adsorption isotherm is valid for most cases. The main reasons for possible deviations from this simple model are non-homogeneity of binding sites [deviation from postulate (i)] and an influence of occupation of binding sites on affinity properties of neighboring sites [deviation from postulate (ii)].

Non-homogeneity of binding sites is a typical case for artificial receptors formed by molecularly imprinted polymerization (artificial receptors based on molecularly imprinted polymers are discussed in Chapter 13) [20, 21]. For a receptor layer consisting of several different types of receptors, the Langmuir adsorption isotherm has the form:

\[
\theta_{eq} = \sum_i \gamma_i \frac{c_L K_i}{1 + c_L K_i}
\]
where γ_i is the molar fraction of the receptor with binding constant K_i. For a continuous distribution of binding constants the sum in Eq. (1.4) can be replaced by an integral. In practice, Eq. (1.4) can be applied only for $i = 2 \text{ or } 3$ and only if the difference between K_i is at least several-fold. In some cases the heterogeneity of the receptor properties and distribution through the sensing surface can be described by fractal geometry [22]. An exponential distribution of energy of the binding sites is described by Freundlich adsorption isotherm:

$$\theta = A \sqrt[3]{c}$$ \hspace{1cm} (1.5)

As a criterion for this isotherm, a linearization versus logarithmic concentration scale is used.

In general, although non-homogeneity of the receptor properties can be explained and described mathematically, this leads to serious practical problems in applications of such receptors for analytical purposes. In this case the results depend strongly on the initial occupation of binding states of the receptor layer, and non-complete desorption of ligands leads to a quite different adsorption isotherm.

The distance between receptors immobilized on a surface is usually large enough to exclude an influence of the occupation of one binding site on the affinity of neighboring binding sites. However, such effects have been reported in several studies. Numerous models have been suggested to describe adsorption under such conditions. The most widely used is the Frumkin isotherm.

$$Kc = \frac{\theta}{1-\theta} \exp (-2a\theta)$$ \hspace{1cm} (1.6)

This is an extension of the Langmuir isotherm, taking into account an interaction of adsorbed molecules. The interaction is described by parameter a, which is positive for attraction and negative for repulsion between adsorbed molecules (Figure 1.2). For $a = 0$ the Frumkin isotherm coincides with the Langmuir isotherm.

A signal of affinity sensors (S) is proportional to their surface coverage (θ) (this fact is often considered as a definition of affinity sensors); therefore, for binding according to the Langmuir isotherm the signal has the following dependence on ligand concentration:

$$S = \alpha \frac{cL K}{1 + cL K}$$ \hspace{1cm} (1.7)

where α is a proportionality coefficient depending on the type of transducer and on an amplification factor during the signal processing. For small concentrations ($cL K \ll 1$) this leads to a linear equation:

$$S = \alpha cL K$$ \hspace{1cm} (1.8)

The main question in the analysis of experimental data obtained under quasi-equilibrium conditions is the extraction of the binding constant K. In the case of a linear dependence of the signal of an affinity sensor on concentration [Eq. (1.8)],
such analysis would require information on the coefficient α, which is not always available and in general can be different for different receptors. However, even for unknown but constant values of α, a comparison of slopes of the curves measured at different conditions or for modified receptors provides valuable information on comparison of binding constants.

Binding curves reaching their saturation range are more informative. An analysis of such dependence can provide information not only on the binding constant but also on the homogeneity of the binding sites (or on deviations from the Langmuir model) and on the value of the proportionality factor α corresponding to the saturated value of the signal. The quality of data analysis improves with increasing deviation from linear dependence. However, the maximal concentration that can be used for experimental tests is usually limited (e.g., by solubility or by available amount of the ligand).

Principally, the parameters K and α can be extracted from experimental data by direct nonlinear fitting using Eq. (1.7). Another approach, providing a better

Figure 1.2 Simulated adsorption isotherms according to the models of Henry (curve 1), Langmuir (curve 2) and Frumkin (curves 3 and 4) for attraction ($\alpha = +1$, curve 4) and repulsion ($\alpha = -1$, curve 3) of adsorbed molecules at different concentration scales (a)–(c) and as a semilogarithmic plot (d). Binding constant in all the curves is $1/(1 \text{nM})$.
The visualization of the type of possible deviation from the Langmuir model, is based on linearization of this dependence in a double reciprocal plot (Lineweaver–Burk plot):

$$\frac{1}{S} = \frac{1}{aK} + \frac{1}{a}$$

Extrapolation of the line gives information on both parameters of Eq. (1.7) (Figure 1.3a). Although this approach is sometimes considered as a relic of the before-computer era, it has several advantages. For example, it may indicate a systematic deviation from the Langmuir model or heterogeneity of binding sites. In this case, \(n \) types of binding sites with different affinity give \(n - 1 \) breaks of the straight line. Practically, it is applicable only for \(n = 2 \) or \(3 \) and only when the binding constants are very different (about one order or more), and the measurements are performed over the wide concentration range.

