Accurate prediction of spectroscopic properties of single molecules, molecular clusters or the solid state in combination with detailed information from apparatus-based experiments are currently paving the way to a promising revolution in the borderland between theory and experiment, namely computational spectroscopy. Though, at first sight, the term seems to contradict itself, the rapid developments in this field are opening up the study of increasingly large and chemically complex systems. At the same time, experimental molecular spectroscopy is an extremely active and fast-developing area that is heading towards the possibility of performing precise measurements on single molecules. Unique in its comprehensive coverage of not only theoretical methods but also applications in computational spectroscopy, this ready reference and handbook compiles the developments made over the last few years.

This book is a must-have for Spectroscopists, Theoretical Chemists, Libraries, and Physical Chemists wanting to catch up with the state-of-the-art in Computational Spectroscopy.

Jörg Grunenberg studied chemistry at the University Erlangen-Nürnberg. After his doctorate he moved to the Technische Universität Braunschweig and is now head of the scientific computing section at the Institute of Organic Chemistry. His interests are the in silico prediction of molecular spectroscopic properties and the quantification of covalent and non-covalent interactions. He is author and co-author of more than 80 original papers and book chapters on computational chemistry.
Related Titles

Feig, M. (ed.)
Modeling Solvent Environments
Applications to Simulations of Biomolecules
2010.
ISBN: 978-3-527-32421-7

Matta, Chérif F. (ed.)
Quantum Biochemistry
2010.
ISBN: 978-3-527-32322-7

Heine, Thomas / Joswig, Jan-Ole / Gelessus, Achim
Computational Chemistry Workbook
Learning Through Examples
2009
ISBN: 978-3-527-32442-2

Meyer, Hans-Dieter / Gatti, Fabien / Worth, Graham A. (eds.)
Multidimensional Quantum Dynamics
MCTDH Theory and Applications
2009.
ISBN: 978-3-527-32018-9

Reiher, Markus / Wolf, Alexander
Relativistic Quantum Chemistry
The Fundamental Theory of Molecular Science
2009
ISBN: 978-3-527-31292-4

van Santen, Rutger A. / Sautet, Philippe (eds.)
Computational Methods in Catalysis and Materials Science
An Introduction for Scientists and Engineers
2009.
ISBN: 978-3-527-32032-5

Willock, D.
Molecular Symmetry
2009
ISBN: 978-0-470-85347-4

Rode, B.M., Hofer, T., Kugler, M.
The Basics of Theoretical and Computational Chemistry
2007
ISBN: 978-3-527-31773-8
Contents

Preface XI
List of Contributors XIII

1 Concepts in Computational Spectrometry: the Quantum and Chemistry 1
J.F. Ogilvie
1.1 Introduction 1
1.2 Quantum Laws, or the Laws of Discreteness 3
1.3 Quantum Theories of a Harmonic Oscillator 5
1.3.1 Matrix Mechanics 6
1.3.2 Wave Mechanics 9
1.3.3 Dirac’s Operators for Creation and Destruction 15
1.3.4 Discussion of Quantum Theories in Relation to a Harmonic Oscillator 17
1.4 Diatomic Molecule as Anharmonic Oscillator 20
1.5 Quantum Mechanics and Molecular Structure 23
1.6 Conclusions 33
References 35

2 Computational NMR Spectroscopy 37
Ibon Alkorta and José Elguero
2.1 Introduction 37
2.2 NMR Properties 37
2.3 Chemical Shifts 37
2.4 NICS and Aromaticity 41
2.5 Spin–Spin Coupling Constants 45
2.6 Solvent Effects 53
2.7 Conclusions 54
2.8 The Problem of the Error in Theoretical Calculations of Chemical Shifts and Coupling Constants 55
References 56
Contents

3 Calculation of Magnetic Tensors and EPR Spectra for Free Radicals in Different Environments

Paola Cimino, Frank Neese, and Vincenzo Barone

3.1 Introduction 63
3.2 The General Model 64
3.3 Spin Hamiltonian, g-Tensor, Hyperfine Coupling Constants, and Zero-Field Splitting 66
3.3.1 The Spin Hamiltonian 66
3.3.2 Electronic Structure Theory 67
3.3.3 Additional Terms in the Hamiltonian 69
3.3.4 Linear Response Theory 72
3.3.5 Linear Response Equations for Spin Hamiltonian Parameters 76
3.3.6 Computational Aspects: Functionals and Basis Sets 82
3.4 Stereoelectronic, Environmental, and Dynamical Effects 84
3.4.1 Structures and Magnetic Parameters 84
3.4.2 Environmental Effects 86
3.4.3 Short-Time Dynamical Effects 89
3.5 Line Shapes 98
3.6 Concluding Remarks 101
References 102

4 Generalization of the Badger Rule Based on the Use of Adiabatic Vibrational Modes

Elfi Kraka, John Andreas Larsson, and Dieter Cremer

4.1 Introduction 105
4.2 Applicability of Badger-Type Relationships in the Case of Diatomic Molecules 112
4.3 Dissection of a Polyatomic Molecule into a Collection of Quasi-Diatomic Molecules: Local Vibrational Modes 118
4.3.1 Localized Vibrational Modes 122
4.3.2 The Adiabatic Internal Coordinate Modes 124
4.3.3 Properties of Adiabatic Internal Coordinate Modes 126
4.3.4 Characterization of Normal Modes in Terms of AICoMs 127
4.3.5 Advantages of AICoMs 129
4.4 Local Mode Properties Obtained from Experiment 132
4.4.1 Isolated Stretching Modes 132
4.4.2 Local Mode Frequencies from Overtone Spectroscopy 134
4.4.3 Local Mode Information via an Averaging of Frequencies: Intrinsic Frequencies 135
4.4.4 Compliance Force Constants 139
4.5 Badger-type Relationships for Polyatomic Molecules 140
4.6 Conclusions 143
References 144
5 The Simulation of UV-Vis Spectroscopy with Computational Methods 151
Benedetta Mennucci
5.1 Introduction 151
5.2 Quantum Mechanical Methods 152
5.3 Modeling Solvent Effects 157
5.4 Toward the Simulation of UV-Vis Spectra 161
5.5 Some Numerical Examples 162
5.6 Conclusions and Perspectives 167
References 168

