An international and interdisciplinary team of leading experts from both academia and industry report on the wide range of hot applications for MOFs, discussing both the advantages and limits of the material. The resulting overview covers everything from catalysis, H₂ and CH₄ storage and gas purification to drug delivery and sensors.

From the contents:
- Design of Porous Coordination Polymers/Metal-Organic Frameworks: Past, Present and Future
- Design of Functional Metal-Organic Frameworks by Post-Synthetic Modification
- Thermodynamic Methods for Prediction of Gas Separation in Flexible Frameworks
- Separation and Purification of Gases by MOFs
- Opportunities for MOFs in CO₂ Capture from Flue Gases, Natural Gas and Syngas by Adsorption
- Manufacture of MOF Thin Films on Structured Supports for Separation and Catalysis
- Research Status of Metal-Organic Frameworks for On-board Cryo-Adsorptive Hydrogen Storage Applications
- Separation of Xylene Isomers
- Metal-Organic Frameworks as Catalysts for Organic Reactions
- Biomedical Applications of Metal Organic Frameworks
- Metal Organic Frameworks for Biomedical Imaging
- Luminescent Metal-Organic Frameworks
- Deposition of Thin Films for Sensor Applications
- Industrial MOF Synthesis
- MOF Shaping and Immobilisation

A must-have for every scientist in the field.

David Farrusseng received his BSc in chemistry from the University of Montpellier (France) under the supervision of Prof. R. Corriu. In 1999, he got his PhD in Materials Science at the European Institute of Membranes in Montpellier under the guidance of Drs. A. Julbe and C. Guizard. He joined as post-doc the group of Prof. F. Schüth at the MPI für Kohlenforschung (Germany). In 2001, he was appointed CNRS researcher at IRCELYON in the group of Dr. C. Mirodatos. He is currently group leader at IRCELYON. His research activities focus on the design of materials for original catalytic and separation processes and on the development of high-throughput approaches for which he was awarded in 2008 by the French Chemical Society. He is author of approximately 90 peer-reviewed publications and 15 patents.
Related Titles

Tremel, W., zur Loye, H. (eds.)

Handbook of Solid State Chemistry
Hardcover
ISBN: 978-3-527-32587-0

Schubert, U., Hüsing, N.

Synthesis of Inorganic Materials
Softcover
ISBN: 978-3-527-32714-0

MacGillivray, L.

Metal-Organic Frameworks
Design and Application
Hardcover
ISBN: 978-0-470-19556-7

Stolten, D. (ed.)

Hydrogen and Fuel Cells
Fundamentals, Technologies and Applications
2010
Hardcover
ISBN: 978-3-527-32711-9

Hirscher, M. (ed.)

Handbook of Hydrogen Storage
New Materials for Future Energy Storage
2010
Hardcover
ISBN: 978-3-527-32273-2

Züttel, A., Borgschulte, A., Schlapbach, L. (eds.)

Hydrogen as a Future Energy Carrier
2008
Hardcover
ISBN: 978-3-527-30817-0

Öchsner, A., Murch, G. E., de Lemos, M. J. S. (eds.)

Cellular and Porous Materials
Thermal Properties Simulation and Prediction
2008
Hardcover
ISBN: 978-3-527-31938-1
Edited by
David Farrusseng

Metal-Organic Frameworks

Applications from Catalysis to Gas Storage

WILEY-VCH Verlag GmbH & Co. KGaA
Contents

Preface XV
List of Contributors XIX

Part One Design of Multifunctional Porous MOFs 1

1 Design of Porous Coordination Polymers/Metal–Organic Frameworks: Past, Present and Future 3
Satoshi Horike and Susumu Kitagawa
1.1 Introduction 3
1.2 Background and Ongoing Chemistry of Porous Coordination Polymers 3
1.2.1 Frameworks with High Surface Area 5
1.2.2 Lewis Acidic Frameworks 6
1.2.3 Soft Porous Crystals 8
1.3 Multifunctional Frameworks 10
1.3.1 Porosity and Magnetism 10
1.3.2 Porosity and Conductivity/Dielectricity 12
1.3.3 Porous Flexibility and Catalysis 12
1.4 Preparation of Multifunctional Frameworks 13
1.4.1 Mixed Ligands and Mixed Metals 13
1.4.2 Core–Shell 16
1.4.3 PCPs and Nanoparticles 17
1.5 Perspectives 18
References 19

