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Preface

The objective of this book is to provide students and researchers with the founda-
tions of crystallography necessary to understand geometry and symmetry of surfaces
and interfaces of crystalline materials. This includes both macroscopic single
crystals and crystalline nanoparticles. Knowledge of their geometric properties is a
prerequisite for the interpretation of corresponding experimental and theoretical
results, which explain both their physical and their chemical behaviors. In particular,
surface and interface structure is of vital importance not only for studies of proper-
ties near single crystal surfaces but also for research on thin films at solid substrates.
Here, technological applications range from semiconductor devices and magnetic
storage disks to heterogeneous catalysts.

Crystalline nanoparticles, such as nanotubes, nanowires, or compact particles of
finite size, have recently attracted considerable interest due to their novel chemical
and physical properties. Examples are carbon nanotubes, silicon nanowires, and
nanosize quantum dots at semiconductor surfaces. Although these particles are of
finite size in one ormore dimensions, their local atom arrangement can still be close
to that of extended bulk crystals. In addition, their surfaces and interfaces with other
materials can be described analogously to those found for single crystal surfaces.
Thus, surface crystallography, covered in this book, can also be applied to analyze
geometric properties of nanoparticle surfaces.

While treatises on three-dimensional crystallography are abundant, there are only
few chapters on surface crystallography available in specialized surface science
reviews. In particular, comprehensive textbooks on surface structure have not yet
been published. Nevertheless, students and researchers entering the field need to
obtain a thorough overview of surface geometry, which includes all relevant basic
crystallographic methods required for theoretical and experimental analyses. This
book tries to serve this purpose. It is primarily meant for graduate and PhD students
in physics, chemistry, and crystallography and will also help researchers who want to
learn in more detail about the geometry at surfaces of single crystals or nanoparti-
cles.

This book is written by a theoretical surface scientist. Therefore, the discussion of
methods and approaches in the text is frequently adapted to surfaces and differs at
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some places from traditional crystallographic treatment. For example, number
theoretical methods are used to derive appropriate transformations between equiva-
lent lattice descriptions. Furthermore, some of the conventional concepts of surface
structure are looked at from a different viewpoint and go beyond the standard
treatment known inside the surface science community. Examples include the
introduction of Miller indices based on netplane-adapted lattices and a thorough
mathematical treatment of symmetry, which results in the 17 two-dimensional space
groups. Therefore, the text can also be used as a resource complementary to the
standard surface science literature.
This book project started as a manuscript of a series of lectures on surface

crystallography, given by the author at several international workshops and in
universities as well as research institutions where surface science and catalysis
groups were engaged in research on structural properties of surfaces. Questions
and discussions during the lectures were often the source of more detailed work on
different sections of the manuscript and thus helped to improve its presentation.
Furthermore, research visits to various surface science groups raised the author�s
awareness of new or incompletely treated issues to be dealt with. The author is
indebted to all those who contributed with their scientific curiosity and criticism.
The text has benefited from numerous discussions with surface scientists, crystal-
lographers, and mathematicians of whom only a few are mentioned: Gerhard Ertl,
Klaus Heinz, Bernhard Hornfeck, Klaus Müller, John B. Pendry, Gabor A. Somorjai,
D. Phil Woodruff. WolfgangMoritz served as an extremely valuable sparring partner
in the world of crystallography. Very special thanks go to Michel A. Van Hove whose
constructive criticism, rich ideas, and continuous support during the writing phase
were unmatched. Without him the book would not have come out in its present
form.
Finally, I am greatly indebted to my wife Hanna for her patience and loving care

throughout the time it took to finish this book and beyond.

Fritz Haber Institute, Berlin Klaus Hermann
Summer 2010
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1
Introduction

Research in many areas of materials science requires a thorough knowledge of
crystalline solid-state systems on an atomic scale. These systems may represent real
materials such as complex semiconductors or may act as meaningful models, for
example, simulating reactive sites of catalysts. Here, physical and chemical insight
depends very much on details of the geometry of local environments around atoms
and of possible periodic atom arrangements inside the crystal and at its surface. As
examples we mention that

. chemical binding between atoms inside a crystal and at its surface strongly
depends, apart from atomic parameters, on local geometry [1, 2]. This is very
often expressed by local coordination describing the number and arrangement of
nearest-neighbor atoms with respect to the binding atom. For example, metal
atoms in a bulk metal crystal are usually characterized by a large number of
nearest neighbors, 8 or 12, yielding metallic binding. At surfaces, the changed
chemical binding due to different coordination, compared to that in the bulk, is
closely connected with local geometry that can be expressed by relaxation and
reconstruction. Furthermore, atoms or molecules can adsorb at specific sites of
crystalline substrates, where the adsorption geometry is essential to an under-
standing of local binding behavior.

. electronic properties at surfaces of single crystals can differ substantially from
those of the corresponding bulk. For example, the existence of a surface can
induce additional electronic states, surface states, that have been found in
experiments and studied theoretically some time ago [3]. Here, the detailed
surface geometry determines both the existence and the energetic behavior of
the states. Further, electronic interband transitions in silicon nanowires and
nanodots are found to cause photoluminescence that does not occur in silicon
bulk crystals [4]. The difference is explained by both the spatial confinement of the
nanoparticles and the changed geometric properties of their atom arrangement.
Finally, it has been claimed from experiment that semiconducting bulk silicon
shows metallicity at its (7� 7) reconstructed (1 1 1) surface [5], and metallicity is
also found in theoretical studies on silicon nanowires [6].
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. magnetism of crystalline bulk material and its surfaces depends on the crystal
structure and local coordination. For example, vanadium sesquioxide (V2O3) in its
monoclinic crystal structure at low temperatures is antiferromagnetic, whereas its
high-temperature phase is described by a trigonal corundum lattice and is
paramagnetic [7]. Vanadium crystals with a body-centered cubic lattice are found
to be paramagnetic in their bulk volume but ferromagnetic at their surfaces [8].
Other examples are thin iron films grown on top of copper single crystal surfaces
where, as a function of film thickness, their crystal geometry changes and, as a
consequence, so do their magnetic properties [9].

