Ado Jorio, Riichiro Saito, Gene Dresselhaus, and Mildred S. Dresselhaus

Raman Spectroscopy
in Graphene Related Systems
Ado Jorio, Riichiro Saito,
Gene Dresselhaus and
Mildred S. Dresselhaus
Raman Spectroscopy
in Graphene Related Systems
The Authors

Ado Jorio is a Professor in the Physics Dept. of the Federal University of Minas Gerais, Brazil, where he also earned his PhD, in 1999. His Post-doctoral research was done at MIT, USA, where his collaboration with the Dresselhaus group and with Professor Saito started. He has authored and co-authored several book chapters and books on carbon science and has been active in science policy in Latin America.

Mildred Dresselhaus received her Ph.D. at the University of Chicago in 1958 and started research on carbon science in 1960 with Gene Dresselhaus while working at the MIT Lincoln Laboratory. She has been an MIT professor since 1967, and started working with Riichiro Saito in 1991 and with Ado Jorio since 2000.

Riichiro Saito received PhD degree from the University of Tokyo in 1985. After being a Research Associate at the University of Tokyo in 1985 and an Associate Professor at the University of Electro-Communication in Tokyo in 1990, he became Professor at Tohoku University in Sendai since 2003.

Gene F. Dresselhaus received his PhD degree from the University on California, Berkeley under the supervision of Charles Kittel. He has actively worked on a variety of problems in condensed matter physics. He has taught courses in condensed matter physics at the University of Chicago and at Cornell University. He currently holds a Research appointment at MIT and jointly leads a research group at the MIT Center for Materials Science and Engineering which studies graphite intercalation compounds, fullerenes, graphene, and carbon nanotubes. He has Co-authored or Co-edited six books on Carbon Science.
Ado Jorio, Riichiro Saito, Gene Dresselhaus, and Mildred S. Dresselhaus

Raman Spectroscopy in Graphene Related Systems
A. J. and R. S. dedicate this book to the 80th birthday of Professor Gene Dresselhaus (born Nov. 7, 1929) and Professor Mildred S. Dresselhaus (born Nov. 11, 1930).
Contents

Preface XIII

Part One Materials Science and Raman Spectroscopy Background 1

1 The \(sp^2 \) Nanocarbons: Prototypes for Nanoscience and Nanotechnology 3
 1.1 Definition of \(sp^2 \) Nanocarbon Systems 3
 1.2 Short Survey from Discovery to Applications 5
 1.3 Why \(sp^2 \) Nanocarbons Are Prototypes for Nanoscience and Nanotechnology 10
 1.4 Raman Spectroscopy Applied to \(sp^2 \) Nanocarbons 11

2 Electrons in \(sp^2 \) Nanocarbons 17
 2.1 Basic Concepts: from the Electronic Levels in Atoms and Molecules to Solids 18
 2.1.1 The One-Electron System and the Schrödinger Equation 18
 2.1.2 The Schrödinger Equation for the Hydrogen Molecule 20
 2.1.3 Many-Electron Systems: the NO Molecule 21
 2.1.4 Hybridization: the Acetylene \(\text{C}_2\text{H}_2 \) Molecule 23
 2.1.5 Basic Concepts for the Electronic Structure of Crystals 24
 2.2 Electrons in Graphene: the Mother of \(sp^2 \) Nanocarbons 27
 2.2.1 Crystal Structure of Monolayer Graphene 27
 2.2.2 The \(\pi \)-Bands of Graphene 28
 2.2.3 The \(\sigma \)-Bands of Graphene 31
 2.2.4 N-Layer Graphene Systems 33
 2.2.5 Nanoribbon Structure 35
 2.3 Electrons in Single-Wall Carbon Nanotubes 37
 2.3.1 Nanotube Structure 38
 2.3.2 Zone-Folding of Energy Dispersion Relations 40
 2.3.3 Density of States 44
 2.3.4 Importance of the Electronic Structure and Excitation Laser Energy to the Raman Spectra of SWNTs 47
 2.4 Beyond the Simple Tight-Binding Approximation and Zone-Folding Procedure 48
3 Vibrations in \(sp^2 \) Nanocarbons 53