Another approach to obtain the binding constant from experimental data measured before saturation is based on data presentation versus a logarithmic concentration scale (Figure 1.2d, curve 2 and Figure 1.3b). In this case, the reciprocal binding constant corresponds to the concentration at the symmetry point of the curve. This point also corresponds to the maximal slope or to the point of change of the sign of the curvature. Therefore, for data measured in a small concentration range, where the symmetry point is not clearly visible, it can be also found from analysis of the first or second derivatives (Figure 1.3b).

The obtained binding constant can be then recalculated into the molar standard Gibbs free energy (Gibbs energy) of the binding reaction:

$$\Delta G^0 = -RT \ln K$$

The binding constant in Eq. (1.10) characterizes the ratio of activities of corresponding species and is therefore a dimensionless value. By application of usual approximations of activities by concentrations, the concentration values should be
converted into dimensionless ones by normalization of the concentrations to 1 mol$^{-1}$.

In practice, the binding constants of immobilized receptors based on equilibrium between volume and surface concentrations are measured under quasi-stationary conditions, as a response of an affinity sensor with this receptor to stepwise increasing ligand concentration. Typically, the measurement is performed 10–40 min after the concentration increase, when the signal “looks” constant. There is no strong criterion on reaching of equilibrium, and this uncertainty may be a reason for a systematic error.

An analysis of binding and selection of an appropriate binding isotherm carry a risk of misinterpretation and require very critical consideration. For example, logarithmic conversion, used for validation of the Freundlich isotherm, leads to strong compression of the variation range and therefore to some data linearization. A break in the double-reciprocal plot of the Langmuir isotherm for two binding sites is observed only for a sufficiently high difference of binding constants of these sites. In addition, data analysis based on a Scatchard plot, which is widely used for affinity experiments in bulk phase, is often misinterpreted [23, 24]. An uncertainty in the definition of quasi-equilibrium was discussed above. In many cases, statements on the selection of adsorption models can be checked by numerical simulations.

1.3 Kinetic Measurements

Binding constants can be also obtained from kinetic measurements. Numerous investigations have demonstrated that the values obtained from kinetic and equilibrium measurements are almost identical. Kinetic measurements of binding constants can be performed much faster than the measurements under quasi-equilibrium conditions. Moreover, for some receptor–ligand pairs the kinetics are so slow that the measurements in quasi-equilibrium conditions are impossible. Another advantage of kinetic measurements is that they provide information not only on the equilibrium binding constant but also on the kinetic constants of binding (k_{ads}) and dissociation (k_{des}).

As is usual for each surface reaction, a process of ligand to receptor binding includes two kinetic steps: diffusion of ligand to the receptor and ligand–receptor binding. A model used for analysis of kinetic measurements is based on the following assumptions: (i) the kinetic limiting step of the whole process is the binding and (ii) the binding can be described by the Langmuir isotherm. It is not a rare case when assumption (i) is not valid. Its validation will be described below.

According to the formal kinetics, the detected adsorption rate $\frac{d\theta}{dt}$ can be described as an algebraic sum of the rates of adsorption and desorption:

$$\frac{d\theta}{dt} = k_{ads}(1-\theta)c_L - k_{des}\theta$$ \hspace{1cm} (1.11)
or:
\[
\frac{d\theta}{dt} = -\theta k_S + k_{ads} c_L
\]
(1.12)

and:
\[
\frac{dS}{dt} = -Sk_S + k_{ads} c_L
\]
(1.13)

where:
\[
k_S = k_{ads} c_L + k_{des}
\]
(1.14)

The solution of the differential equation (1.12) is:
\[
\theta(t) = \left[1 - \exp\left(-k_S t\right)\right] \theta_{eq}
\]
(1.15)

where \(\theta_{eq}\) is the surface coverage in equilibrium and can, therefore, be found from Eq. (1.2).