6 Nonadiabatic Calculation of Dipole Moments 173
Francisco M. Fernández and Julián Echave
6.1 Introduction 173
6.2 The Molecular Hamiltonian 174
6.3 Symmetry 178
6.4 The Hellmann–Feynman Theorem 179
6.5 The Born–Oppenheimer Approximation 180
6.6 Interaction between a Molecule and an External Field 182
6.7 Experimental Measurements of Dipole Moments 184
6.8 The Born–Oppenheimer Calculations of Dipole Moments 185
6.9 Nonadiabatic Calculations of Dipole Moments 186
6.10 Molecule-Fixed Coordinate System 192
6.11 Perturbation Theory for the Stark Shift 195
6.12 Conclusions 196
References 197

7 The Search for Parity Violation in Chiral Molecules 201
Peter Schwerdtfeger
7.1 Introduction 201
7.2 Experimental Attempts 205
7.2.1 Vibration–Rotation Spectroscopy 206
7.2.2 Mössbauer Spectroscopy 207
7.2.3 NMR Spectroscopy 208
7.2.4 Electronic Spectroscopy 209
7.2.5 Other Experiments 209
7.3 Theoretical Predictions 211
7.4 Conclusions 215
References 216

8 Vibrational Circular Dichroism: Time-Domain Approaches 223
Hanju Rhee, Seongeun Yang, and Minhaeng Cho
8.1 Introduction 223
8.2 Time-Correlation Function Theory 224
8.3 Direct Time-Domain Calculation with QM/MM MD Simulation Methods 227
8.4 Direct Time-Domain Measurement of VOA Free Induction Decay Field 231
8.4.1 Conventional Differential Measurement Method 231
8.4.2 Femtosecond Spectral Interferometric Approach 232
8.4.2.1 Cross-Polarization Detection Configuration 232
8.4.2.2 Fourier Transform Spectral Interferometry 234
8.4.2.3 Vibrational OA-FID Measurement 237
8.5 Summary and a Few Concluding Remarks 238
References 239

9 Electronic Circular Dichroism 241
Lorenzo Di Bari and Gennaro Pescitelli
9.1 Introduction 241
9.2 Molecular Anatomy 243
9.3 Conformational Manifolds and Molecular Structure 246
9.4 Hybrid Approaches 247
9.4.1 Coupled Oscillators and the DeVoe Method 248
9.4.2 The Matrix Method 251
9.4.3 Applications 252
9.5 The QM Approach 256
9.5.1 Assignments of Absolute Configurations 261
9.5.1.1 The Solid-State ECD TDDFT Method 266
9.5.2 Interpretations of ECD Spectra 268
9.5.3 Other Applications 270
9.6 Conclusions and Perspectives 271
References 272

10 Computational Dielectric Spectroscopy of Charged, Dipolar Systems 279
Christian Schröder and Othmar Steinhauser
10.1 Methods 279
10.1.1 Dielectric Field Equation 279
10.1.2 Molecular Resolution of the Total Collective Dipole Moment 282
10.1.3 Computing the Generalized Dielectric Constant in Equilibrium 286
10.1.4 Finite System Electrostatics 294
10.2 Applications and Experiments 299
10.2.1 Solvated Biomolecules 303
10.2.1.1 Peptides 304
10.2.1.2 Proteins 305
10.2.1.3 DNA 309
10.2.1.4 Biological Cells 310
10.2.2 Molecular Ionic Liquids 311
10.2.2.1 Conductivity and Dielectric Conductivity 312
References 272
10.2.2.2 Dielectric Permittivity 314
10.2.2.3 Generalized Dielectric Constant 315
10.3 Summary and Outlook 317
References 318

11 Computational Spectroscopy in Environmental Chemistry 323
James D. Kubicki and Karl T. Mueller
11.1 Introduction 323
11.1.1 Need for Computational Spectroscopy 323
11.1.1.1 Speciation 323
11.1.2 Types of Spectra Calculated 324
11.1.2.1 IR/Raman 325
11.1.2.2 NMR 328
11.1.2.3 EXAFS + CTR + XSW 329
11.1.2.4 QENS and INS 330
11.2 Methods 331
11.2.1 Model Building 331
11.2.2 Selecting a Methodology 333
11.3 Examples 334
11.3.1 IR/Raman Phosphate on Goethite 334
11.3.2 Solution-State NMR of Al–Organic Complexes 337
11.3.3 Solid-State NMR of Phosphate Binding on Alumina 339
11.3.4 Solid-State NMR of Aluminum Species at Mineral and Glass Surfaces 341
11.3.5 Water and Zn(II) on TiO$_2$ 341
11.3.6 Water Dynamics on TiO$_2$ and SnO$_2$ 343
11.4 Summary and Future 345
References 346

12 Comparison of Calculated and Observed Vibrational Frequencies of New Molecules from an Experimental Perspective 353
Lester Andrews
12.1 Introduction 353
12.2 Experimental and Theoretical Methods 353
12.2.1 The LiO$_2$ Ionic Molecule 354
12.3 Aluminum and Hydrogen: First Preparation of Dibridged Dialane, Al$_2$H$_6$ 356
12.4 Titanium and Boron Trifluoride Give the Borylene FB=TiF$_2$ 359
12.5 Ti and CH$_3$F Form the Agostic Methylidene Product CH$_2$=TiHF 360
12.6 Zr and CH$_4$ Form the Agostic Methylidene Product CH$_2$=ZrH$_2$ 362
12.7 Mo and CHCl$_3$ Form the Methylidyne CH≡MoCl$_3$ 364
12.8 Tungsten and Hydrogen Produce the WH$_4$(H$_2$)$_4$ Supercomplex 366
12.9 Pt and CCl$_4$ Form the Carbene CCl$_2$=PtCl$_2$ 367
12.10 Th and \(\text{CH}_4 \) Yield the Agostic Methylidene Product \(\text{CH}_2=\text{ThH}_2 \) 371
12.11 U and \(\text{CHF}_3 \) Produce the Methylidyne \(\text{CH}≡\text{UF}_3 \) 371
References 374

13 **Astronomical Molecular Spectroscopy** 377

Timothy W. Schmidt

13.1 The Giants’ Shoulders 377
13.2 The First Spectroscopists and Seeds of Quantum Theory 379
13.3 Small Molecules 383
13.3.1 \(\text{CH}, \text{CN}, \text{CO}, \text{CO}^+ \) 383
13.3.2 Dicarbon: \(\text{C}_2 \) 385
13.3.3 The Carbon Trimer: \(\text{C}_3 \) 387
13.3.4 Radioastronomy 389
13.4 The Diffuse Interstellar Bands 390
13.4.1 The Hump 392
13.5 The Red Rectangle, HD44179 392
13.6 The Aromatic Infrared Bands 394
13.7 The Holy Grail 394
References 395

Index 399
Preface

...with its help, debates can be resolved forever, if they can be settled on the basis of some data; and if one took the pen it would be enough for the two disputing men to say to one another: Let’s calculate.