2 Design of Functional Metal–Organic Frameworks by Post-Synthetic Modification 23
David Farrusseng, Jérôme Canivet, and Alessandra Quadrelli
2.1 Building a MOFs Toolbox by Post-Synthetic Modification 23
2.1.1 Taking Advantage of Immobilization in a Porous Solid 23
2.1.2 Unique Reactivity of MOFs 24
2.2 Post-Functionalization of MOFs by Host–Guest Interactions 26
4 Separation and Purification of Gases by MOFs 69
Elisa Barea, Fabrizio Turra, and Jorge A. Rodriguez Navarro
4.1 Introduction 69
4.2 General Principles of Gas Separation and Purification 72
4.2.1 Some Definitions 72
4.2.2 MOFs: New Opportunities for Separation Processes 73
4.2.3 Mechanisms of Separation and Design of MOFs for Separation Processes 73
4.2.4 Experimental Techniques and Methods to Evaluate/Characterize Porous Adsorbents 77
4.3 MOFs for Separation and Purification Processes 79
4.3.1 MOF Materials as Molecular Sieves 79
4.3.2 Flexible MOFs for Enhanced Adsorption Selectivity 81
4.3.3 MOFs with Coordination Unsaturated Metal Centers for Enhanced Selective Adsorption and Dehydration 86
4.3.4 Hydrocarbon Separation 88
4.3.5 VOC Capture 89
4.3.6 Catalytic Decomposition of Trace Gases 91
4.4 Conclusions and Perspectives 92
References 92

5 Opportunities for MOFs in CO₂ Capture from Flue Gases, Natural Gas, and Syngas by Adsorption 99
Gerhard D. Pirngruber and Philip L. Llewellyn
5.1 Introduction 99
5.2 General Introduction to Pressure Swing Adsorption 99
5.3 Production of H₂ from Syngas 101
5.3.1 Requirements for CO₂ Adsorbents in H₂-PSAs 103
5.4 CO₂ Removal from Natural Gas 103
5.4.1 Requirements for Adsorbents for CO₂–CH₄ Separation in Natural Gas 104
5.5 Post-combustion CO₂ Capture 105
5.5.1 The State of the Art 105
5.5.2 PSA and VSA Processes in Post-Combustion CO₂ Capture 106
5.5.3 Requirements for Adsorbents for CO₂ Capture in Flue Gases 107
5.6 MOFs 108
5.6.1 Considerations of Large Synthesis and Stability 108
5.6.2 MOFs for H₂-PSA 109
5.6.3 MOFs for CO₂ Removal from Natural Gas 113
5.6.4 MOFs for Post-Combustion CO₂ Capture 113
5.7 Conclusions 116
References 116

6 Manufacture of MOF Thin Films on Structured Supports for Separation and Catalysis 121
Sonia Aguado and David Farrusseng
6.1 Advantages and Limitations of Membrane Technologies for Gas and Liquid Separation 121
6.2 Mechanism of Mass Transport and Separation 123
6.3 Synthesis of Molecular Sieve Membranes 127
6.3.1 Synthesis of Zeolite Membranes 127
6.3.1.1 Direct Nucleation–Growth on the Support 128
6.3.1.2 Secondary Growth 129
6.3.2 Preparation of MOF Membranes and Films 129
6.3.2.1 Self-Assembled Layers 130
6.3.2.2 Solvothermal Synthesis: Direct and Secondary Growth 131
6.4 Application of MOF Membranes 137
6.4.1 Gas Separation 137
6.4.1.1 Metal Carboxylate-Based Membranes 137
6.4.1.2 Zinc Imidazolate-Based Membranes 138
6.4.2 Shaped Structured Reactors 141
6.4.3 Perspectives for Future Applications 143
6.5 Limitations 143
6.6 Conclusions and Outlook 146
References 147