. anisotropic electrical conductivity is often connected with dense atompacking along
specific directions inside crystals. An example is given by trigonal LiCoO2 crystals
that form the most common lithium storage material for rechargeable batteries.
Here, the electrical conductivity is greatly enhanced along densely packed Co and
Li planes while it is much smaller perpendicular to the planes [10].

. catalytic surface reactions depend crucially on geometric properties of the surfaces
of crystalline catalyst materials [11, 12] and are needed for understanding the
heterogeneous catalysis at an atomic scale. The atomic surface geometry deter-
mines possible adsorption and reaction sites for molecules, which can support
specific catalytic reactions but also can exclude others (structure–reactivity
relationship [11]). For example, catalytic CO oxidation happens at single crystal
surfaces of platinum with different efficiency depending on the surface orien-
tation [13], where the surface geometry determines the type and density of
reactive sites.

In addition to bulk crystals and their surfaces, crystalline nanoparticles [14, 15] have
become anewexcitingfield of research. This includes nanotubes [16], nanowires [14],
or compact particles of finite size, such as atom clusters [17], fullerenes [18], or
quantum dots [19], which show novel physical and chemical properties deviating
from those of corresponding bulk material. Examples are carbon nanotubes pro-
viding substrate material to yield new active catalysts [20] or silicon nanowires whose
visible photoluminescence is determined by their size [21]. Furthermore, nanosize
quantum dots at semiconductor surfaces are found to yield quite powerful light
emitting diodes (LEDs) of technological relevance [19].

These nanosystems are described as atom aggregates of finite size in one or more
dimensions, where their local geometric arrangement can still be close to that of
extended bulk crystals. Likewise, their spatial confinement with corresponding
surfaces and interfaces can be considered analogous to that appearing at bulk crystal
surfaces. Therefore, surface crystallography, initially developed to describe geometric
properties at single crystal surfaces, also forms a sound basis for characterizing
geometry of nanoparticle surfaces. This is particularly interesting since the relative
number of atomspositioned at nanoparticle surfaces compared to those of their inner
volume is always larger than that of extended macroscopic single crystals. Thus,
atoms at nanoparticle surfaces are expected to play a more important role in deter-
mining physical properties than corresponding atoms at single crystal surfaces. In
addition, nanoparticles can possess symmetry and geometric properties that do not
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appear in single crystals or at their surfaces. Examples are curved nanoparticle
surfaces that originate from bending single crystal sections, where in this book
nanotubes will be discussed as examples.

In many experimental and theoretical studies, real crystalline systems are, for the
sake of simplicity, approximately described by ideal single crystals with a well-defined
atomic composition and an unperturbed three-dimensional periodicity. In addition,
surfaces of the single crystals are assumed to be bulk-terminated and of unperturbed
two-dimensional periodicity. With this approximation in mind, a rigorous mathe-
matical description of all geometric parameters becomes possible and is one of the
basic subjects of classical crystallography. As an illustration, Figure 1.1 shows the
geometry of a section of an ideal single crystal of magnesium oxide (MgO) with its
perfect three-dimensional periodic arrangement of atoms. Here, sections of ideal
planar surfaces, originating from bulk truncation, become visible and demonstrate
the variety of surface types for the same crystal depending on the crystal cut.

In this book, we will discuss basic elements and mathematical methods used in
crystallography to evaluate geometric parameters of single crystals with particular
emphasis on their surfaces. We start with ideal bulk crystals of three-dimensional
periodicity, where classical bulk crystallography provides a quantitative description.
Then, we introduce ideal two-dimensional surfaces as a result of bulk truncation
along specific directions including high-density, vicinal, stepped, kinked, and chiral
surfaces. We give a detailed account of their two-dimensional symmetry behavior
following the crystallographic classification scheme of Bravais lattices and two-

( 0 0 1) 

( -1 1 0) 

( 1 1 1) 

Mg

O

Figure 1.1 Section of an MgO crystal (NaCl lattice). The atoms are shown as colored balls and
labeled accordingly. The section is enclosedby nonpolar (0 0 1), (�1 1 0) andby polar (1 1 1) oriented
surfaces.
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dimensional space groups. Next, we discuss in detail the deviation of atom geometry
at surfaces due to changed surface binding compared to the bulk. This is usually
described by surface relaxation and reconstruction, where we consider different
schemes. After that, we mention crystallographic aspects of commensurate and
incommensurate adsorbate systems as special cases of surface reconstruction, where
the different notations used in the literature will also be described. The discussion of
surface structure will be completed by an overview of the surfaces that have been
analyzed quantitatively at an atomic level in scattering, diffraction, imaging, or
spectroscopic experiments. Finally, we describe theoretical aspects and structural
details of nanotubes of different element composition as special cases of rolled
sections of crystal monolayers. These nanotubes are examples of a larger class of
crystalline materials, nanoparticles, and demonstrate that crystallographic methods
can also be applied to these systems in order to account for their geometric properties.
The book concludes with appendices providing details of the mathematical methods
used in different chapters.