3.1 Basic Concepts: from the Vibrational Levels in Molecules to Solids 55

3.1.1 The Harmonic Oscillator 55

3.1.2 Normal Vibrational Modes from Molecules to a Periodic Lattice 56

3.1.3 The Force Constant Model 59

3.2 Phonons in Graphene 61

3.3 Phonons in Nanoribbons 65

3.4 Phonons in Single-Wall Carbon Nanotubes 66

3.4.1 The Zone-Folding Picture 66

3.4.2 Beyond the Zone-Folding Picture 67

3.5 Beyond the Force Constant Model and Zone-Folding Procedure 69

4 Raman Spectroscopy: from Graphite to \(sp^2 \) Nanocarbons 73

4.1 Light Absorption 73

4.2 Other Photophysical Phenomena 75

4.3 Raman Scattering Effect 78

4.3.1 Light–Matter Interaction and Polarizability: Classical Description of the Raman Effect 79

4.3.2 Characteristics of the Raman Effect 81

4.3.2.1 Stokes and Anti-Stokes Raman Processes 81

4.3.2.2 The Raman Spectrum 82

4.3.2.3 Raman Lineshape and Raman Spectral Linewidth \(\Gamma_q \) 82

4.3.2.4 Energy Units: \(\text{cm}^{-1} \) 84

4.3.2.5 Resonance Raman Scattering and Resonance Window Linewidth \(\gamma_r \) 85

4.3.2.6 Momentum Conservation and Backscattering Configuration of Light 86

4.3.2.7 First and Higher-Order Raman Processes 86

4.3.2.8 Coherence 87

4.4 General Overview of the \(sp^2 \) Carbon Raman Spectra 88

4.4.1 Graphite 88

4.4.2 Carbon Nanotubes – Historical Background 92

4.4.3 Graphene 96

5 Quantum Description of Raman Scattering 103

5.1 The Fermi Golden Rule 103

5.2 The Quantum Description of Raman Spectroscopy 108

5.3 Feynman Diagrams for Light Scattering 111

5.4 Interaction Hamiltonians 114

5.4.1 Electron–Radiation Interaction 114

5.4.2 Electron–Phonon Interaction 115

5.5 Absolute Raman Intensity and the \(E_{\text{laser}} \) Dependence 116

6 Symmetry Aspects and Selection Rules: Group Theory 121

6.1 The Basic Concepts of Group Theory 122

6.1.1 Definition of a Group 122

6.1.2 Representations 123

6.1.3 Irreducible and Reducible Representations 124
Contents

6.1.4 The Character Table 126
6.1.5 Products and Orthogonality 127
6.1.6 Other Basis Functions 128
6.1.7 Finding the IRs for Normal Modes Vibrations 128
6.1.8 Selection Rules 130
6.2 First-Order Raman Scattering Selection Rules 130
6.3 Symmetry Aspects of Graphene Systems 132
6.3.1 Group of the Wave Vector 132
6.3.2 Lattice Vibrations and π Electrons 135
6.3.3 Selection Rules for the Electron–Photon Interaction 138
6.3.4 Selection Rules for First-Order Raman Scattering 140
6.3.5 Electron Scattering by \(q \neq 0 \) Phonons 141
6.3.6 Notation Conversion from Space Group to Point Group Irreducible Representations 141
6.4 Symmetry Aspects of Carbon Nanotubes 142
6.4.1 Compound Operations and Tube Chirality 143
6.4.2 Symmetries for Carbon Nanotubes 145
6.4.3 Electrons in Carbon Nanotubes 151
6.4.4 Phonons in Carbon Nanotubes 151
6.4.5 Selection Rules for First-Order Raman Scattering 152
6.4.6 Insights into Selection Rules from Matrix Elements and Zone Folding 153

Part Two Detailed Analysis of Raman Spectroscopy in Graphene Related Systems 159

7 The G-band and Time-Independent Perturbations 161
7.1 G-band in Graphene: Double Degeneracy and Strain 162
7.1.1 Strain Dependence of the G-band 163
7.1.2 Application of Strain to Graphene 165
7.2 The G-band in Nanotubes: Curvature Effects on the Totally Symmetric Phonons 165
7.2.1 The Eigenvectors 166
7.2.2 Frequency Dependence on Tube Diameter 168
7.3 The Six G-band Phonons: Confinement Effect 169
7.3.1 Mode Symmetries and Selection Rules in Carbon Nanotubes 169
7.3.2 Experimental Observation Through Polarization Analysis 170
7.3.3 The Diameter Dependence of \(\omega_G \) 172
7.4 Application of Strain to Nanotubes 174
7.5 Summary 175

8 The G-band and the Time-Dependent Perturbations 179
8.1 Adiabatic and Nonadiabatic Approximations 179
8.2 Use of Perturbation Theory for the Phonon Frequency Shift 181
8.2.1 The Effect of Temperature 181
8.2.2 The Phonon Frequency Renormalization 183
8.3 Experimental Evidence of the Kohn Anomaly on the G-band of Graphene 186
8.3.1 Effect of Gate Doping on the G-band of Single-Layer Graphene 186
8.3.2 Effect of Gate Doping on the G-band of Double-Layer Graphene 186
8.4 Effect of the Kohn Anomaly on the G-band of M-SWNTs vs. S-SWNTs 187
8.4.1 The Electron–Phonon Matrix Element: Peierls-Like Distortion 188
8.4.2 Effect of Gate Doping on the G-band of SWNTs: Theory 191
8.4.3 Comparison with Experiments 194
8.4.4 Chemical Doping of SWNTs 196
8.5 Summary 197
9 Resonance Raman Scattering: Experimental Observations of the Radial Breathing Mode 199
9.1 The Diameter and Chiral Angle Dependence of the RBM Frequency 200
9.1.1 Diameter Dependence: Elasticity Theory 200
9.1.2 Environmental Effects on the RBM Frequency 202
9.1.3 Frequency Shifts in Double-Wall Carbon Nanotubes 206
9.1.4 Linewidths 208
9.1.5 Beyond Elasticity Theory: Chiral Angle Dependence 209
9.2 Intensity and the Resonance Raman Effect: Isolated SWNTs 211
9.2.1 The Resonance Window 211
9.2.2 Stokes and Anti-Stokes Spectra with One Laser Line 214
9.2.3 Dependence on Light Polarization 215
9.3 Intensity and the Resonance Raman Effect: SWNT Bundles 216
9.3.1 The Spectral Fitting Procedure for an Ensemble of Large Diameter Tubes 217
9.3.2 The Experimental Kataura Plot 218
9.4 Summary 220
10 Theory of Excitons in Carbon Nanotubes 223
10.1 The Extended Tight-Binding Method: σ−π Hybridization 224
10.2 Overview on the Excitonic Effect 225
10.2.1 The Hydrogenic Exciton 226
10.2.2 The Exciton Wave Vector 227
10.2.3 The Exciton Spin 228
10.2.4 Localization of Wavefunctions in Real Space 229
10.2.5 Uniqueness of the Exciton in Graphite, SWNTs and C_{60} 230
10.3 Exciton Symmetry 231
10.3.1 The Symmetry of Excitons 231
10.3.2 Selection Rules for Optical Absorption 234
10.4 Exciton Calculations for Carbon Nanotubes 234
10.4.1 Bethe–Salpeter Equation 235
10.4.2 Exciton Energy Dispersion 236
10.4.3 Exciton Wavefunctions 237
10.4.4 Family Patterns in Exciton Photophysics 241
10.5 Exciton Size Effect: the Importance of Dielectric Screening 243
10.5.1 Coulomb Interaction by the $2s$ and σ Electrons 243
10.5.2 The Effect of the Environmental Dielectric Constant κ_{env} Term 245
10.5.3 Further Theoretical Considerations about Screening 246
10.6 Summary 248