Leibniz in a letter to P. J. Spener, 1687

Computational chemistry has reached a high degree of maturity and comprehension making it one of the vivid research areas in modern chemical and physical research in general. This is true because an accurate simulation of spectroscopic properties is one of the major challenges and – at the same time – a precious benefit of modern theoretical chemistry. Predictions concerning single molecules, molecular clusters, or even the solid state in combination with detailed information from apparatus-based experiments are therefore providing ingredients to an auspicious revolution in the borderland between theory and experiment: computational spectroscopy. At first sight, the term seems to contradict itself: from the traditional point of view, spectroscopy (or spectrometry) belongs to the realm of the experimentalists, while computational chemistry is allocated to the domain of theory. The frantic developments in both areas during the last years have nevertheless helped build new bridges between both worlds.

This is important because until the end of the last millennium theoretical and experimental chemistry were separated by respectable gaps. Studying chemistry in the 1990s was yet sometimes accompanied by dialectical training: equipped with the sanguine knowledge that molecular orbitals are artifacts (learned from an exciting theoretical chemistry course), one stumbled into an organic chemistry exam being forced to explain the formation of a covalent bond in terms of those very orbitals. Those days are history now for several – in part ambivalent – reasons. The main cause nevertheless is a simple one: modern computational chemistry deals with observable properties and this positivistic shift does not leave too much room for “overinterpretations.” One can always try to find an experiment, which allows either falsification or confirmation of the computer simulation. This is in sharp contrast to the second major application area of computational chemistry: the underpinning of chemical concepts. Led by Coulson’s famous request, “... give us insights, not
numbers . . .,” more and more chemical perceptions as well as new molecular categories were introduced. It is, however, still unclear whether the addition of those ad hoc concepts is always helpful in characterizing the huge variety of chemical phenomena. On the contrary, many of these early chemical concepts resembled Leibniz’s voces metaphysicae, that means phrases, which we use believing that we understand entities just by pinning names on them. Or, to quote Wolfgang Pauli, many of the earlier concepts deduced from approximate quantum chemistry were so fuzzy that they were not even wrong.

In order to keep pace with new developments in terms of more rigorous solutions for Schrödinger equation, we anyhow may not demand that ideas from the early days of numerical theoretical chemistry persist permanently. The decade-long debate and struggle for a unique definition of aromaticity is only one of the many examples of those fruitless endeavors. The (in part humoristic) suggestion by Heilbronner as early as 1971 at the famous Jerusalem symposium on “Aromaticity, Pseudo-Aromaticity, Anti-Aromaticity” to introduce the term “schizo-aromaticity” for molecules, which are aromatic by one definition and nonaromatic by another, illuminates this dilemma quite graphically.

The situation changed dramatically during the last 20 years. Reliable first-principle electronic structure calculations on the one hand and sophisticated molecular dynamic simulations for complex systems on the other hand are nowadays well-established instruments in the toolbox of theoretical chemists, and these rapid developments are paving the way for the study of increasingly large and chemically complex systems. At the same time, experimental molecular spectroscopy is also an extremely active and fast-developing field, which is evolving toward the possibility of performing precise measurements for single molecules and, even more intriguing, for the hub of chemistry itself, the individual covalent bond. The title of this book Computational Spectroscopy states its aim: From basic research to commercial applications in the area of environment relevance, we will compile the major developments during the past 5–10 years. A multitude of apparatus-driven technologies will be covered. Nevertheless, the selection of topics is of course a subjective one. Summarizing the results of so many different disciplines, I hope that this book will on the one hand attract the attention of newcomers and on the other hand inform the experts about developments in scientific areas adjacent to their own expertise.

At Wiley, I would especially like to thank Dr. Elke Maase and Dr. Martin Graf for their guidance through all phases (from the first concept of the book to the final cover design) of this challenging and fascinating project.

July 2010

Jörg Grunenberg
List of Contributors

Ibon Alkorta
Instituto de Química Médica
CSIC
Juan de la Cierva 3
E-28006
Madrid
Spain

Lester Andrews
University of Virginia
Department of Chemistry
Charlottesville
VA 22904-4319
USA

Lorenzo Di Bari
Università degli Studi di Pisa
Dipartimento di Chimica e Chimica Industriale
Via Risorgimento 35
I-5616 Pisa
Italy

Vincenco Barone
Scuola Normale Superiore
Piazza dei Cavalieri 7
56126 Pisa
Italy

Minhaeng Cho
Korea University
Department of Chemistry and Center for Multidimensional Spectroscopy
5-1 Anam-dong
Songbuk-ku
Seoul 136-701
Korea

and

Korea Basic Science Institute
Multidimensional Spectroscopy Laboratory
Seoul 136-713
Korea

Paola Cimino
University of Salerno
Department of Pharmaceutical Science
Via Ponte don Melillo
84084 Fisciano
Italy

Dieter Cremer
Southern Methodist University
Department of Chemistry
3215 Daniel Ave
Dallas
TX 75275-0314
USA
List of Contributors

Julián Echave
INIFTA (UNLP, CCTLa Plata-CONICET)
Diag. 113 y 64 (S/N)
Sucursal 4
Casilla de Correo 16
1900 La Plata
Argentina

José Elguero
Instituto de Química Médica
CSIC
Juan de la Cierva
3, E-28006
Madrid
Spain

Francisco M. Fernández
INIFTA (UNLP CCTLa Plata-CONICET)
Diag. 113 y 64 (S/N)
Sucursal 4
Casilla de Correo 16
1900 La Plata
Argentina

Elfi Kraka
Southern Methodist University
Department of Chemistry
3215 Daniel Ave
Dallas
TX 75275-0314
USA

James D. Kubicki
The Pennsylvania State University
Department of Geosciences
University Park
PA 16802
USA

J. Andreas Larsson
Southern Methodist University
Department of Chemistry
3215 Daniel Ave
Dallas
TX 75275-0314
USA

Benedetta Mennucci
University of Pisa
Department of Chemistry
Via Risorgimento 35
56126 Pisa
Italy