The desorption kinetics observed after replacement of the ligand solution by the solution without ligand can be obtained from the equation:
\[
\frac{d\theta}{dt} = -k_{des} \theta
\]
(1.16)

The solution with the corresponding starting condition is:
\[
\theta(t) = \theta_{eq} \exp\left(-k_{des} t\right)
\]
(1.17)

It follows from Eq. (1.12) that \(k_S\) is an apparent kinetic constant of adsorption. This value can be obtained from experimental data. It is paradoxical that the desorption constant is one of the components contributing to the adsorption constant in Eq. (1.14).

The dependence of \(k_S\) on ligand concentration allows one to obtain values of \(k_{ads}\) and \(k_{des}\). The value \(k_S\) can be obtained by exponential fitting of adsorption kinetics with Eq. (1.15). Instead of nonlinear fitting, the dependence of \(dS/dt\) versus \(S\) can be analyzed: a linearity of this dependence verifies the exponential character of the signal kinetics while its slope gives \(k_S\) (Figure 1.4). The desorption rate constant \(k_{des}\) can also be extracted from fitting of desorption kinetics with Eq. (1.17). This provides a principal way of obtaining kinetic constants of adsorption and desorption and of estimating the binding constant from single experiment. However, desorption kinetics for many receptors are very slow, and \(k_{ads}\) cannot be measured directly. In addition, more reliable data can be obtained by repetition of the measurements at different concentrations and by analysis of the concentration dependence of \(k_S\) according to Eq. (1.14). Values of \(k_{ads}\) and \(k_{des}\) obtained from kinetic measurements can be used to calculate the binding constant \((K)\) [Eq. (1.3)]. A deviation of the dependence of \(k_S\) versus ligand concentration from a linear dependence may indicate that the process is not limited by the binding step. The quality of this analysis depends strongly on the signal/noise ratio.
As mentioned above, it is not a rare case that the binding process is limited by diffusion. It is more typical for receptor layers with a three-dimensional matrix. Ignoring this fact and a mechanistic application of the analysis based on the Langmuir model to the diffusion limited processes leads to large errors in the determination of k_{ads} and k_{des} and may lead to considerable errors in binding constants. Therefore it is important to formulate simple criteria to distinguish diffusion and reaction control of the binding process. A deviation of the binding kinetics from mono-exponential dependence is a sign of diffusion limitation; however, it is difficult to provide a reasonable quantitative criterion for this deviation. Moreover, diffusion limited processes can also display a mono-exponential kinetics.

For diffusion controlled processes an adsorption rate depends on the solution viscosity. The viscosity can be modified by addition of sugar, glycerol, or other compounds. The influence of viscosity on binding kinetics should be independent of the chemical nature of the viscosity modifier – a criterion that excludes a chemical influence of the viscosity modifier on the binding process.

Another approach to distinguish diffusion and reaction kinetics is based on variation of thickness of the diffusion boundary layer. It can be performed in devices that are similar to the rotating electrodes widely used in electrochemical experiments. In the case of a reaction limited process, no influence of the rotation rate is expected. For a diffusion limited process, the observed adsorption rate should be increased with increasing rotation rate. The thickness of the hydrodynamic equivalent of the diffusion boundary layer (δ) depends linearly on the square root of reciprocal rotation rate [25]:

$$\delta = 1.61 \cdot D^{\frac{1}{2}} \eta^{\frac{1}{2}} \omega^{-\frac{1}{2}}$$ \hspace{1cm} (1.18)

where

- D is the diffusion coefficient,
- η is the solvent viscosity,
- ω is the circular frequency of the electrode rotation.

The diffusion flux is proportional to the reciprocal value of thickness of the diffusion boundary layer. Therefore, for a diffusion controlled process one can expect a linear dependence between the adsorption rate and the square root of the rotation rate. In flow-through cells this approach can be realized by variation of the flow rate.
In cells without through-flow some variation of the thickness of diffusion layer can be obtained by modification of stirring intensity. An application of a rotating receptor surface in immunoassay has been described [26]. Identification of the limiting kinetic step based on modification of viscosity and on investigation of the dependence of binding kinetics on rotation rate of disk electrode has been employed [27]; however, such analysis is time consuming and too difficult for routine applications. A simpler test is an investigation of the influence of flow rate on binding kinetics; a quantitative analysis and experimental validation of this approach has been described [28–31].

1.4 Analysis of Temperature Dependencies

Affinity properties can be further characterized by investigation of the temperature dependencies.