11 Tight-Binding Method for Calculating Raman Spectra 251
11.1 General Considerations for Calculating Raman Spectra 252
11.2 The (n, m) Dependence of the RBM Intensity: Experiment 253
11.3 Simple Tight-Binding Calculation for the Electronic Structure 255
11.4 Extended Tight-Binding Calculation for Electronic Structures 258
11.5 Tight-Binding Calculation for Phonons 259
11.5.1 Bond Polarization Theory for the Raman Spectra 260
11.5.2 Non-Linear Fitting of Force Constant Sets 261
11.6 Calculation of the Electron–Phonon Matrix Element 263
11.6.1 Electric Dipole Vector for Graphene 264
11.7 Calculation of the Electron–Phonon Interaction 266
11.8 Extension to Exciton States 269
11.8.1 Exciton–Phonon Matrix Element 270
11.8.2 The Exciton–Phonon Interaction 271
11.9 Matrix Elements for the Resonance Raman Process 272
11.10 Calculating the Resonance Window Width 273
11.11 Summary 274

12.1 General Aspects of Higher-Order Raman Processes 278
12.2 The Double Resonance Process in Graphene 280
12.2.1 The Double Resonance Process 280
12.2.2 The Dependence of the $\omega_{G'}$ Frequency on the Excitation Laser Energy 284
12.2.3 The Dependence of the G'-band on the Number of Graphene Layers 286
12.2.4 Characterization of the Graphene Stacking Order by the G' Spectra 288
12.3 Generalizing the Double Resonance Process to Other Raman Modes 289
12.4 The Double Resonance Process in Carbon Nanotubes 290
12.4.1 The G'-band in SWNTs Bundles 292
12.4.2 The (n, m) Dependence of the G'-band 294
12.5 Summary 296

13 Disorder Effects in the Raman Spectra of sp^2 Carbons 299
13.1 Quantum Modeling of the Elastic Scattering Event 301
13.2 The Frequency of the Defect-Induced Peaks: the Double Resonance Process 304
13.3 Quantifying Disorder in Graphene and Nanographite from Raman Intensity Analysis 307
13.3.1 Zero-Dimensional Defects Induced by Ion Bombardment 308
13.3.2 The Local Activation Model 310
13.3.3 One-Dimensional Defects Represented by the Boundaries of Nanocrystallites 313
13.3.4 Absolute Raman Cross-Section 317
13.4 Defect-Induced Selection Rules: Dependence on Edge Atomic Structure 317
13.5 Specificities of Disorder in the Raman Spectra of Carbon Nanotubes 320
13.6 Local Effects Revealed by Near-Field Measurements 321
13.7 Summary 323

14 Summary of Raman Spectroscopy on sp² Nanocarbons 327
14.1 Mode Assignments, Electron, and Phonon Dispersions 327
14.2 The G-band 328
14.3 The Radial Breathing Mode (RBM) 330
14.4 G'-band 332
14.5 D-band 333
14.6 Perspectives 334

References 335

Index 351
Preface

Raman spectroscopy is the inelastic scattering of light by matter. Being highly sensitive to the physical and chemical properties of materials, as well as to environmental effects that change these properties, Raman spectroscopy is now evolving into one of the most important tools for nanoscience and nanotechnology. In contrast to usual microscopy-related techniques, the advantages of using light for nanoscience relate both to experimental and fundamental aspects. Experimentally, the techniques are widely available, relatively simple to perform, possible to carry out at room temperature and under ambient pressure, and require relatively simple or no special sample preparation. Fundamentally, optical techniques (normally using infrared and visible wavelengths) are nondestructive and noninvasive because they use the photon, a massless and chargeless particle, as a probe.

For understanding Raman spectroscopy, a combination of experiments and theory is important because some concepts of basic solid state physics are needed for explaining the behavior of the Raman spectra as a function of many experimental parameters, such as light polarization, the energy of the photon, temperature, pressure and changes in the environment. In this book, starting from some known example of physics and chemistry, we will explain how to use the basic concepts of molecular and solid state physics, together with optics to understand Raman scattering. Graphene, nanographite and carbon nanotubes (sp² carbons) are selected as the materials to be studied, due to their importance to nanoscience and nanotechnology, and because the Raman technique has been extremely successful in advancing our knowledge about these nanomaterials. It is possible to observe Raman scattering from one single sheet of sp²-hybridized carbon atoms, the two-dimensional (2D) graphene sheet, as well as from a narrow strip of a graphene sheet rolled-up into a 1 nm diameter cylinder to form the one-dimensional (1D) single-wall carbon nanotube. These observations are possible simply by shining light on the nanostructure focused through a commonly available microscope. This book therefore focuses on the basic concepts of both Raman spectroscopy and sp² carbon nanomaterials, together with their interaction. The similarities and differences in the Raman spectra for different sp² carbon nanomaterials, such as graphene and carbon nanotubes, provide a deep understanding of the Raman scattering capabilities that are emphasized in this book.