7 Research Status of Metal–Organic Frameworks for On-Board Cryo-Adsorptive Hydrogen Storage Applications 151
Anne Dailly
7.1 Introduction – Research Problem and Significance 151
7.1.1 Challenges in Hydrogen Storage Technologies for Hydrogen Fuel Cell Vehicles 151
7.1.2 Current Status of Hydrogen Storage Options and R&D for the Future 152
7.2 MOFs as Adsorptive Hydrogen Storage Options 154
7.3 Experimental Techniques and Methods for Performance and Thermodynamic Assessment of Porous MOFs for Hydrogen Storage 156
7.4 Material Research Results 159
7.4.1 Structure–Hydrogen Storage Properties Correlations 159
7.4.2 Nature of the Adsorbed Hydrogen Phase 162
7.5 From Laboratory-Scale Materials to Engineering 165
7.6 Conclusion 167
References 168
10.2.4 Biodegradability and Toxicity of MOFs 219
10.3 Therapeutics 221
10.3.1 Drug Delivery 221
10.3.2 BioMOFs: the Use of Active Linkers 227
10.3.3 Release of Nitric Oxide 228
10.3.4 Activity Tests 231
10.3.4.1 Activity of Drug-Containing MOFs 231
10.3.4.2 Activity of NO-Loaded Samples 233
10.3.4.3 Activity of Silver Coordination Polymers 234
10.4 Diagnostics 235
10.4.1 Magnetic Resonance Imaging 235
10.4.2 Optical Imaging 236
10.5 From Synthesis of Nanoparticles to Surface Modification and Shaping 237
10.5.1 Synthesis of Nanoparticles 237
10.5.2 Surface Engineering 239
10.5.3 Shaping 239
10.6 Discussion and Conclusion 242
References 244

11 Metal–Organic Frameworks for Biomedical Imaging 251
Joseph Della Rocca and Wenbin Lin
11.1 Introduction 251
11.2 Gadolinium Carboxylate NMOFs 253
11.3 Manganese Carboxylate NMOFs 257
11.4 Iron Carboxylate NMOFs: the MIL Family 258
11.5 Iodinated NMOFs: CT Contrast Agents 260
11.6 Lanthanide Nucleotide NMOFs 262
11.7 Guest Encapsulation within NMOFs 263
11.8 Conclusion 264
References 264

Part Five Physical Applications 267

12 Luminescent Metal–Organic Frameworks 269
John J. Perry IV, Christina A. Bauer, and Mark D. Allendorf
12.1 Introduction 269
12.2 Luminescence Theory 270
12.2.1 Photoluminescence 270
12.2.2 Fluorescence Quenching 273
12.2.3 Energy Transfer 273
12.3 Ligand-Based Luminescence 274
12.3.1 Solid-State Luminescence of Organic Molecules 274
12.3.2 Ligand-Based Luminescence in MOFs 275
12.3.3 Ligand-to-Metal Charge Transfer in MOFs 280
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.4</td>
<td>Metal-to-Ligand Charge Transfer in MOFs</td>
<td>281</td>
</tr>
<tr>
<td>12.4</td>
<td>Metal-Based Luminescence</td>
<td>282</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Metal Luminophores</td>
<td>282</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Lanthanide Luminescence and the Antenna Effect</td>
<td>282</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Examples of Metal-Based Luminescence</td>
<td>282</td>
</tr>
<tr>
<td>12.4.3.1</td>
<td>Metal-Centered Luminescence</td>
<td>282</td>
</tr>
<tr>
<td>12.4.3.2</td>
<td>Metal-to-Metal Charge Transfer (MMCT)</td>
<td>286</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Lanthanide Luminescence as a Probe of the Metal-Ligand Coordination Sphere</td>
<td>287</td>
</tr>
<tr>
<td>12.5</td>
<td>Guest-Induced Luminescence</td>
<td>287</td>
</tr>
<tr>
<td>12.5.1</td>
<td>Encapsulation of Luminophores</td>
<td>288</td>
</tr>
<tr>
<td>12.5.2</td>
<td>Guest-Induced Charge Transfer: Excimers and Exciplexes</td>
<td>290</td>
</tr>
<tr>
<td>12.5.3</td>
<td>Encapsulation of Lanthanide Ion Luminophores</td>
<td>291</td>
</tr>
<tr>
<td>12.6</td>
<td>Applications of Luminescent MOFs</td>
<td>293</td>
</tr>
<tr>
<td>12.6.1</td>
<td>Chemical Sensors</td>
<td>293</td>
</tr>
<tr>
<td>12.6.1.1</td>
<td>Small-Molecule and Ion Sensors</td>
<td>294</td>
</tr>
<tr>
<td>12.6.1.2</td>
<td>Oxygen Sensors</td>
<td>296</td>
</tr>
<tr>
<td>12.6.1.3</td>
<td>Detection of Explosives</td>
<td>297</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Radiation Detection</td>
<td>298</td>
</tr>
<tr>
<td>12.6.3</td>
<td>Solid-State Lighting</td>
<td>298</td>
</tr>
<tr>
<td>12.6.4</td>
<td>Nonlinear Optics</td>
<td>300</td>
</tr>
<tr>
<td>12.6.5</td>
<td>Barcode Labeling</td>
<td>300</td>
</tr>
<tr>
<td>12.7</td>
<td>Conclusion</td>
<td>301</td>
</tr>
</tbody>
</table>