Karl T. Mueller
The Pennsylvania State University
Department of Chemistry
University Park
PA 16802
USA

Frank Neese
University of Bonn
Institute for Physical and Theoretical Chemistry
53115 Bonn
Germany
List of Contributors

J.F. Ogilvie
Universidad de Costa Rica
Ciudad Universitaria Rodrigo Facio
Escuela de Quimica
San Pedro de Montes de Oca
San Jose 2060
Costa Rica

and

Simon Fraser University
Centre for Experimental and
Constructive Mathematics
Department of Mathematics
8888 University Drive
Burnaby
British Columbia V5A 1S6
Canada

Gennaro Pescitelli
Università degli Studi di Pisa
Dipartimento di Chimica e Chimica
Industriale
Via Risorgimento 35
I-56516 Pisa
Italy

Hanju Rhee
Korea University
Department of Chemistry and Center
for Multidimensional Spectroscopy
5-1 Anam-dong
Songbuk-ku
Seoul 136-701
Korea

Timothy W. Schmidt
University of Sydney
School of Chemistry
NSW 2006
Australia

Christian Schröder
University of Vienna
Department of Computational
Biological Chemistry
Währinger Str. 17
1090 Vienna
Austria

Peter Schwerdtfeger
Massey University
New Zealand Institute for Advanced
Study
Centre for Theoretical Chemistry and
Physics
Auckland Campus
Private Bag 102904
North Shore City
0745 Auckland
New Zealand

Othmar Steinhauser
University of Vienna
Department of Computational
Biological Chemistry
Währinger Str. 17
1090 Vienna
Austria

Seongeun Yang
Korea University
Department of Chemistry and Center
for Multidimensional Spectroscopy 5-1
Anam-dong
Songbuk-ku
Seoul 136-701
Korea
1 Concepts in Computational Spectrometry: the Quantum and Chemistry

J. F. Ogilvie

1.1 Introduction

During the nineteenth century and most of the first half of the twentieth century, after Dalton’s recognition of the atomic nature of chemical matter, which is everything tangible, that matter was regarded by most chemists as a material. Even though chemists, following Couper, Kekule, van’t Hoff, and others, drew structural formulae in terms of atoms connected by bonds represented as lines, chemical samples were generally regarded as materials or “stuff”. When, after 1955, molecular spectra, particularly of organic compounds, began to be recorded routinely in the mid-infrared region and with nuclear magnetic resonance, the outlook of chemists shifted from macroscopic properties, such as density, melting point, and refractive index, to purportedly molecular properties, such as the effect of adjacent moieties on the characteristic infrared absorption associated with a carbonyl group or on the chemical shift of a proton. The first “quantum-chemical” calculations, on H_2^+ by Burrau and on H_2 by Heitler and London, all physicists, had as subjects chemical species remote from common laboratory experience, but Pauling’s brilliant insight and evangelical manner stimulated great qualitative interest in a theoretical interpretation of chemical properties, even though a large gap existed between the primitive calculations on methane and other prototypical molecules and molecules of substances of practical interest. This gap was bridged largely through the efforts of Pople and his collaborators during the second half of the twentieth century in developing computer programs that enabled efficient calculation of observable molecular properties; not coincidentally, Pople was also an early exponent of the application of nuclear-magnetic-resonance spectra in the publication in 1959 of an authoritative monograph [1] that was seminally influential in the general application of this spectral method [2].

Chemists concerned with quantitative analysis have always understood the distinction between spectroscopy and spectrometry: spectroscopy implies the use of a human eye as a visual detector with a dispersive optical instrument and hence necessarily qualitative and imprecise observations, whereas spectrometry pertains to
an instrument with an electrical detector amenable to quantitative measurement of both frequency and intensity. For spectra throughout the entire accessible range of frequencies from 10^6 Hz, characteristic of nuclear quadrupole or nuclear magnetic resonance, to radiation in the X-ray region sufficiently energetic to cause ionization, a significant use of the numerical results of computations based nominally on quantum mechanics, such as of molecular electronic structure and properties, is to assist that spectral analysis. Pople’s programs were based, to an increasing extent over the years, on selected quantum-mechanical principles that arose from quantum theories. During the past century, the practice of chemistry has thus evolved much, from being a largely empirical science essentially involving operations in a laboratory and their discussion, to having — allegedly — an underpinning based on quantum theories.

During the nineteenth century, a standard paradigm for most chemical operations was that both matter and energy are continuous; following a philosophical point of view of Greek savants and concrete ideas of Bacon and Newton, Dalton’s contention that matter is particulate provided a basis to explain chemical composition, but Ostwald remained skeptical of the existence of atoms until 1909 [3]. The essence of the quantum concept is that both energy and matter ultimately comprise small packets, or chunks, not further divisible retaining the same properties. In Latin, quantum means *how much*? A descriptor more enlightening than quantum is discrete, so we refer to the ultimate prospective discreteness of matter and energy. (In a mathematical context, integers take discrete values, even though they number uncountably, and have a constant unit increment, whereas real numbers 1.1, 1.11, 1.111, ... vary continuously, with an increment between adjacent representatives as small as desired.) One accordingly distinguishes between the laws of discreteness, based on experiment, and various theories that have been devised to encompass or to reproduce those discrete properties. The distinctions between physical laws and theories or mathematical treatments are poorly appreciated by chemists; our objective is thus to clarify the nature of both quantum laws and quantum theories, thereby to propose an improved understanding of the purported mathematical and physical basis of chemistry and the application of computational spectrometry. After distinguishing between quantum laws and quantum theories, we apply to a prototypical problem three distinct quantum-mechanical methods that nevertheless conform to the fundamental postulate of quantum mechanics; we then consider molecular structure in relation to quantum-mechanical principles and their implications for the practice of chemistry aided by computational spectrometry.