Raman Spectroscopy in Graphene Related Systems. Ado Jorio, Riichiro Saito, Gene Dresselhaus, and Mildred S. Dresselhaus
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40811-5
There is a general feeling that Raman spectroscopy is too complicated for a non-specialist. Often, common users of Raman spectroscopy as a characterization tool for their samples only touch the surface of the capabilities of the Raman technique. This book is aimed to be sufficiently pedagogic and also detailed to help the general nanoscience and nanotechnology user of Raman spectroscopy to better utilize their instrumentation to yield more detailed information about their nanostructures than before. Our challenge was writing a book that would build from the most basic concept, the Schrödinger equation for the hydrogen atom, going up to the highest level use and application of Raman spectroscopy to study nanocarbons in general.

The book was initially structured for use in a course for graduate students in the Federal University of Minas Gerais (UFMG), Brazil, and it is organized in two parts. The first part gives the basic concepts of Raman spectroscopy and nanocarbons, addressing why we choose nanocarbons as prototype materials for writing this Raman book. The text is suitable for physicists, chemists, material scientists, and engineers, building a link between their languages, a link that is necessary for the future development of nanoscience. The second part gives a detailed treatment of the Raman spectroscopy of nanocarbons, addressing both fundamental material science and the use of Raman spectroscopy towards material applications. Again nanostructured sp^2-hybridized carbon materials are model systems, both due to the common interest that physicists, chemists, material scientists, and engineers have in these systems and because these systems are pertinent to the length scales where these fields converge. By giving more details, the second part gives examples of the large amount of physics one can learn from studying nanocarbons.

Even though the Raman effect was first observed in the early 1920s, we believe this book is the starting point for lots of new scientific perspectives that the “nano” generation is making possible. We hope the reader will be interested in Raman spectroscopy and will accept the challenges that many researchers are now trying to solve in applying this technique to study nanostructures. Problem sets are included at the end of each chapter, designed to provide a better understanding of the concepts presented in this book and to reinforce the learning process. We appreciate if the readers are willing to solve our problems and send the solutions to the authors to post on the web. The answers by the readers and students using this book can be posted on the following web page: http://flex.phys.tohoku.ac.jp/book10/index.html.

Finally, we strongly acknowledge all students and collaborators who have contributed to the development of this book.

September, 2010

Ado Jorio, Belo Horizonte, MG, Brazil
Riichiro Saito, Sendai, Japan
Gene Dresselhaus and Mildred S. Dresselhaus,
Cambridge, MA, USA
Part One Materials Science and Raman Spectroscopy
Background
1
The \(sp^2\) Nanocarbons: Prototypes for Nanoscience and Nanotechnology

This chapter presents the reasons why we focus on nanostructured carbon materials as a model materials system for studying Raman spectroscopy and its applications to condensed matter, materials physics and other related science fields. In short, the answer for “why carbon” and “why nano” is the combination of simplicity and richness [1, 2], making possible an unprecedented and accurate exploitation of both the basic fundamentals that link the broad field of condensed matter and materials physics to the applications of Raman spectroscopy, which provides a highly sensitive and versatile probe of the nano-world.

1.1 Definition of \(sp^2\) Nanocarbon Systems

The concept of \(sp^2\) hybridization, where hybridization means the mixing of valence electronic states, is presented here. Carbon has six electrons, two are in 1s states, and four are valence electrons, occupying the 2s and 2p orbitals. The 1s orbitals at around \(E = -285 \text{ eV}\) are occupied by two electrons and the 1s electrons are called core electrons. These core electrons are strongly bound to the nucleus and do not participate in atomic bonding. Thus, they have a small influence on the physical properties of carbon-based materials, and mostly serve as sources for dielectric screening of the outer shell electrons. The second shell \(n = 2\) is more flexible. The energy difference between the 2s and 2p orbitals is less than the energy gain through C–C binding. For this reason, when carbon atoms bind to each other, their 2s and 2p orbitals can mix with one another in \(sp^n\) (\(n = 1, 2, 3\)) hybridized orbitals. To form the diamond structure, the orbitals for one 2s and three 2p electrons mix, forming four \(sp^3\) orbitals, binding each carbon atom to four carbon neighbors at the vertices of a regular tetrahedron. In contrast, in the \(sp^2\) configuration, the 2s and two 2p orbitals mix to form three in-plane covalent bonds (see Figure 1.1). Here, each carbon atom has three nearest neighbors, forming the hexagonal planar network of graphene. Finally, the \(sp\) hybridization, mixing the orbitals of only one 2s and one 2p electron is also possible, and gives rise to linear chains of carbon atoms, the basis for polyene, the filling of the core of certain nanotubes [3], and providing a step in the coalescence of adjacent nanotubes [4].
Having defined the sp^2 hybridization, we now define nanocarbons. The nanocarbons discussed in this book are structures with sizes between the molecular and the macroscopic. The Technical Committee (TC-229) for nanotechnologies standardization of the International Organization for Standardization (ISO) defines nanotechnology as “the application of scientific knowledge to control and utilize matter at the nanoscale, where size-related properties and phenomena can emerge (the nanoscale is the size range from approximately 1 nm to 100 nm).”