References 302

13 Deposition of Thin Films for Sensor Applications 309
Mark Allendorf, Angélique Bétard, and Roland A. Fischer

13.1 Introduction 309
13.2 Literature Survey 310
13.3 Signal Transduction Modes 310
13.4 Considerations in Selecting MOFs for Sensing Applications 312
13.4.1 Pore Dimensions 312
13.4.2 Adsorption Thermodynamics 313
13.4.3 Film Attachment 315
13.4.4 Film Thickness and Morphology 318
13.4.5 Response Time 319
13.4.6 Mechanical Properties 320
13.5 MOF Thin Film Growth: Methods, Mechanisms, and Limitations 320
13.5.1 Growth From Aged Solvothermal Mother Solutions 320
13.5.2 Assembly of Preformed MOF (Nano-) Particles or Layers 323
13.5.3 Electrochemical Deposition 325
13.5.4 Liquid-Phase Epitaxy 325
13.5.5 Toward Heteroepitaxial Growth of Multiple MOF Layers 328
13.5.6 Growth of MOF Films in Confined Spaces 329
13.5.7 Comparison of the Different Methods for MOF Thin Film Growth 331
13.6 Conclusions and Perspectives 331
References 332

Part Six Large-Scale Synthesis and Shaping of MOFs 337

14 Industrial MOF Synthesis 339
Alexander Czaja, Emi Leung, Natalia Trukhan, and Ulrich Müller
14.1 Introduction 339
14.2 Raw Materials 340
14.2.1 Metal Sources 340
14.2.2 Linkers 340
14.3 Synthesis 343
14.3.1 Hydrothermal Synthesis 344
14.3.2 Electrochemical Synthesis 345
14.4 Shaping 347
14.5 Applications 349
14.5.1 Natural Gas Storage for Automobile Applications 349
14.5.2 Ethylene Adsorption for Food Storage 350
14.6 Conclusion and Outlook 351
References 352

15 MOF Shaping and Immobilization 353
Bertram Böhringer, Roland Fischer, Martin R. Lohe, Marcus Rose, Stefan Kaskel, and Pia Küsgens
15.1 Introduction 353
15.2 MOF@Fiber Composite Materials 354
15.2.1 MOF-Containing Paper Sheets 354
15.2.2 MOF@Pulp Fibers 355
15.2.3 Electrospinning of MOF@Polymer Composite Fibers 356
15.2.4 MOF Fixation in Textile Structures 359
15.2.4.1 Pretreatment 360
15.2.4.2 Wet Particle Insertion 362
15.2.4.3 Dry Particle Insertion 363
15.3 Requirements of Adsorbents for Individual Protection 367
15.3.1 Relevant Protective Clothing Applications 367
15.3.2 Filter Performance 368
15.3.3 Testing the Chemical Protection Performance of Filters 371
15.3.4 Concepts for Application 373
15.4 MOFs in Monolithic Structures 373
15.4.1 MOF@Polymeric Beads 374
15.4.2 Extruded MOF Bodies 374
15.4.3 Monolithic MOF Gels 375
References 379

Index 383
Preface

Are porous metal–organic frameworks (MOFs) breakthrough materials, or are they simply an illusion reminiscent of “The Emperor’s New Clothes?”