The theoretical concepts treated in this book will be illustrated by example
applications for further understanding, which include results from measured real
single crystal surfaces that are documented in the NIST Surface Structure Database
(SSD) [22–24] or its earlier version SCIS (Surface Crystallographic Information
Service) [25]. In addition, each chapter of the book concludes with a set of exercises.
These exercises are of varying difficulty, ranging from simple problems to small
research projects, and are meant to stimulate questions and answers about the
different subjects. Some of the exercises may require a visualization tool for
crystals, such as Balsac [26], or Survis, the visualization part of the SSDIN package
[27] or the like.

For the theoretical treatment of some geometric properties of ideal single crystals,
we will apply number theoretical methods, dealing with relations between integer
numbers. While this approach is not commonly used in textbooks on surface
science or crystallography, it can considerably simplify the formal treatment. Exam-
ples are solutions of linear and quadratic Diophantine equations that facilitate the
discussion of netplanes or of atom neighbor shells in crystals. Therefore, number
theoretical methods will be introduced briefly as required, and further details are
provided in Appendix C.

A few illustrations are included as stereo pictures for an enhanced three-dimen-
sional impression. These pictures may be viewed by either using optical stereo
glasses (available separately) or by cross-eyed viewing without glasses. In the latter
case, viewing for an extended time may overstrain the eyes and should be avoided.

Obviously, the present book cannot cover all aspects of the field and may, in
some cases, be quite brief. Furthermore, the selection of topics, as well as their
presentation, is, to some degree, determined by the author�s personal preferences.
However, the interested reader may consult the extensive crystallographic literature,
for example, Refs. [28–32], or the solid-state physics literature, for example, Refs. [1, 2],
to explore additional details.
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2
Bulk Crystals: Three-Dimensional Lattices

This chapter dealswith geometric properties of three-dimensional bulk crystals, which
are described, in their perfect geometry, by atom arrangements that are periodic in
three dimensions. For example, Figure 2.1 on the following page shows a section of a
(tetragonal) YBa2Cu3O7 crystal, where vectors R1, R2, R3 (lattice vectors) indicate the
mutually perpendicular directions of periodicity. Furthermore, the basis of the crystal
structure consists of 13 atoms (1� yttrium, 2� barium, 3� copper, 7� oxygen
atoms) in a rectangular block (unit cell) that is repeated periodically inside the
crystal. The building unit is shown to the left of the figure.

In this chapter, all basic definitions used for a quantitative description of geometric
properties of perfect three-dimensional periodic crystals will be provided. Here, the
crystals are considered not only in terms of their translational symmetry, that is,
periodicity, but also by their different point symmetry elements, such as inversion
points,mirror planes, or rotation axes, which determine the positions of all atoms in a
crystal. While the definitions and general properties are rather abstract and
mathematical, they can become quite relevant for theoretical studies of real
three-dimensional crystals. For example, lattice representations of crystals are
required as input to any electronic structure calculation on solid crystalline
material. Furthermore, the theoretical treatment of three-dimensional crystals serves
as a safe foundation to study surfaces of single crystals, as will be discussed in
Sections 2.4 and 2.5.

2.1
Basic Definitions

The basic definition of a perfect three-dimensional bulk crystal becomes quite clear
by considering first a simple example. Figure 2.2a shows a section of the primitive
cubic CsCl crystal, which is obviously periodic in three perpendicular directions.
Thus, its periodicity can be described by orthogonal vectors R1,R2, R3 (lattice vectors),
indicated in Figure 2.2b, whose lengths define corresponding periodicity lengths.
The lattice vectors span a cubic cell (morphological unit cell) that contains one cesium
and chlorine atomeach at positions given by vectors r1 (Cs), r2 (Cl) (lattice basis vectors)
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Cs

Cl
(a) (b)

r1  = 0

r2

Cs

Cl R3R3

R2R2
R1R1

Figure 2.2 (a) Section of a primitive cubic CsCl crystal. Sticks connect neighboring Cs atoms to
indicate the crystal geometry. (b) Primitive morphological unit cell with two atoms, Cs and Cl (see
text). The atoms are identical to those labeled in (a). Both the lattice vectorsR1, R2,R3 and the lattice
basis vectors, r1¼ 0 for Cs and r2 for Cl, are shown and labeled accordingly.

 Y

 Ba

 Cu

 O

R3

R2

R1

Figure 2.1 Section of a tetragonal YBa2Cu3O7 crystal. The atoms are shown as colored balls
and labeled accordingly. In addition, the basis of 13 atoms in a rectangular cell and lattice vectors
R1, R2, R3 are included to the left.
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(Figure 2.2b). Obviously, a periodic repetition of the unit cell along R1, R2, R3 can be
used to build the complete infinite crystal.

In the general case, the formal definition of a perfect three-dimensional bulk crystal
starts from a three-dimensional periodic arrangement of atoms. Here, the crystal
periodicity is described by a lattice with lattice vectors R1, R2, R3. Thus, the lattice
forms an infinite and periodic array of lattice points reached from a common origin by
vectors R with

R ¼ n1 R1 þ n2 R2 þ n3 R3 ð2:1Þ

where the coefficients n1, n2, n3 can assume any integer value. This means, in
particular, that each lattice point experiences the same environment created by all
other points.