The ideal concept of sp^2 nanocarbons starts with the single graphene sheet (see Figure 1.2a), the planar honeycomb lattice of sp^2 hybridized carbon atoms, which is denoted by 1-LG. Although this system can be large (ideally infinite) in the plane, it is only one atom thick, thus representing a two-dimensional sp^2 nanocarbon.
By stacking two graphene sheets, a so-called bilayer graphene (2-LG) is obtained. Three sheets give three-layer graphene (3-LG), as shown in Figure 1.2b, and many graphene layers on top of each other yield graphite. A narrow strip of graphene (below 100 nm wide) is called a graphene nanoribbon. Rolling-up this narrow strip of graphene in a seamless way into a cylinder forms what is called a single-wall carbon nanotube (SWNT, see Figure 1.2c). Conceptually nanoribbons and nanotubes can be infinitely long, thus representing one-dimensional systems. Add one-, two-layer concentric cylinders and we get double-, triple-wall carbon nanotubes. Many rolled-up cylinders would make a multi-wall carbon nanotube (MWNT). A piece of graphite with small lateral dimensions (a few hundred nanometers and smaller) is called nanographite, which represents a zero-dimensional system. Finally, the “buckyball” (or fullerene) is among the smallest sp^2-sp^3-like nanocarbon structure (see Figure 1.2d, the most common C$_{60}$ fullerene) having revolutionized the field of molecular structures. The fullerenes have special properties and can be considered as another class of materials, which are discussed in detail in [6]. As we see, this very flexible sp^2 carbon system gives rise to many different materials with different interesting physics-chemistry related properties that can be studied in depth. And besides its scientific richness, these sp^2 nanocarbons also play a very important role in applications, as discussed in Section 1.2.

1.2 Short Survey from Discovery to Applications

The ideal concept of the different sp^2 nanocarbons starting from graphene, as described above, is didactic, but historically these materials came to human knowledge in the opposite order. Three-dimensional (3D) graphite is one of the longest-known forms of pure carbon, being found on the surface of the earth as a mineral, and formed by graphene planes arranged in an ABAB Bernal stacking sequence [2]. Of all materials, graphite has the highest melting point (4200 K), the highest thermal conductivity (3000 W/mK), and a high room temperature electron mobility (30 000 cm2/Vs) [9]. Synthetic 3D graphite was made for the first time in 1960 by Arthur Moore [10–15] and was called highly oriented pyrolytic graphite (HOPG). Graphite and its related carbon fibers [16–18] have been used commercially for decades [19]. Their applications range from use as conductive fillers and mechanical structural reinforcements in composites (e.g., in the aerospace industry) to their use as electrode materials exploiting their resiliency (e.g., in lithium ion battery applications) (see Table 1.1) [19, 20].

In 1985 a unique discovery in another sp^2 carbon system took place: the observation of the C$_{60}$ fullerene molecule [21], the first isolated carbon nanosystem. The fullerenes stimulated and motivated a large scientific community from the time of their discovery up to the end of the century [6], but fullerene-based applications

1) ABAB Bernal stacking is the stacking order of graphene layers as shown in Figure 1.2b. One type of carbon atom (A) aligns in the direction perpendicular to the graphene layer, while the other type (B) aligns in every other layer.
Table 1.1 Some of the main applications of traditional graphite-based materials including carbon fibers [19].

<table>
<thead>
<tr>
<th>Traditional graphite materials</th>
<th>Commercial applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite and graphite-based products</td>
<td>Materials-processing applications such as furnaces/crucibles, large electrodes in metallurgical processes, electrical and electronic devices such as electric brushes, membrane switches, variable resistors, etc., electrochemical applications for electrode materials in primary and secondary batteries, separators for fuel cells, nuclear fission reactors, bearings and seals (mechanical) and dispersions such as inks. (Estimated market in 2008: 13 billion USD)</td>
</tr>
<tr>
<td>Carbon-fiber-based products</td>
<td>Carbon-fiber composites Aerospace (70%), sporting goods (18%), industrial equipment (7%), marine (2%), miscellaneous (3%) (Total market in 2008: ~ 1 billion USD)</td>
</tr>
<tr>
<td>Carbon-carbon composites</td>
<td>High-temperature structural materials, Aerospace applications, such as missile nose tips, re-entry heat shields, etc., Brake-disc applications (lightweight, high thermal conductivity, stability), Rotating shafts, pistons, bearings (low coefficient of friction), Biomedical implants such as bone plates (biocompatibility) (Estimated market in 2008: 202 million USD).</td>
</tr>
</tbody>
</table>

remain sparse to date. Carbon nanotubes arrived on the scene following the footsteps of the emergence of the C\(_{60}\) fullerene molecule, and they have evolved into one of the most intensively studied materials, now being held responsible for co-triggering the nanotechnology revolution.

The big rush into carbon nanotube science started immediately after the observation of multi-wall carbon nanotubes (MWNTs) on the cathode of a carbon arc system used to produce fullerenes [27], even though they were identified in the core structure of vapor grown carbon fibers as very small carbon fibers in the 1970s [28–30] and even earlier in the 1950s in the Russian literature [23] (see Figure 1.3). However, single-wall carbon nanotubes (SWNTs), the most widely studied carbon nanostructure, were first synthesized intentionally in 1993 [25, 26]. The interest in
the fundamental properties of carbon nanotubes and in their exploitation through a wide range of applications is due to their unique structural, chemical, mechanical, thermal, optical, optoelectronic and electronic properties [20, 31, 32]. The growth of a single SWNT at a specific location and pointing in a given direction, and the growth of a huge amount of millimeter-long tubes with nearly 100% purity have been achieved [33]. Substantial success with the separation of nanotubes by their \((n, m)\) structural indices, metallicity (semiconducting and metallic) and by length has been achieved by different methods, as summarized in [33], and advances have been made with doping nanotubes for the modification of their properties, as summarized in [34]. Studies on nanotube mechanical properties [35, 36], optical properties [37–43], magnetic properties [44], optoelectronics [45, 46], transport properties [47] and electrochemistry [48, 49] have exploded, revealing many rich and complex fundamental excitonic and other collective phenomena. Quantum transport phenomena, including quantum information, spintronics and superconducting effects have also been explored [47]. After a decade and a half of intense activity in carbon nanotube research, more and more attention is now focusing on the practical applications of the many unique and special properties of carbon nanotubes (see Table 1.2) [19]. All these advanced topics in the synthesis, structure, properties and applications of carbon nanotubes have been collected in [20].