Over the past three decades, the domain of porous solids has been expanded by the discovery of various “cornerstone” materials, such as ALPO molecular sieves (1982), carbon nanotubes (1991), ordered silica mesoporous materials (1992), and CMK (1999), to name just a few. Porous MOFs were first described in Volume 4 of the *Handbook of Porous Solids*, published by Wiley-VCH in 2002. Since that time, this class of materials has become much better known and much more widely studied. The number of publications dealing with MOFs and porous coordination polymers is currently increasing at an exponential rate – with the total doubling every 2 years. In 2009, we could count about 1200 new publications, a rate similar to that observed for ordered mesoporous materials.

Thanks to their hybrid formulation, MOFs bridge the gap between pure inorganic and organic materials, thereby pushing the frontiers of knowledge ever further forward. Initially, MOFs were regarded only as a new type of molecular sieve material with a pore size between those of inorganic zeolites (<1 nm) and ordered mesoporous silica materials (>2 nm). On the other hand, their stimuli-induced flexibility, or more generally their softness, is a common trait with organic enzymes. It is acknowledged that MOFs could mimic enzymes using the concept of molecular recognition, allowing high chemo-, regio-, and enantioselectivity – the ultimate goal in catalysis. With respect to mechanical properties such as hardness and elasticity, the domain corresponding to MOFs can, to some extent, be considered to straddle the borders between purely organic polymers, purely inorganic ceramics, and metallic materials. Some MOFs possess unique features, such as luminescence, that already allow them to surpass benchmark materials.

The ever-increasing demand to develop more complex and integrated processes drives the research and development of advanced “smart” materials, with specific engineering at the molecular level but also at higher scales from the micron to the millimeter. Clearly, MOFs are promising new candidates for addressing current challenges in a number of domains of application. A few MOF solids have recently become commercially available under the trade name Basolite™ – this should
greatly accelerate the development of MOF-based processes. Currently, the emphasis of research and development is shifting towards converting the unique properties of MOFs into efficient processes.

This brings us to the purpose of this book – to perform a critical assessment of the properties of MOFs, taking into account the process specifications and performance targets required to allow these solids to be introduced on to the market. It seems that MOF performances are rarely discussed with respect to those of state-of-the-art materials or commercial targets. Furthermore, their shaping and further processing in physical and chemical processes have rarely been reported so far. The ambitious goal here is to measure the gap that exists between the state of the art of MOF and commercial applications in the domains of energy, chemistry, physics, and medicine.

This deliberately application-oriented book is divided into six parts. Each chapter refers to the original literature and can be read independently of the other chapters.

The first part of this book emphasizes the uniqueness of MOFs compared with other porous solids in terms of intrinsic material properties and engineering capabilities. In particular, MOFs are characterized by their softness and by their associated host–guest dynamic properties that make them “smart” materials. The first chapter establishes the mechanisms and provides an outlook on how to proceed in designing multifunctional MOFs, using techniques for addition or modification of physical or chemical features within the frameworks. The second chapter gives a critical review of post-modification methods with emphasis on catalytic applications.

The second part deals with gas storage and separation. The different types of flexibility and the thermodynamic description of breathing are given in Chapter 3, and the associated solids and applications are detailed in Chapter 4. Carbon dioxide capture is treated in detail for PSA/TSA processes in Chapter 5 and for membrane processes in Chapter 6. The topic of hydrogen storage is discussed in Chapter 7.

The third part deals with bulk chemistry. Chapter 8 deals with the separation of xylenes, and Chapter 9 provides a review of MOF applications in catalysis, with particular focus placed on structure–activity relationships.

The fourth part encompasses an overview of medical applications of MOFs (Chapter 10) and imaging (Chapter 11).

In the fifth part, the use of MOFs in the design of small-scale devices and sensors is discussed. Luminescence properties and possible applications are described in Chapter 12. Thin-film preparations for sensor applications are detailed in Chapter 13.

The sixth part discusses the mass production of MOFs, with attention devoted to economic criteria (Chapter 14), and also the shaping of MOFs as large bodies and their immobilization as composite materials with polymer fibers (Chapter 15).