For many chemists, the problem so called the *particle in a box* is the only purportedly quantum-mechanical calculation that they are ever required to undertake as a manual exercise, but its conventional solution is at least problematic. Any or all treatments of a harmonic oscillator in Section 1.3 serve as a viable alternative to that deficient model. The connection between quantum mechanics and chemistry might be based on a notion that “quantum mechanics governs the behavior of electrons and atoms in molecules,” which is merely supposition. While Dirac and Einstein had, to the ends of their lives, grave misgivings about fundamental aspects of quantum mechanics [4], and even Born was never satisfied with a separate — and thereby
inconsistent – treatment of the motions of electrons and atomic nuclei that underpins common quantum-chemical calculations, almost all chemists accept, as recipes, these highly mathematical theories, in a mostly qualitative manner embodied in orbitals – “for fools rush in where angels fear to tread” (Pope). For those chemists who undertake calculations, typically with standard computer programs developed by mathematically knowledgeable specialists who have no qualms about producing more or less efficient coding but who might refrain from questioning the underlying fundamental aspects, the emphasis is placed on the credibility of the results. For the molecular structures of stable species that have been established by essentially experimental methods, although a theoretical component is invariably present, the empirical nature of the computer coding – its parameters are invariably set to reproduce, approximately, various selected properties of selected calibration species – reduces its effect to a sophisticated interpolation scheme; for the molecular structures of such fabulous species as transition states, as these are inherently impossible to verify, the results of the calculations merely reinforce preconceived notions of those undertaking such calculations. We trust that reconsideration of the current paradigm in chemistry that abides such questionable content will motivate an improved understanding of the mathematical and physical bases of chemistry and a reorientation of chemistry as an experimental and logical science of both molecules and materials. For this purpose, computational spectrometry has a substantial role to play in a fertile production of information about the structure and properties of molecules and materials.

1.2 Quantum Laws, or the Laws of Discreteness

The universe comprises matter and energy; as chemists, we might ignore the possibility of their interconversion. With regard to matter, we classify anything on or above an atomic scale and that displays a rest mass as either material or molecule. Molecules exist only in a gaseous state of aggregation under conditions in which intermolecular interactions are negligible, thus describable as constituting an ideal gas; an isolated atom is simply a monatomic molecule. Molecules hence exist most purely in interstellar clouds, but even appropriate gaseous samples in a terrestrial laboratory that exhibit properties nearly characteristic of a free molecule might, to a sufficient approximation, be deemed to contain molecular entities. A material is found in a condensed phase or in a compressed gas, under which conditions rotational degrees of freedom are much hampered. A few condensed samples, such as liquid dihydrogen, have properties, such as spectra in the infrared region, that might resemble those of free molecules. In contrast, a single macroscopic crystal of diamond or sodium chloride or a sheet of “polyethylene”, for instance, might on structural grounds be regarded as constituting a single molecule. For H$_2$O, the smallest internuclear distances in the gaseous phase and in liquid water or solid ice differ by more than their experimental uncertainties, and their infrared spectra concomitantly differ. How can we consider H$_2$O to be the same species in the
molecular vapor and the material solid? For energy, we limit attention to its radiant form as constituting a free state like an interstellar molecule; a discrete unit of radiation is called a photon.

We summarize in Table 1.1 some fundamental properties of molecules and photons [5].

The experiment best known to demonstrate the discreteness of a property of a particle with rest mass is Millikan’s measurement of the charge of an electron on a drop of oil suspended in a vertical electric field. Assuming that discreteness of electric charge, one readily observes the discreteness of mass of molecular ions with a conventional mass spectrometer. The unit of charge is that on the proton or the magnitude of charge that an electron carries. Masses of individual atoms are classified with exact integers, but actual atomic masses, or masses of not too large molecules of particular isotopic composition, assume nearly integer values in terms of unified atomic mass unit or dalton. Under appropriate conditions, the total energy W of a molecule confined to a finite spatial volume might take discrete values, but even for an unconfined molecule the rotational, vibrational, and electronic contributions to total energy might be observed to alter in discrete increments. The linear momentum \mathbf{p} of a confined molecule is supposed to assume discrete values. Not only the total angular momentum $\mathbf{\Omega}$ of a molecule but also the separate electronic, nuclear, and rotational contributions thereto appear to assume, in a particular discrete state, integer or half-integer values in terms of Dirac constant \hbar (Planck constant \hbar divided by 2π); these angular momenta likewise alter in unit increments in various processes.

A photon possesses neither net electric charge nor rest mass, but its energy and linear momentum are directly related to its wave attributes – frequency $\nu = E/\hbar$ and wavelength $\lambda = h/|\mathbf{p}|$; their product $\nu \lambda$ equals the speed c of light. Any photon carries, independent of frequency, intrinsic angular momentum $\mathbf{\Omega}$ to the extent of one unit in terms of \hbar, in the direction of propagation if it be circularly polarized in one sense or opposite the direction of propagation for circular polarization in the other sense. As a limiting case of elliptical polarization, linearly polarized light as a coherent superposition of these two circular polarizations lacks net angular momentum and so imparts no total angular momentum to an absorbing target.

Even when neglecting a distinction between molecules and materials, these laws of discreteness, or quantum laws, of molecules and photons provide an ample basis for

<table>
<thead>
<tr>
<th>Property</th>
<th>Value for molecule</th>
<th>Value for photon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge</td>
<td>$Z = 0, \pm 1e, \pm 2e, \ldots$</td>
<td>0</td>
</tr>
<tr>
<td>(Rest) mass</td>
<td>$M > 0$</td>
<td>0</td>
</tr>
<tr>
<td>Energy</td>
<td>$W \approx W_{\text{tr}} + W_{\text{rot}} + W_{\text{vib}} + W_{\text{el}} + \cdots$</td>
<td>$W = h\nu$</td>
</tr>
<tr>
<td>Linear momentum</td>
<td>$</td>
<td>\mathbf{p}</td>
</tr>
<tr>
<td>Angular momentum</td>
<td>$</td>
<td>\mathbf{\Omega}</td>
</tr>
</tbody>
</table>
the conduct and explanation of chemical operations for almost all practical purposes beyond which a continuum of properties suffices.

1.3 Quantum Theories of a Harmonic Oscillator

In attempts to explain or to encompass various experimental data interpreted in terms of discrete properties at a molecular level, scientists have devised various quantum theories. Planck proposed reluctantly in 1900 the first theory to involve a discrete quantity, for which he invoked harmonic oscillators; he attempted to explain the distribution of energy, as a function of wavelength, radiated by a black body [3]. As that distribution is continuous, the requirement for a discrete quantity in a theoretical derivation is not obvious. That distribution has been derived alternatively with classical statistical thermodynamics [6], although the incorporation therein of the Planck constant remains enigmatic. The second application of a quantum condition appeared in Einstein’s treatment of the photoelectric effect in 1905, but in retrospect a recognition of the quantum laws makes that derivation almost trivial. In relation to infrared spectra of gaseous hydrogen halides, in 1911 Bjerrum, a Danish chemist, sought to develop an explicit quantum theory of molecules for vibrational and rotational motions; as this treatment preceded Rutherford’s revelation of the structure of the nuclear atom, this endeavor was bound to fail. Equally incorrect but far better known is Bohr’s theory, in 1913, of an atom with one electron for which some enhancements by Sommerfeld and Wilson failed to remedy the fundamental deficiencies [3].