In the meantime, the study of nanographite was under development as an important model for nano-sized \(\pi\)-electron systems [50]. Its widespread study was launched by the discovery by Novoselov et al. [51] of a simple method using Scotch tape to transfer a single atomic layer of \(sp^2\) carbon called graphene (1-LG) from the c-face of graphite to a substrate suitable for the measurement of the electrical and optical properties of monolayer graphene [52]. While the interest in monolayer graphene preparation goes back to the pioneering theoretical work of Wallace in 1947 [53], the Novoselov finding in 2004 led to a renewed interest in what was before considered to be a prototypical system highly valued for theoretical calcu-
Table 1.2 Applications of nanotubes grouped as present (existing), near-term (to appear in the market within ten years) and long-term (beyond a ten-year horizon), and as categories belonging to large-volume (requiring large amounts of material) and limited-volume (small volume and utilizing the organized nanotube structure) applications [19].

<table>
<thead>
<tr>
<th>Large-volume applications</th>
<th>Limited-volume applications (mostly based on engineered nanotube structures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Battery electrode additives (MWNT) Composites (sporting goods, MWNT) Composites (electrostatic shielding applications, MWNT)</td>
<td>Scanning probe tips (MWNT) Specialized medical appliances (catheters)</td>
</tr>
<tr>
<td>Near-term Battery and supercapacitor electrodes (less than ten years) Multi-functional composites (3D, electrostatic damping) Fuel-cell electrodes (catalyst support) Transparent conducting films Field emission displays/lighting CNT-based inks for printing</td>
<td>Single-tip electron guns Multi-tip array X-ray sources Probe array test systems CNT brush contacts CNT sensor devices Electromechanical memory device Thermal-management systems</td>
</tr>
<tr>
<td>Long-term Power transmission cables (beyond ten years) Structural composites (aerospace and automobile, etc.)</td>
<td>Nanoelectronics (FET, interconnects), flexible electronics CNT-based biosensors CNT in photovoltaic devices CNT filtration/separation membranes, drug-delivery</td>
</tr>
</tbody>
</table>

lations for \(sp^2\) carbons, thereby providing a basis for establishing the structure of graphite, fullerenes, carbon nanotubes and other \(sp^2\) nanocarbons. Surprisingly, this very basic graphene system, which had been studied by researchers over a period of many decades, suddenly appeared with many novel physical properties that were not previously imagined [7, 52]. In one or two years, the rush on graphene science began.

Besides outstanding mechanical and thermal properties (breaking strength \(\sim 40\) N/m, Young’s modulus \(\sim 1.0\) TPa, room temperature thermal conductivity \(\sim 5000\) W m\(^{-1}\) K\(^{-1}\) [54]), the scientific interest in graphene was stimulated by the widespread report of the relativistic (massless) properties of the conduction electrons (and holes) in a single graphene layer less than 1 nm thick, which is responsible for the unusual electrical transport properties in this system (see Figure 1.4) with the state-of-the-art mobility for suspended graphene reaching \(\mu = 200 000\) cm\(^2\)/Vs [55, 56]. Other unusual properties have been predicted and demonstrated experimentally, such as the minimum conductivity and the half-integer quantum Hall effect [57], Klein tunneling [58–64], negative refractive index and Veselago lensing [62], anomalous Andreev reflection at metal-superconductor junc-
Figure 1.4 (a) Electronic structure of graphene. The valence and conduction bands touch each other at six points, each called the “Dirac point”. Near these Dirac points, the electron energy (E) depends linearly on the electron wave vector (k), giving rise to the Dirac cones, similar to massless particles, like in light cones ($E = cp$, where c is the speed of light). Parts (b) and (c) show transport experiments in a single-layer graphene field effect transistor device. (b) Gate voltage V_g-dependent in-plane resistance R_{xx} showing a finite value at the Dirac point. The resistivity ρ_{xx} can be calculated from the resistance R_{xx} using the geometry of the device. The inset is an image of a graphene device sitting on a Si:SiO$_2$ substrate. The Si is the bottom gate; five top electrodes formed via e-beam lithography are shown. The scale bar is 5 μm. (c) Mobility μ (dotted curve) and carrier density n_S (solid line) as a function of V_g (for holes $V_g < 0$ and for electrons $V_g > 0$). The mobility vs. V_g diverges but to a finite value at the Dirac point due to the finite resistivity. Adapted from [5].

Applications [58, 63–66], anisotropies under antidot lattices [67] or periodic potentials [68], and a metal–insulator transition [69]. Applications as a filler for composite materials, supercapacitors, batteries, interconnects and field emitters have been exploited, although it is still too early to say whether graphene will be able to compete with carbon nanotubes and other materials in the applications world [70].