The lattice vectors can be given in different ways, where the choice depends on the
type of application.While for numerical calculations itmay be preferable to defineR1,
R2, R3 with respect to an absolute Cartesian coordinate system as

Ri ¼ ðxi; yi; ziÞ; i ¼ 1; 2; 3 ð2:2Þ

it is common in the crystallographic literature to define these vectors by lattice
parameters describing their lengths (lattice constants) a, b, c and by their mutual angles
a, b, c, as sketched in Figure 2.3, where

a ¼ R1j j; b ¼ R2j j; c ¼ R3

�� �� ð2:3aÞ

R1 �R2 ¼ a b cosðcÞ; R1 �R3 ¼ a c cosðbÞ; R2 �R3 ¼ b c cosðaÞ ð2:3bÞ

α

γ

β
a

b

c

R3

R2

R1

Figure 2.3 Definition of crystallographic lattice parameters a, b, c, a, b, c (see text).
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Examples are given by lattices denoted as

simple cubic; where a ¼ b ¼ c; a ¼ b ¼ c ¼ 90� ð2:4Þ

hexagonal; where a ¼ b 6¼ c; a ¼ b ¼ 90�; c ¼ 120� ð2:5Þ
Relations (2.3a) and (2.3b) can be inverted to yield lattice vectors in Cartesian
coordinates starting from the six parameters, a, b, c, and a, b, c, given in (2.3a)
and (2.3b), where one possible inversion is

R1 ¼ að1; 0; 0Þ; R2 ¼ bðcosðcÞ; sinðcÞ; 0Þ
R3 ¼ cðcosðbÞ; ðcosðaÞ� cosðbÞcosðcÞÞ=sinðcÞ; v3=sinðcÞÞ ð2:6aÞ

with

v3 ¼ fðcosðb� cÞ� cosðaÞÞðcosðaÞ� cosðbþ cÞÞg1=2 ð2:6bÞ
This yields for simple cubic (sc) lattices with (2.4)

R1 ¼ að1; 0; 0Þ; R2 ¼ að0; 1; 0Þ; R3 ¼ að0; 0; 1Þ ð2:7Þ
and for hexagonal lattices with (2.5)

R1 ¼ að1; 0; 0Þ; R2 ¼ að�1=2;
ffiffiffi
3

p
=2; 0Þ; R3 ¼ cð0; 0; 1Þ ð2:8Þ

The lattice vectors R1, R2, R3 span a six-faced polyhedron (the so-called parallel-
epiped), defining the morphological unit cell, often referred to as the unit cell, whose
edges are parallel to R1, R2, R3 and whose volume Vel is given by

Vel ¼ ðR1 � R2Þ R3

�� �� ð2:9Þ

The unit cell is called primitive unit cell if its volume is the smallest of all possible unit
cells in the crystal. This is equivalent to requiring that there is no additional lattice
point, described by vector R0 with

R0 ¼ k1 R1 þ k2 R2 þ k3 R3; 0 � ki < 1 ð2:10Þ

inside themorphological unit cell of the lattice. Otherwise, the cell is nonprimitive and
theremust also be lattice pointsR0 inside the unit cell. Analogously, lattice vectorsR1,
R2, R3 whose morphological unit cell is primitive are called primitive lattice vectors,
otherwise nonprimitive. For example, both the cubic unit cell of CsCl and the
corresponding lattice vectors, shown in Figure 2.2, are primitive. On the other hand,
replacing all cesium and chlorine atoms in Figure 2.2 by one atom type, for example,
iron, yields a body-centered cubic crystal.Here, the lattice vectorsR1,R2,R3, shown in
the figure, are nonprimitive since vector r2 now becomes a lattice vector in the
morphological unit cell.

In a crystal, the morphological unit cell contains in general p atoms at positions
given by vectors r1, . . ., rp (lattice basis vectors) that form the basis of the crystal
structure (the basis is sometimes also called the structure). Each atom at ri carries a
label characterizing its properties, such as its nuclear charge or element name. These
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labels, usually omitted in the following, will be attached to each lattice basis vector if
needed. For example, a definition r3

Cl would refer to a chlorine atom placed at a
position given by the third lattice basis vector. All lattice basis vectors ri in the
morphological unit cell can be written as linear combinations of the lattice vectors R1,
R2, R3, that is,

ri ¼ xi R1 þ yi R2 þ zi R3; i ¼ 1; . . . ; p ð2:11Þ

where xi, yi, zi are real-valued coefficients with |xi|< 1, |yi|< 1, |zi|< 1. This use of
relative coordinates xi, yi, zi to describe atoms in the unit cell is common practice in the
crystallographic literature [28, 32]. According to definition (2.11), the coefficients xi,
yi, zi are in general not connected with the Cartesian coordinate system but with
coordinate axes given by the lattice vectors R1, R2, R3.

The origin of the morphological unit cell in a crystal can always be chosen freely
since the complete infinite crystal consists of a periodic arrangement of unit cells in
three dimensions. In particular, the origin does not need to coincide with a specific
atom position, as considered in the example of CsCl above. However, it is usually
chosen in such manner as to maximize the number of point symmetry elements,
such as inversion points,mirror planes, or rotation axes, which are determined by the
lattice vectors R1, R2, R3 together with the lattice basis vectors r1, . . ., rp. This will be
discussed in greater detail in Section 2.4.

Altogether, a crystal is characterized uniquely by its lattice defined by lattice vectors
R1, R2, R3 and its basis defined by lattice basis vectors r1, . . ., rp. Thus, general atom
positions in the crystal can be given by

r ¼ n1 R1 þ n2 R2 þ n3 R3 þ r i ð2:12Þ
where the coefficients n1, n2, n3 can assume any integer value and index i¼ 1, . . ., p
counts the number of atoms in the unit cell. Here, the lattice and the basis can be
treated as separate elements of a crystal structure (which are only connected by the
symmetry elements as will be discussed in Section 2.4). This will be emphasized in
the following Section 2.2.