In 1924, Born and Heisenberg recognized that a proper description of an atomic particle must be concerned with its mechanics and dynamics, hence with equations of motion in terms of position, momentum, and time. In Heisenberg’s development of the first enduring quantum theory in 1925 [3], the crucial particular in his paper is expressible as

\[p_j q_k - q_k p_j = -i \hbar \delta_{j,k} \]

(1.1)

Therein appear symbols to denote a component of momentum \(p \) or of position \(q \), \(i = \sqrt{-1} \), Dirac constant \(\hbar \), and Kronecker delta function \(\delta_{j,k} \) that equals unity if \(j = k \) or zero otherwise; the left side of this equation contains a commutator, printed as \([p_j, q_k]\). In one dimension, this equation becomes

\[pq - qp = [p, q] = -i \hbar \]

(1.2)

From this relation are derivable both de Broglie’s relation, \(\lambda = h/p \), and Heisenberg’s principle of indeterminacy [5], \(\Delta q \Delta p \geq 1/2 \hbar \), whereas the reverse derivations are less obvious. One may thus regard this equation, as Dirac recognized directly in 1925, to constitute the fundamental postulate of quantum mechanics. A parallel postulate in the form of a commutation relation involving energy and time is less relevant here. Among quantities that naturally fail to commute are matrices, and a variable with its differential operator; such quantities to represent \(p \) and \(q \) might hence form a basis of quantum-mechanical calculations.
To illustrate and to contrast three methods of quantum mechanics in a nonrelativistic approximation, we apply this commutator to a canonical linear harmonic oscillator in one spatial dimension. According to classical mechanics, the frequency of its oscillation is independent of its amplitude, whereas according to quantum mechanics a harmonic oscillator has states of discrete energies with equal increments between adjacent states, as we derive below. Because the latter oscillator possesses no angular momentum, it behaves as a boson. The classical potential energy V associated with this canonical form is expressed as

$$V(q) = \frac{1}{2} k c q^2$$ \hspace{1cm} (1.3)

in which V exhibits a parabolic dependence on displacement coordinate q; coefficient $k c$ is also the factor of proportionality in Hooke’s law, $F(q) = -k c q$, relating a restoring force to that displacement.

1.3.1 Matrix Mechanics

According to matrix mechanics, each physical quantity has a representative matrix [7]. For coordinate matrix Q, we accordingly define its elements $q_{n,m}$. Combining the relation for the restoring force of an oscillator of mass m with Newton’s second law in nonrelativistic form, we obtain

$$F(q) = -k c q = \mu \frac{d^2 q}{dt^2}$$ \hspace{1cm} (1.4)

Expressing a ratio $k c /\mu$ of parameters as a square of a radial frequency ω_0, for which the units are appropriate, we rewrite this differential equation as

$$\frac{d^2 q(t)}{dt^2} = -\omega_0^2 q(t)$$ \hspace{1cm} (1.5)

For this equation to be applicable to a system described by means of matrix mechanics, each element of matrix Q must separately obey this equation; we express this solution in exponential form as

$$q_{n,m}(t) = q_{n,m}^0 \exp \left(-i \omega_{n,m} t\right)$$ \hspace{1cm} (1.6)

in which appear two arbitrary constants $q_{n,m}^0$ and $\omega_{n,m}$, appropriate to an ordinary differential equation of second order. Substitution of this solution into that differential equation yields the following condition:

$$\left(\omega_0^2 - \omega_{n,m}^2\right) q_{n,m}^0 = 0$$ \hspace{1cm} (1.7)

Hence, either $q_{n,m}^0 = 0$ or $\omega_{n,m} = \pm \omega_0$. Because numbering of matrix elements is arbitrary, we apply a convention that a condition $\omega_{n,m} = + \omega_0$ corresponds to emission of a photon as the oscillator passes from a state of energy with index n to another state with energy with index $n - 1$, whereas a condition $\omega_{n,m} = - \omega_0$ corresponds to absorption of a photon as the oscillator passes from a state of energy with index n to another state with energy with index $n + 1$. With numbering of elements
beginning at zero, the coordinate matrix thus assumes this form,

\[
Q = \begin{pmatrix}
0 & q_{0,1}^0 & 0 & 0 & \cdots \\
q_{1,0}^0 & 0 & q_{1,2}^0 & 0 & \cdots \\
0 & q_{2,1}^0 & 0 & q_{2,3}^0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{pmatrix}
\]

(1.8)

in which nonzero elements accordingly appear only on the first diagonals above and below the principal diagonal. As momentum, in a nonrelativistic approximation, is defined as a product of a constant mass and the temporal derivative of coordinate \(q \), so that \(p = \mu \frac{dq}{dt} \), we have for each element of the momentum matrix \(p_{n,m} = i \mu \omega_{n,m} q_{n,m} \); with \(\omega_{n,m} = \pm \omega_0 \) and \(m = n \pm 1 \), we obtain

\[
P = i \mu \omega_0 \begin{pmatrix}
0 & q_{0,1}^0 & 0 & 0 & \cdots \\
q_{1,0}^0 & 0 & q_{1,2}^0 & 0 & \cdots \\
0 & q_{2,1}^0 & 0 & q_{2,3}^0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{pmatrix}
\]

(1.9)

which has nonzero elements along diagonals only directly above and below the principal diagonal.