Finally, graphene can be patterned using high-resolution lithography [71] for the fabrication of nanocircuits with graphene-nanoribbon interconnects. Many groups are now making devices using graphene and also graphene nanoribbons, which have a long length and a small width, and where the ribbon edges play an important role in determining their electronic structure and in exhibiting unusual spin polarization properties [72]. While lithographic techniques have limited resolution for the fabrication of small ribbons (< 20 nm wide), chemical [73] and synthetic [74] methods have been employed successfully, including the unzipping of SWNTs as a route to produce carbon nanoribbons [75, 76].
1.3 Why \(sp^2 \) Nanocarbons Are Prototypes for Nanoscience and Nanotechnology

The integrated circuit represents the first human example of nanotechnology, and gave birth to the information age. Together with the nonstop shrinking of electronic circuits, the rapid development of molecular biology and the evolution of chemistry from atoms and molecules into large complexes, such as proteins and quantum dots, have together with other developments launched nanotechnology. It is not possible to clearly envisage the future or the impact of nanotechnology, or even the limit for the potential of nanomaterials, but clearly serious fundamental challenges can already be identified:

- To construct nanoscale building blocks precisely and reproducibly;
- To discover and to control the rules for assembling these nano-objects into complex systems;
- To predict and to probe the emergent properties of these assembled systems.

Emergent properties refer to the complex properties of ensembles of components which exhibit much simpler interactions with their nearest neighbors. These challenges are not only technological, but also conceptual: how to treat a system that is too big to be solved by present day first-principles calculations, and yet too small for using statistical methods? Although these challenges punctuate nanoscience and nanotechnology, the success here will represent a revolution in larger-scale scientific challenges in the fields of emergent phenomena and information technology. Answers to questions like “how do complex phenomena emerge from simple ingredients?” and “how will the information technology revolution be extended?” will probably come from using nanoscience in meeting the challenges of nanotechnology [77].

It is exactly in this context that nanocarbon is expected to play a very important role. On one hand, nature shows that it is possible to manipulate matter and energy the way integrated circuits manipulate electrons, by assembling complex self-replicating carbon-based structures that are able to sustain life. On the other hand, carbon is the upstairs neighbor to silicon in the periodic table, with carbon having more flexible bonding and having unique physical, chemical and biological properties. Nevertheless carbon nanoscience holds promise for a revolution in electronics at some point in the future. Three important factors make \(sp^2 \) carbon materials special for facing the nano-challenges listed in the previous paragraph: First is the unusually strong covalent \(sp^2 \) bonding between neighboring atoms; second is the extended \(\pi \)-electron clouds coming from the \(p_z \) orbitals; and third is the simplicity of the \(sp^2 \) carbon system. We briefly elaborate on these three factors in the following paragraphs.

In the \(sp^2 \) configuration, the \(2s \), \(p_x \) and \(p_y \) orbitals mix to form three covalent bonds, \(120^\circ \) from each other in the \(xy \) plane (see Figure 1.1). Each carbon atom has three neighbors, forming a hexagonal (honeycomb) network. These \(sp^2 \) in-plane bonds are the strongest bonds in nature, comparable to the \(sp^3 \) bonds in
1.4 Raman Spectroscopy Applied to sp2 Nanocarbons

Raman spectroscopy has historically played an important role in the study and characterization of graphitic materials [16, 80], being widely used in the last four decades to characterize pyrolytic graphite, carbon fibers [16], glassy carbon, pitch-based graphitic foams [81, 82], nanographite ribbons [83], fullerenes [6], carbon nanotubes [31, 80], and graphene [84, 85]. For sp2 nanocarbons, Raman spectroscopy can give information about crystallite size, clustering of the sp2 phase, the presence of sp3 hybridization and chemical impurities, mass density, optical energy gap, elastic constants, doping, defects and other crystal disorder, edge structure, strain, number of graphene layers, nanotube diameter, nanotube chirality and metallic vs. semiconductor behavior, as discussed in this book.

Figure 1.5 shows the Raman spectra from different crystalline and disordered sp2 carbon nanostructures. The first spectrum shown is that for monolayer graphene, the building block of many sp2 nanocarbons. What is evident from Figure 1.5 is that every different sp2 carbon in this figure shows a distinct Raman spectrum, which can be used to understand the different properties that accompany each of these different sp2 carbon structures. For example, 3D highly oriented pyrolytic graphite (labeled HOPG in the figure) shows a distinctly different spectrum from that for
monolayer graphene (1-LG) in Figure 1.5, which in turn is shown to be distinct from the Raman spectra characteristic of the various few layer-graphene materials, for example 2-LG and 3-LG [86].

Figure 1.5 also shows the Raman spectrum for single wall carbon nanotubes (SWNTs). Here we see a variety of features such as the radial breathing mode (RBM) or the splitting of the G-band into G^+ and G^--bands that distinguish a SWNT from any other sp^2 carbon nanostructure. Carbon nanotubes are unique materials in many ways, one being their ability to exhibit transport properties that are either metallic (where their valence band and conduction band touch each other at the $K(K')$ points in the respective graphene Brillouin zone) or semiconducting (where a band gap typically of several hundred meV separates their valence and conduction bands). Nanotubes are also unique in that their Raman spectra differ according to whether the nanotube is semiconducting (as shown in Figure 1.5) or metallic (not shown).