2.2
Representation of Bulk Crystals

There is one important aspect that governs all formal descriptions of crystal
structures, the fact that descriptions of crystals are not unique. This means that, for
a given definition of a crystal, one can always find an infinite number of alternatives
that describe the same crystal. While this ambiguitymay be considered a drawback at
first glance, it allows choosing crystal representations according to additional
constraints, for example, those given by symmetry, physical, or chemical properties.
Here, one candistinguish between alternative descriptions that affect the crystal basis
but not its lattice representation and those where both the lattice representation and
the basis are affected.
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2.2.1
Alternative Descriptions Conserving the Lattice Representation

Examples of alternative crystal descriptions that do not affect the crystal lattice are
given by elemental or compound decompositions of a crystal. Here, the basic idea is to
decompose the basis of the unit cell of a complex crystal into components and
consider (fictitious) crystals of these components with the same periodicity as that of
the initial crystal, given by its lattice. This decomposition is not only of didactic value
but may also help to understand details of chemical binding in the crystal. In the
simplest case, a crystal with p atoms in its primitive unit cell can be considered
alternatively as a superposition of p crystals of the same lattice but only one atom in
their primitive unit cells. The origins of the corresponding p crystals can be set at
positions given by the lattice basis vectors ri of the initial crystal.

As very simple example, the primitive cubic cesium chloride (CsCl) crystal, shown
in Figure 2.2, is defined by a lattice with lattice vectors R1, R2, R3 given by (2.7).
Furthermore, its basis includes two atoms, Cs and Cl, which can be positioned at

r 1 ¼ að0; 0; 0Þ for Cs; r 2 ¼ að1=2; 1=2; 1=2Þ for Cl ð2:13Þ
with a denoting the lattice constant of CsCl. Thus, the crystal can be considered a
superposition of two primitive cubic monoatomic crystals, one for cesium and one
for chlorine, where their origins are shifted by �(r2� r1)¼� a (1/2, 1/2, 1/2) with
respect to each other.

Amore complex example is the tetragonal YBa2Cu3O7 crystal, shown in Figure 2.1.
Here, the lattice vectors can be written in Cartesian coordinates as

R1 ¼ að1; 0; 0Þ; R2 ¼ að0; 1; 0Þ; R3 ¼ cð0; 0; 1Þ ð2:14aÞ
and themorphological unit cell contains 13 atoms resulting in 13 lattice basis vectors
ri with

Y atom : r 1 ¼ ð1=2; 1=2; 5=6Þ
Ba atoms : r 2 ¼ ð1=2; 1=2; 1=6Þ; r 3 ¼ ð1=2; 1=2; 1=2Þ
Cu atoms : r 4 ¼ ð0; 0; 0Þ; r 5 ¼ ð0; 0; 1=3Þ; r 6 ¼ ð0; 0; 2=3Þ
O atoms : r 7 ¼ ð1=2; 0;�eÞ; r 8 ¼ ð0; 1=2;�eÞ; r 9 ¼ ð0; 0; 1=6Þ;

r 10 ¼ ð0; 1=2; 1=3Þ; r 11 ¼ ð0; 0; 1=2Þ; r 12 ¼ ð1=2; 0; 2=3þ eÞ;
r 13 ¼ ð0; 1=2; 2=3þ eÞ

ð2:14bÞ
using relative coordinates (2.11). Experiments yield a relative position shift e of four
oxygen atoms of e¼ 0.026. Obviously, this crystal can be conceptually decomposed
into 13monoatomic (tetragonal) crystals, 1 yttrium, 2 barium, 3 copper, and 7 oxygen
crystals.

Alternatively, one can decompose the YBa2Cu3O7 crystal into physically more
meaningful subunits that include several of the atoms of the initial unit cell. For
example, Figure 2.4 illustrates a decomposition of the YBa2Cu3O7 crystal into its

10j 2 Bulk Crystals: Three-Dimensional Lattices



copper oxide and its heavymetal components, denoted Cu3O7 and YBa2, respectively,
in Figure 2.4. Here, the unit cells of the component crystals contain 10 and 3 atoms
each, where the Cu3O7 component is believed to contribute to the high-temperature
superconductivity of YBa2Cu3O7.

A very illustrative example of crystal decomposition is given by the diamond crystal,
shown in Figure 2.5. Its lattice can be defined as a simple cubic lattice where lattice

fcc1

fcc2

Figure 2.5 Decomposition of the diamond crystal into two (shifted) face-centered cubic crystals,
denoted fcc1 (gray balls, black lines) and fcc2 (red balls and red lines), as given in the legend to the
left. The crystal is displayed by a stereo picture where the visual three-dimensional impression is
obtained by cross-eyed viewing.

Y

Ba

Cu

O

(a) (b) (c)

YBa2Cu3O7 Cu3O7 YBa2

Figure 2.4 Decomposition of the YBa2Cu3O7 crystal (a) into its copper oxide (b) and heavy metal
components (c). The component crystals are denoted as Cu3O7 and YBa2, respectively. Atoms are
shownas colored balls and labeled accordingly. In addition, the lattice vectorsR1,R2,R3 are indicated
by arrows.
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vectors are given by (2.7). The basis of the crystal includes eight carbon atoms in
tetrahedral arrangements resulting in eight lattice basis vectors ri with

r 1¼ ð0; 0; 0Þ; r 2 ¼ ð0; 1=2; 1=2Þ; r 3 ¼ ð1=2; 0; 1=2Þ;
r 4 ¼ ð1=2; 1=2; 0Þ; r 5 ¼ ð1=4; 1=4; 1=4Þ; r 6 ¼ ð1=4; 3=4; 3=4Þ;
r 7 ¼ ð3=4; 1=4; 3=4Þ; r 8 ¼ ð3=4; 3=4; 1=4Þ