The total energy \(W \) of a state of the oscillator is a sum of kinetic \(T \) and potential \(V \) contributions, which together constitute the Hamiltonian \(\hat{H} \) applicable to this problem,

\[
W = \hat{H} = 1/2 p^2/\mu + 1/2 k_e q^2 = 1/2 p^2/\mu + 1/2 \mu \omega_0^2 q^2
\]

(1.10)

We form accordingly an energy matrix \(W \) as a sum of squares of matrices \(P \) for momentum and \(Q \) for coordinate with their indicated multiplicands, \(1/2 \mu^{-1} \) and \(1/2 \mu \omega_0^2 \), respectively, which yields

\[
W = \mu \omega_0^2 \begin{pmatrix}
q_{0,1,0}^0 & q_{1,0}^0 & 0 & 0 & \cdots \\
0 & q_{0,1,0}^0 + q_{1,2,1}^0 & q_{1,1,2}^0 & 0 & \cdots \\
0 & 0 & q_{1,2,1}^0 + q_{2,3,2}^0 & q_{2,1,2}^0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{pmatrix}
\]

(1.11)

Nonzero elements appear therein only along the principal diagonal. Moreover, all factors dependent on time have vanished, which signifies that the energies of states are independent of time, thus corresponding to stationary states. Amplitude coefficients \(q_{n,m}^0 \), which originate as constants of integration, remain to be evaluated; for this purpose, we apply directly the commutation law, which here contains a unit matrix on the right side.
\[
[pq - qp] = -2i \mu \omega_0 \begin{pmatrix}
q_{1,0}^0 & q_{0,1}^0 & 0 & 0 & \cdots \\
0 & q_{2,1}^0 & q_{1,2}^0 - q_{1,0}^0 q_{0,1}^0 & 0 & \cdots \\
0 & 0 & q_{3,2}^0 & q_{2,3}^0 - q_{2,1}^0 q_{1,2}^0 & \cdots \\
& & & & \cdots \cdots \cdots \cdots \cdots
\end{pmatrix}
\]
\[
= -i \hbar \begin{pmatrix}
1 & 0 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
& & & & \cdots \cdots \cdots \cdots \cdots
\end{pmatrix}
\]

Therefore,
\[
q_{1,0}^0 q_{0,1}^0 = -i \hbar / (-2i \mu \omega_0) = \hbar / (2\mu \omega_0)
\]
\[
q_{2,1}^0 q_{1,2}^0 - q_{1,0}^0 q_{0,1}^0 = \hbar / (2\mu \omega_0), \ldots
\]

Solving successively these equations and consistent with microscopic reversibility, we obtain
\[
q_{n+1,n}^0 q_{n,n+1}^0 = q_{n,n+1}^0 q_{n+1,n}^0 = |q_{n,n+1}^0|^2 = (n+1)\hbar / (2\mu \omega_0)
\]

We substitute this general relation into the energy matrix. The corresponding elements \(q_{m,n}\) of coordinate matrix \(Q\) increase along each diagonal according to \([1/2 (n+1)]^{1/2}\). When we replace radial frequency \(\omega_0\) by circular frequency \(\nu_0 = \omega_0 / (2\pi)\), we derive a general result
\[
W_n \equiv W_{n,n} = (n + 1/2) \hbar \nu_0 = (n + 1/2) \hbar \nu_0
\]

This result signifies that the interval of energy between states characterized with adjacent integers is constant, equal to \(\hbar \nu_0\), and that the state of least energy, characterized with \(n = 0\), has a residual, or zero-point, energy equal to \(1/2 \hbar \nu_0\). Transitions in absorption or emission, according to type electric dipole of form charge times distance, \(e q\), are thus governed by the nonzero elements of coordinate matrix \(Q\); these transitions are hence possible only between states of adjacent energies.

In principle, the rows and columns of all matrices here number infinitely, but to form each matrix with a dozen rows and columns suffices for any practical purpose. Although these calculations by hand with matrices of even such an order are tedious, calculation with mathematical software [8] such as Maple is readily effected; according to contemporary methods of teaching mathematics, many students are introduced to such software in calculus courses, so there is no major impediment to such use for chemical applications. In the same way, one shows directly that the
numbering of matrix elements is arbitrary, so that nonzero elements \(q_{n,m}^0 \) of matrix \(Q \) might occur for \(n = m \pm k \), for instance, with \(k = 2 \) or \(3 \) rather than \(1 \) as above; in that case, the energies still have values \((n + 1/2 \ h \ \nu_0) \) with nonnegative integer \(n \), and two or three states have the same energy. Transitions of type electric dipolar still occur only between states of adjacent distinct energies.

1.3.2 Wave Mechanics

According to wave mechanics, an observable quantity might be represented with a differential operator. To conform to the fundamental postulate of quantum mechanics, either coordinate \(q \) or momentum \(p \), but not both, might be selected to be a differential operator. According to a coordinate representation, we choose momentum \(p \) to become \(-i \ \hbar \ d/dq\), whereas according to a momentum representation we choose coordinate \(q \) to become \(i \ \hbar \ d/dp\); the reason for such choices is simply to impose conformity with that fundamental postulate. A differential operator requires an operand, called an amplitude function or wavefunction; for operator \(d/dq\), we choose \(\psi \) to denote its operand, whereas \(\chi \) for operand of \(d/dp\). Among properties that \(\psi(q) \) and \(\chi(p) \) must obey are that these functions must be continuous, remain everywhere finite and singly valued, and satisfy appropriate boundary conditions; the first derivatives of \(\psi(q) \) and \(\chi(p) \) with respect to their specified arguments must likewise be well behaved except possibly at infinite discontinuities of potential energy. Amplified discussion of various properties of \(\psi(q) \) is available elsewhere [9].

Also according to wave mechanics, the possible energies \(W \) of a system in a stationary state are obtained upon solution of Schrodinger’s equation independent of time. For such a system, the coordinate representation is generally preferable to the momentum representation, because the potential energy is typically expressible more readily in terms of coordinate than in terms of momentum. For a particle of mass \(\mu \) subject to displacement \(q \), the kinetic energy according to classical formula \(T(q) = 1/2 \ p^2/\mu \) becomes operator \(-1/2 \ (h^2/\mu) \ d^2/dq^2 \) in the wave-mechanical coordinate representation. For a canonical linear harmonic oscillator, the potential energy in terms of coordinate \(q \) remains \(V(q) = 1/2 \ k_e q^2 \), as in matrix mechanics. Inserting these quantities into Schrodinger’s equation, we obtain

\[
\hat{H}(q) \psi(q) = [-1/2 \ (h^2/\mu) \ d^2/dq^2 + 1/2 \ k_e q^2] \psi(q) = W \psi(q)
\] (1.16)

in which the terms between brackets constitute the Hamiltonian operator \(\hat{H}(q) \) that is applicable to this particular problem. To solve this differential equation, of type second order with linear symmetries, we best invoke mathematical software [8], as for matrix mechanics above: with Maple the direct solution, again with \(\omega_0 \) substituted for \(\sqrt{(k_e/\mu)} \), is directly expressed as