The introduction of disorder breaks the crystal symmetry of graphene and activates certain vibrational modes that would otherwise be silent, such as the D-band and the D'-band features and their combination $D + D'$ mode, shown in the spectrum labeled damaged graphene in Figure 1.5. The different types of defects do in fact show their own characteristic Raman spectra, as illustrated in Figure 1.5 by comparing the spectra labeled damaged graphene and SWNH (denoting single-wall carbon nanohorns, another nanostructured form of sp^2 carbon which may include pentagons with a small content of sp^3 bonding [87]). However the topic of distinguishing between the Raman spectra of one and another type of defective graphene remains an area to be explored in detail in the future. When the disorder is so dominant that only near neighbor structural correlations are present (labeled

![Figure 1.5](image-url)
amorphous carbon in the figure), broad first-order and second-order features are seen, with both sp^2 and sp^3 bonding present. Some hydrogen uptake can also occur for such materials to satisfy their dangling bonds [88].

The extremely exciting and rapid development of Raman spectroscopy in sp^2 carbon materials has promoted many advances occurring in this field: graphite is already well-established and commercialized. Carbon nanotubes are by now also mature, after having had an exciting and fast moving research agenda for nearly 20 years. In fact, carbon nanotubes are now ready to make a transition from science to applications, that is at a critical juncture where the laboratory demonstrations of applications need to get translated into product lines. Graphene is younger, but is now attracting many researchers to address the exciting new science hidden in this prototype nanostructure. While the study of the fundamental properties of graphite was essential for understanding the properties of new nanostructured sp^2 carbon forms, further developments of the field are showing how these younger sp^2 carbon nanostructures are revealing many new and unexpected physical phenomena. It is fascinating that Raman spectroscopy has, from the beginning, provided a tool for understanding sp^2 carbon systems. Even after almost a century since the first observation of Raman spectra in carbon-based systems by Sir C. V. Raman himself [89, 90], the Raman spectra from sp^2 carbon materials still puzzle chemists, physicists and material scientists, and these materials offer a challenging system where the worlds of chemistry and physics feed each other.

Problems

[1-1] The carbon–carbon distance of graphene (see Figure 1.1) is 1.42 Å. How much area is occupied by a single carbon atom in the graphene plane?

[1-2] The interlayer distance in multi-layer graphene or graphite (see Figure 1.2b) is 3.35 Å. How much volume is occupied by a single carbon atom in graphite? From this information, estimate the density of graphite in g/cm3. Compare your estimate with the literature value of 2.25 g/cm3.

[1-3] Figure 1.2b shows the AB stacking of graphene layers in forming graphite. Explain how two graphene layers are stacked in the AB stacking sequence.

[1-4] There are several ways to stack graphene layers. When we put a third layer on the two AB-stacked graphene layers, there are two possible ways of doing this stacking, which we call ABAB and ABC stacking. Show a graphic picture of both ABAB and ABC stacking and explain your answer in words, including the relation between the location of carbon atoms in each relevant plane.

[1-5] C_{60} molecules form face-centered cubic (fcc) structures. The density of the C_{60} crystal is 1.72 g/cm3. From this value, estimate the C_{60}–C_{60} distance and the fcc lattice constants.
Each carbon atom in a C_{60} molecule has one pentagonal and two hexagonal rings. Calculate the dihedral angles (a) between the two hexagonal rings and (b) between the hexagonal ring and the pentagonal ring.

Diamond crystallizes in a cubic diamond structure with four \((sp^3)\) chemical bonds. All bond angles for any pair of chemical bonds are identical. Calculate the bond angle between two chemical bonds by using an analytical solution and also give the numerical value in degrees. The C–C distance in diamond is 1.544 Å. Estimate the cube edge length and density in g/cm^3.

In spectroscopy, a wave vector is defined by \(1/\lambda\) (where \(\lambda\) is the wavelength) while in solid state physics, the definition of a wave vector is \(2\pi/\lambda\). Show that a 1 eV photon corresponds to 8065 cm\(^{-1}\) (wavenumbers). In Raman spectroscopy, the difference between the wave vectors for the incident and scattered light is called the Raman shift whose units are generally given in cm\(^{-1}\).

Raman spectroscopy involves the inelastic light scattering process. Part of the energy of the incident light is lost or gained, respectively, in materials in which some elemental excitation such as an atomic vibration (phonon) absorbs or releases the energy from or to the light. We call these two Raman processes Stokes and anti-Stokes processes, respectively. When light with the wavelength 632.8 nm is incident on the sample and loses energy by creating a phonon with an energy of 0.2 eV, what is the scattered wavelength? Also give the scattered wavelength for the anti-Stokes Raman signal.

Consider the optical electric field of the incident light with an angular frequency \(\omega_0 = 2\pi \nu_0\) and amplitude \(E_0\),

\[
E = E_0 \cos \omega_0 t.
\]

Then the dipole moment \(P\) of a diatomic molecule is proportional to \(E\) such that \(P = \alpha E\), in which \(\alpha\) is called the polarizability. When the molecule is vibrating with a frequency \(\omega\), then \(\alpha\) is also vibrating with the frequency \(\omega\),

\[
\alpha = \alpha_0 + \alpha_1 \cos \omega t.
\]

When substituting \(\alpha\) into the formula \(P = \alpha E\), show that there are three different frequencies for the scattered light (or \(P\)) \(\omega_0\) (elastic, Rayleigh scattering) and \(\omega_0 \pm \omega\) (inelastic, Stokes \((-\)) and anti-Stokes \((+\)) Raman scattering).

Let us consider a resonance effect. Here we consider a particle with a mass \(m\) which is connected to a system by a spring with spring constant \(K\). When we apply an oscillatory force \(f \exp(i \omega t)\), the equation of motion for the amplitude \(u\) of the vibration is

\[
m \ddot{u} + Ku = f \exp(i \omega t).
\]