ð2:15Þ

in relative coordinates (2.11). This shows, first, that the diamond crystal can be
decomposed into eight simple cubic (sc) crystals, each with one carbon in the
primitive unit cell. Obviously, the lattice basis vectors r5, r6, r7, r8 arise from r1,
r2, r3, r4 by identical shifts with

r iþ 4 ¼ r i þ 1=4ð1; 1; 1Þ; i ¼ 1; 2; 3; 4 ð2:16Þ

This suggests that the diamond crystal can also be decomposed into two identical
simple cubic crystals with four atoms in their unit cells each, where the origins of the
two crystals are shifted by a vector 1/4 (1, 1, 1) with respect to each other. The lattices
of the two component crystals will be shown in Section 2.2.2 to be identical with face-
centered cubic (fcc) lattices. Thus, the diamond crystal can be alternatively described
by a superposition of two fcc crystals. This becomes obvious by an inspection of
Figure 2.5.

2.2.2
Alternative Descriptions Affecting the Lattice Representation

There aremany possibilities of alternative descriptions of crystals where their lattices
are represented differently. These alternatives may not only be preferred because of
conceptual convenience but may also be required due to computational necessity. For
example, many researchers in the surface science community (and not only there)
find it convenient to think in terms of Cartesian coordinates, using orthogonal unit
vectors in three-dimensional space. Therefore, they prefer to characterize lattices, if
possible, by orthogonal lattice vectors R1, R2, R3 even though they have to consider
corresponding crystal bases with a larger number of atoms. This will be discussed for
body- and face-centered cubic lattices in Section 2.2.2.1.

Theoretical studies on extended geometric perturbations in a crystal, such as those
originating from imperfections or stress, often require to consider unit cells and
lattice vectors R0

1;R
0
2;R

0
3 that are larger than those, R1, R2, R3, of the unperturbed

crystal. Here, a direct computational comparison of results for the perturbed crystal
with those for the unperturbed crystal often suggests applying the same (enlarged)
lattice vectors R0

1;R
0
2;R

0
3 to both systems. As a result, the unperturbed crystal is

described by a lattice with a larger unit cell and an appropriately increased number of
atoms in the unit cell. This is the basic idea behind so-called superlatticemethods that
will be discussed in Section 2.2.2.2.

Ideal single crystal surfaces, which originate from bulk truncation yielding two-
dimensional periodicity at the surface, will be treated in detail in Chapter 4. Here, the
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analysis of geometric properties at the surface can be facilitated greatly by using
so-called netplane-adapted lattice vectors R0

1;R
0
2;R

0
3. These are given by linear

transformations of the initial bulk lattice vectors, where the shape of the morpho-
logical unit cell may change, but neither its volume nor the number of atoms in the
cell. Clearly, differently oriented surfaces require different sets of netplane-adapted
lattice vectors leading tomany alternative descriptions of the bulk lattice, as discussed
in Section 2.2.2.3.

2.2.2.1 Cubic, Hexagonal, and Trigonal Lattices
The family of cubic lattices – simple, body-centered, and face-centered cubic – are
closely connected with each other, which is why many scientists use the simplest of
the three, the simple cubic lattice as their usual reference. This lattice, also called
cubic-P and often abbreviated by sc is described in Cartesian coordinates by lattice
vectors

Rsc
1 ¼ að1; 0; 0Þ; Rsc

2 ¼ að0; 1; 0Þ; Rsc
3 ¼ að0; 0; 1Þ ð2:17Þ

with threemutually orthogonal vectors of equal length, given by the lattice constant a.
The body-centered cubic lattice, also called I-centered or cubic-I and often abbreviated

by bcc (Figure 2.6), can be defined in Cartesian coordinates by lattice vectors

R1 ¼ a=2ð�1; 1; 1Þ; R2 ¼ a=2ð1;�1; 1Þ; R3 ¼ a=2ð1; 1;�1Þ ð2:18Þ
Here, the three vectors are still of the same length

R1j j ¼ R2j j ¼ R3

�� �� ¼ ð
ffiffiffi
3

p
=2Þa ð2:19Þ

R2R2

R3R3

R1R1

Figure 2.6 Lattice vectorsR1, R1, R1 of the body-centered cubic (bcc) lattice sketched inside a cubic
frame and labeled accordingly (see text). Atoms of the corresponding bcc crystal are shown as balls.
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but they are not orthogonal to each other, forming angles a¼ b¼ c¼ 109.47�

(cos a ¼� 1/3) according to (2.3b). General lattice points of the bcc lattice are given
in Cartesian coordinates by vectors

R ¼ n1 R1 þ n2 R2 þ n3 R3 ¼ a=2ð� n1 þ n2 þ n3; n1 � n2 þ n3; n1 þ n2 � n3Þ
¼ a=2ðN1;N2;N3Þ; n1; n2; n3;N1;N2;N3 integer ð2:20Þ

where the integers n1, n2, n3 and N1, N2, N3 are connected by

N1 ¼ �n1 þ n2 þ n3; N2 ¼ n1 � n2 þ n3; N3 ¼ n1 þ n2 � n3 ð2:21Þ
Relation (2.20) together with the definition of the simple cubic lattice vectors can be
written as

R ¼ n1 R1 þ n2 R2 þ n3 R3 ¼ 1=2ðN1 R
sc
1 þN2 R

sc
2 þN3 R

sc
3 Þ ð2:22Þ

which demonstrates the connection between the body-centered and the simple cubic
lattices. While the integer coefficients n1, n2, n3 can be freely chosen, the integer
coefficients N1, N2, N3 are not independent. Relations (2.21) yield

N2 ¼ N1 þ 2ðn1 � n2Þ; N3 ¼ N1 þ 2ðn1 � n3Þ ð2:23Þ
Hence, the integersN1,N2,N3 can only be all odd or all even for any choice of n1, n2,
n3.