Spontaneous adsorption means that the free energy of the process is negative. Adsorption leads to a decrease in freedom. Taking into account that $\Delta H = \Delta G + T\Delta S$, this means that the enthalpy of adsorption is also negative. Therefore, a binding of a ligand with a receptor leads to heat production. The entropy production can be determined quantitatively by investigation of the temperature dependence of the binding constant. Substitution of $\Delta G = \Delta H - T\Delta S$ in Eq. (1.10) leads to the van’t Hoff relationship, which allows one to obtain the molar enthalpy of the binding reaction from the temperature dependence of the binding constant:

$$\ln K = \frac{1}{R} \left(\Delta S^0 - \frac{\Delta H^0}{T} \right)$$

(1.19)

Therefore, a slope of the dependence of the logarithm of the equilibrium constant as a function of reciprocal temperature gives the value of standard reaction enthalpy while extrapolation to zero value of the reciprocal temperature gives the value of reaction entropy. A deviation of this dependence was explained by a contribution of a temperature-dependent heat capacity [32]. Assuming a constant difference in heat capacity between free and associated ligand and receptor (ΔC_p) in the temperature range between the temperature of the standard state T_0 (usually 25 °C) and the current temperature T, one can rewrite Eq. (1.19) more exactly:

$$\ln K = \frac{1}{R} \left[\Delta S^0 - \frac{\Delta H^0}{T} + \Delta C_p \left(\frac{T - T_0}{T} - \ln \frac{T}{T_0} \right) \right]$$

(1.20)

This provides, in principle, the possibility of determining not only the binding enthalpy and binding entropy but also ΔC_p. However, a numerical simulation demonstrated that the fitting of experimental data is not very sensitive to this parameter, and typical values of experimental errors makes quantitative determination of ΔC_p very uncertain [33].
An investigation of temperature dependencies of the kinetic constants of binding (k_{ads}) and dissociation (k_{des}) allows us to obtain activation energies for binding and dissociation, $E_{a,ads}$ and $E_{a,des}$, respectively:

$$
k_{ads} = C_{24} \exp \left(-\frac{E_{a,ads}}{RT} \right) \quad \text{and} \quad k_{des} = C_{24} \exp \left(-\frac{E_{a,des}}{RT} \right)
$$

The difference between $E_{a,ads}$ and $E_{a,des}$ can be interpreted as the molar enthalpy of the binding reaction (Figure 1.5):

$$
E_{a,ads} - E_{a,des} \approx \Delta H^0
$$

The transition state theory developed by Eyring and coauthors [34] provides the principal means of making a more detailed analysis of the reaction profile and to separate the contributions of enthalpy and entropy in the activation process. This theory gives the following equation for the kinetic constant of binding:

$$
k_{ads} = \frac{xk_BT}{h} \exp \left(-\frac{\Delta H^{\#}_{ads}}{RT} \right) \exp \left(-\frac{\Delta S^{\#}_{ads}}{R} \right)
$$

where

- the superscript $\#$ indicates that the corresponding thermodynamic potential refers to an activation process,
- k_B is the Boltzmann constant,
- h is the Plank constant,
- x is a transmission factor, which is considered to be between 0.5 and 1.

Linearization in coordinates $\ln(k/T)$ versus $1/T$ (Eyring plots) can be used to extract values of standard activation enthalpies and entropies; however, a determination of entropy requires an assumption on the value of x (usually, as $x = 1$).

The risk of misinterpretation of temperature dependencies of equilibrium and kinetic data is very high. Critical analysis of many aspects of this analysis has been performed [33, 35].
1.5 Experimental Techniques

While affinity analysis in the bulk phase can be performed by any analytical technique providing measurements of concentration of free or occupied ligand or receptor molecules, affinity analysis of immobilized receptors requires special methods that provide measurements of surface concentrations. Figure 1.6 gives a short review of the main label-free techniques.

An application of an impedometric approach to study adsorption phenomena came into analytical chemistry from classical electrochemistry. This approach is also known as capacitive detection because, usually, an imaginary component of impedance is used. Obviously, this approach can be applied only for conducting surfaces. In ideal case, the interface should display pure capacitive properties, that is, should block any charge transfer.

The specific electrical capacitance \(C \) of an interface coated by some dielectric layer with relative dielectric constant \(\varepsilon \) and thickness \(d \) is:

\[
C = \frac{\varepsilon \varepsilon_0}{d}
\]

where \(\varepsilon_0 \) is the dielectric constant of a vacuum. There are two ways to apply capacitive binding detection: to detect changes of either the layer thickness or dielectric constant. The first approach has been used, for example, in spreader-bar systems (the spreader-bar technique is described in Chapter 10) [36, 37]: binding of ligands to receptors leads to an increase of the thickness of the dielectric layer. The second approach has been applied for molecularly imprinted polymers (Chapter 13) [38, 39]:

![Figure 1.6](image-url)