\[
\psi(q) = c_1 W_M(\pi \ W/(h \ \omega_0), 1/4, 2\pi \ \omega_0 \ \mu \ q^2/h)/\sqrt{q} + c_2 \ W_W(\pi \ W/(h \ \omega_0), 1/4, 2\pi \ \omega_0 \ \mu \ q^2/h)/\sqrt{q}
\] (1.17)
With coefficients c_1 and c_2 as constants of integration, two independent solutions contain Whittaker M, as W_M, and Whittaker W, as W_W, functions, each with three arguments. For amplitude functions to be well behaved according to a condition specified above, namely, that $\psi_n(q) \rightarrow 0$ as $q \rightarrow \infty$, the difference between the first and second arguments must be equal to half a nonnegative integer: so $\pi W/(h \omega_0) - 1/4 = 1/2$ n. Replacing radial frequency ω_0 by circular frequency ν_0, we hence obtain

$$W_n = (n + 1/2) h \nu_0$$ \hspace{1cm} (1.18)

as in the solution according to matrix mechanics.

Plotting the part of the solution above containing the Whittaker M functions shows that, for even values of integer n, the curves diverge for positive and negative values of q; for this reason, we set c_1 equal to zero. In terms of Whittaker W functions, the amplitude function $\psi(q)$ thus becomes

$$\psi_n(q) = c_2 W(n/2 + 1/4, 1/4, 2\pi (k \mu)^{1/2} q^2/h)/q^{1/2}$$ \hspace{1cm} (1.19)

Integration constant c_2 remains to be evaluated; for this purpose, because Maple is unable to perform a general integration for symbolic integer n, we integrate $\psi_n(q)^* \psi_n(q)$ over q from $-\infty$ to ∞ for n from 0 to 5, with $\psi_n(q)^*$ as complex conjugate of $\psi_n(q)$; as $\psi_n(q)$ here has no imaginary part, $\psi_n(q)^* \psi_n(q) = \psi_n(q)^2$. On inspection of those results of integration, we discern that

$$c_2 = (2^n/n!)^{1/2}/n^{1/4}$$ \hspace{1cm} (1.20)

causes each integral to become equal to unity, corresponding to normalization of amplitude function $\psi_n(q)$. After we test this result by integrating $\psi_n(q)^2$ from $-\infty$ to ∞ for further values of n to verify our deduction, $\psi_n(q)$ becomes thereby completely defined for n of arbitrary value. In Figure 1.1, with each function displaced upward n units for clarity, we plot $\psi_n(q)$ in terms of Whittaker W functions for $n = 0 \ldots 3$ and with q in a domain $-2.5 \ldots 2.5$; for the purpose of these plots, we take $h = k_e = \mu = 1$, but such values affect only the scales on the axes, not the shapes of the curves.

In Figure 1.2, we plot similarly a product $\psi_n(q)^2$. According to Born’s interpretation, a product $\psi_n(q)^* \psi_n(q) dq$ represents a probability of a displacement of an oscillator having a value between q and $q + dq$; the unit integral for normalization is consistent with this concept.

We test two properties of these amplitude functions. When we integrate over q between $-\infty$ and ∞ a product of the first two amplitude functions,

$$\int_{-\infty}^{\infty} \psi_1(q)^* \psi_0(q) dq = 0$$ \hspace{1cm} (1.21)

or any other two distinct functions, we obtain zero; this result verifies that these amplitude functions are orthogonal. When we integrate likewise the same product with a further multiplicand q within the integrand, for the purpose of calculating
a transition probability or the intensity of a transition between the two states with which these amplitude functions are associated, we obtain a real quantity.

\[
\int_{-\infty}^{\infty} \psi_1(q)^* \psi_0(q) \, dq = \frac{1}{2} (\hbar/\pi)^{1/2}/(\mu k_e)^{1/4}
\]

(1.22)

According to further integrals of this type, for two amplitude functions \(\psi_n(q)\) and \(\psi_m(q)\), only when \(m = n \pm 1\) does this integral differ from zero, and the values of integrals of \(\psi_{n+1}(q)^* q \psi_n(q)\) increase with \(n\) as \(\{1/2\, (n + 1)^{1/2}\}\), in accordance with the result from matrix mechanics.

With Mathematica software, the solution of this Schrödinger equation is expressed directly in terms of parabolic cylinder functions. A conventional approach to this solution yields a product of an Hermite polynomial and an exponential function of Gaussian form, to which these Whittaker W functions are equivalent. The parabolic cylinder functions are in turn related closely to Whittaker functions; both are related to confluent hypergeometric functions in a product with an exponential term. Conversion from Whittaker or parabolic cylinder functions to Hermite or hypergeometric functions is unnecessary, because the former satisfy the pertinent

Figure 1.1 For a canonical linear harmonic oscillator according to wave mechanics and either coordinate or momentum representation, amplitude functions \(\psi_n(q)\) or \(\chi_n(p)\) in terms of Whittaker W functions on the ordinate axis versus displacement \(q\) or momentum \(p\), respectively, on the abscissal axis for \(n = 0, 1, 2, 3\), calculated with \(\hbar = k_e = \mu = 1\); each curve is displaced \(n\) units.
differential equation as effectively as the latter functions multiplied by an exponential term; avoiding that conversion makes this direct solution practicable without prior knowledge of its form. All these special functions arise in solutions of various differential equations, and their use in one or other chosen form has comparable convenience.

We repeat this calculation within the momentum representation, with amplitude function \(\chi(p) \); this representation is useful for scattering conditions such as chemical reactions. Converting coordinate \(q \) to \(i \hbar d/dp \), we obtain Schrodinger’s equation accordingly in this form:

\[
\hat{H}(p) \chi(p) = \left[\frac{1}{2} p^2 + \frac{1}{2} k_c h^2 d^2/dp^2 \right] \chi(p) = W \chi(p)
\]

the terms between brackets constitute the Hamiltonian \(\hat{H}(p) \) applicable to this formulation. With Maple, the solution of this equation appears again in terms of Whittaker functions,

\[
\chi(p) = c_1 W_M[\pi W/(\hbar \omega_0), 1/4, 2\pi p^2/(\hbar \omega_0 \mu)]/\sqrt{p}
\]

\[
+ c_2 W_W[\pi W/(\hbar \omega_0), 1/4, 2\pi p^2/(\hbar \omega_0 \mu)]/\sqrt{p}
\]