If N1, N2, N3 in (2.20) are all even, that is, they can be represented by

Ni ¼ 2mi; i ¼ 1; 2; 3 for any integermi ð2:24Þ
then relation (2.22) together with (2.24) leads to

R ¼ m1 R
sc
1 þm2 R

sc
2 þm3 R

sc
3 ; m1;m2;m3 integer ð2:25Þ

which describes a simple cubic lattice as one subset of the bcc lattice.
If, on theotherhand,N1,N2,N3 in (2.20) areall odd, that is, they canberepresentedby

Ni ¼ 2mi þ 1; i ¼ 1; 2; 3 for any integermi ð2:26Þ
then relation (2.22) together with (2.26) leads to

R ¼ m1 R
sc
1 þm2 R

sc
2 þm3 R

sc
3 þ v; m1;m2;m3 integer ð2:27Þ

with

v ¼ 1=2ðRsc
1 þRsc

2 þRsc
3 Þ ð2:28Þ

This also describes a simple cubic lattice as the second subset of the bcc lattice, where
the second sc lattice is, however, shifted by a vector vwith respect to the first. Thus, the
constraints for N1, N2, N3 in (2.21) yield a decomposition of the bcc lattice into two
identical sc lattices that are shifted with respect to each other by vector v of (2.28). The
two sc lattices are sketched in Figure 2.7 and denoted sc1 and sc2.

As a consequence, any crystal with a bcc lattice given by lattice vectors (2.18) can
be alternatively described by a crystal with a simple cubic lattice with lattice
vectors (2.17), where the unit cell of the sc lattice contains twice as many atoms
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with atom pairs separated by vector v. Furthermore, the lattice vectors Rsc
1 ;R

sc
2 ;R

sc
3 of

the sc lattice representation are nonprimitive since vector

v ¼ 1=2ðRsc
1 þRsc

2 þRsc
3 Þ ¼ R1 þR2 þR3 ð2:29Þ

according to (2.18) is a true lattice vector.
The face-centered cubic lattice, also called F-centered or cubic-Fand often abbreviated

by fcc (Figure 2.8), can be defined in Cartesian coordinates by lattice vectors

R1 ¼ a=2ð0; 1; 1Þ; R2 ¼ a=2ð1; 0; 1Þ; R3 ¼ a=2ð1; 1; 0Þ ð2:30Þ
Here, the three vectors are also of the same length

R1j j ¼ R2j j ¼ R3

�� �� ¼ a=
ffiffiffi
2

p
ð2:31Þ

but not orthogonal to each other, forming angles a¼ b¼ c¼ 60� (cos a¼ 1/2)
according to (2.3b). General lattice points of the fcc lattice are given in Cartesian
coordinates by vectors

R ¼ n1 R1 þ n2 R2 þ n3 R3 ¼ a=2ðn2 þ n3; n1 þ n3; n1 þ n2Þ
¼ a=2ðN1;N2;N3Þ; n1; n2; n3;N1;N2;N3 integer ð2:32Þ

where the integers n1, n2, n3 and N1, N2, N3 are connected by

N1 ¼ n2 þ n3; N2 ¼ n1 þ n3; N3 ¼ n1 þ n2 ð2:33Þ
Relation (2.32) together with the definition of the simple cubic lattice vectors can be
written as

R ¼ n1 R1 þ n2 R2 þ n3 R3 ¼ 1=2ðN1 R
sc
1 þN2 R

sc
2 þN3 R

sc
3 Þ ð2:34Þ

sc1

sc2

Figure 2.7 Visual decomposition of the body-centered cubic crystal into two (shifted) simple cubic
crystals, denoted sc1 (gray balls and black lines) and sc2 (red balls and red lines), as given in the
legend to the left. The crystal is displayed by a stereo picture where the visual three-dimensional
impression is obtained by cross-eyed viewing.
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which shows the connection between the face-centered and the simple cubic lattices.
As in the bcc case, the integer coefficientsN1,N2,N3 are not independent. Even- and
odd-valued combinations of the initial coefficients n1, n2, n3 yield eight cases as
shown in Table 2.1.

As a result, integers N1, N2, N3 reduce to four different types of even/odd
combinations:

(a) Ni¼ 2mi, i¼ 1, 2, 3 (cases 1 and 2 in Table 2.1), which results, according
to (2.34), in

R ¼ a=2ðN1;N2;N3Þ ¼ aðm1;m2;m3Þ; m1;m2;m3 integer ð2:35aÞ

Table 2.1 List of all possible even/odd integer combinations N1, N2, N3 following from even/odd
integer combinations n1, n2, n3 according to Equation 2.33.

Case n1 n2 n3 N1 N2 N3

1 e e e e e e
2 o o o e e e
3 o e e e o o
4 e o o e o o
5 e o e o e o
6 o e o o e o
7 e e o o o e
8 o o e o o e

Characters e and o stand for even and odd integers, respectively.

R2R2

R1R1

R3R3

Figure 2.8 Lattice vectorsR1,R1,R1 of the face-centered cubic (fcc) lattice sketched in a cubic frame
and labeled accordingly (see text). Atoms of the corresponding fcc crystal are shown as balls. The
dashed lines are meant to assist the visual orientation in the figure.
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describing the simple cubic lattice given by (2.27) with its origin coinciding with that
of the fcc lattice, corresponding to an origin shift v1¼ 0 (see below).

(b) N1¼ 2m1,N2¼ 2m2 þ 1, N3¼ 2m3 þ 1 (cases 3 and 4), resulting in

R ¼ a=2ðN1;N2;N3Þ ¼ aðm1;m2;m3Þþ v2

v2 ¼ 1=2ðRsc
2 þRsc

3 Þ ð2:35bÞ
describing the sc lattice for an origin shift v2.

(c) N1¼ 2m1 þ 1, N2¼ 2m2,N3¼ 2m3 þ 1 (cases 5 and 6), resulting in

R ¼ a=2ðN1;N2;N3Þ ¼ aðm1;m2;m3Þþ v3

v3 ¼ 1=2ðRsc
1 þRsc

3 Þ ð2:35cÞ
describing the sc lattice for an origin shift v3.

(d) N1¼ 2m1 þ 1, N2¼ 2m2 þ 1, N3¼ 2m3 (cases 7 and 8), resulting in

R ¼ a=2ðN1;N2;N3Þ ¼ aðm1;m2;m3Þþ v4

v4 ¼ 1=2ðRsc
1 þRsc

2 Þ ð2:35dÞ
describing the sc lattice for an origin shift v4.

Therefore, the constraints for N1, N2, N3 in (2.33) yield a decomposition of the fcc
lattice into four identical sc lattices that are shifted with respect to each other
according to their origins at v1, v2, v3, v4 of (2.35a)–(2.35d). The four sc lattices are
sketched in Figure 2.9 and denoted sc1 to sc4.

sc1

sc2

sc3

sc4

Figure 2.9 Visual decomposition of the fcc crystal into four (shifted) sc crystals, denoted sc1 (dark
gray balls and black lines), sc2 (dark red balls and lines), sc3 (light gray balls and lines), and sc4 (light
red balls and lines), as given in the legend to the left. The crystal is displayed by a stereo picturewhere
the visual three-dimensional impression is obtained by cross-eyed viewing.
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Consequently, any crystal with an fcc lattice given by lattice vectors (2.30) can be
alternatively described by a crystal with an sc lattice with lattice vectors (2.17), where
the unit cell of the sc lattice contains four times as many atoms with atom pairs
separated by vectors vi� vj, i, j¼ 1, . . ., 4. Furthermore, the lattice vectorsR1

sc,R2
sc,R3

sc

of the sc lattice representation are nonprimitive since the four vectors vi

v1 ¼ 0 ð2:36aÞ

v2 ¼ 1=2ðRsc
2 þRsc

3 Þ ¼ R1 ð2:36bÞ

v3 ¼ 1=2ðRsc
1 þRsc

3 Þ ¼ R2 ð2:36cÞ

v4 ¼ 1=2ðRsc
1 þRsc

2 Þ ¼ R3 ð2:36dÞ
according to (2.30) are true lattice vectors.

The hexagonal lattice, also called hexagonal-P and often abbreviated by hex, is
described by two lattice vectors R1

hex, R2
hex of equal length a, forming an angle of

either 120� (obtuse representation) or 60� (acute representation) with a third lattice
vectorR3

hex of length c, which is perpendicular to bothR1
hex andR2

hex. Thus, the vectors
of the obtuse representation can be described in Cartesian coordinates by

Rhex
1 ¼ að1; 0; 0Þ; Rhex

2 ¼ að�1=2;
ffiffiffi
3

p
=2; 0Þ; Rhex

3 ¼ cð0; 0; 1Þ ð2:37aÞ

and those of the acute representation by

Rhex
1 ¼ að1; 0; 0Þ; Rhex

2 ¼ að1=2;
ffiffiffi
3

p
=2; 0Þ; Rhex

3 ¼ cð0; 0; 1Þ ð2:37bÞ
where a and c are the lattice constants of the hexagonal lattice. While the two
representations are equivalent, the obtuse representation of crystal lattices is often
preferred to the acute one and will be used in the following.

There is a special type of crystal structure with hexagonal lattice, the so-called
hexagonal close-packed (hcp) crystal structure. While its definition is theoretical in
nature it occurs, to a good approximation, for many single crystals of metals, such as
beryllium, magnesium, titanium, cobalt, or cadmium (Table E.3). The hcp crystal
structure (Figure 2.10) is defined by a hexagonal latticewith a lattice constant ratio c/a
of

ffiffiffiffiffiffiffiffiffiffiffið8=3Þp ¼ 1.63299 and will be called hex (hcp) in the following. Further, the
hexagonal unit cell of an hcp crystal contains two atoms (Figure 2.10b). The c/a ratio
and the atom positions are chosen such that each atom is surrounded by 12 nearest-
neighbor atoms at equal distance (equal to lattice constant a), achieving the same
atom density as crystals with a corresponding fcc lattice.

Analogous to the family of cubic lattices, there is also a close connection between
trigonal and hexagonal lattices, where scientists often prefer hexagonal lattice
descriptions to trigonal ones. The trigonal lattice, also called trigonal-R or rhombo-
hedral, is described by three lattice vectors R1, R2, R3 of equal length a, which also
form identical angles a¼b¼ c. Thus, the lattice vectors can be thought of as arising
from each other by a 120� rotation about a common axis given by (R1 þ R2 þ R3)
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