I hope that the information in this book will be of interest both to researchers involved in the development of chemical and physical processes and to scientists focusing on porous solids. I also hope that it will help establish a common ground
between different communities by providing a multidisciplinary point of view, including solid-state chemistry, materials science, and process engineering.

The European Community is acknowledged for supporting R&D in this field through the Integrated Projects NanoMOF and Macademia (FP7-NMP).

David Farrusseng
List of Contributors

Sonia Aguado
Université Lyon 1
IRCELYON
CNRS UMR 5256
2 avenue Albert Einstein
69626 Villeurbanne
France

Luc Alaerts
Katholieke Universiteit Leuven
Centre for Surface Chemistry and Catalysis
Kasteelpark Arenberg 23
3001 Leuven
Belgium

Mark D. Allendorf
Sandia National Laboratories
Department of Energy Nanomaterials
7011 East Avenue
Livermore, CA 94550
USA

Elisa Barea
Universidad de Granada
Facultad de Ciencias
Departamento de Química Inorgánica
Av. Fuentenuueva S/N
18071 Granada
Spain

Christina A. Bauer
University of California, Los Angeles
Department of Chemistry and Biochemistry
607 Charles E. Young Drive East
Los Angeles, CA 90095
USA

Angélique Bétard
Ruhr-Universität Bochum
Anorganische Chemie II – Organometallics & Materials
Universitätsstrasse 150
44801 Bochum
Germany

Bertram Böhringer
Blücher GmbH
Mettmannerstrasse 25
40699 Erkrath
Germany

Jérôme Canivet
Université Lyon 1
IRCELYON
CNRS UMR 5256
2 avenue Albert Einstein
69626 Villeurbanne
France
List of Contributors

François-Xavier Coudert
Chimie ParisTech
11 rue Pierre et Marie Curie
75005 Paris
France

Alexander Czaja
BASF SE
GCC/PZ – CNSI
570 Westwood Plaza
Los Angeles, CA 90095
USA

Anne Dailly
General Motors Company
R&D Technical Center
Hydrogen Fuel Chemistry and Systems
30500 Mount Road
Warren, MI 48090
USA

Joseph Della Rocca
University of North Carolina
at Chapel Hill
School of Pharmacy
Department of Chemistry
125 South Road
Chapel Hill, NC 27599
USA

Joeri F.M. Denayer
Vrije Universiteit Brussel
Department of Chemical Engineering
Pleinlaan 2
1050 Brussels
Belgium

Dirk De Vos
Katholieke Universiteit Leuven
Centre for Surface
Chemistry and Catalysis
Kasteelpark Arenberg 23
3001 Leuven
Belgium

David Farrusseng
Université Lyon 1
IRCELYON
CNRS UMR 5256
2 avenue Albert Einstein
69626 Villeurbanne
France

Roland Fischer
Norafin GmbH
Gewerbegebiet Nord 3
09456 Mildenau
Germany

Roland A. Fischer
Ruhr-Universität Bochum
Anorganische Chemie II –
Organometallics & Materials
Universitätsstrasse 150
44801 Bochum
Germany

Patricia Horcajada
Université de Versailles St.-Quentin
en Yvelines
Institut Lavoisier
UMR CNRS 8180
45 Avenue des Etats-Unis
78035 Versailles
France

Satoshi Horike
Kyoto University
Graduate School of Engineering
Department of Synthetic Chemistry
and Biological Chemistry
Kyoto Daigaku Katsura
Nishikyo-ku
615-8510 Kyoto
Japan
Stefan Kaskel
Technische Universität Dresden
Institut für Anorganische Chemie
Bergstrasse 66
01069 Dresden
Germany

Susumu Kitagawa
Kyoto University
Graduate School of Engineering
Department of Synthetic Chemistry
and Biological Chemistry
Kyoto Daigaku Katsura
Nishikyo-ku
615-8510 Kyoto
Japan

Pia Küsgens
Technische Universität Dresden
Institut für Anorganische Chemie
Bergstrasse 66
01069 Dresden
Germany

Philibert Leflaive
IFP-Lyon
Separation Department
Rond-point de l’échangeur de Solaize
69360 Solaize
France

Emi Leung
BASF SE
GCC/PZ – CNSI
570 Westwood Plaza
Los Angeles, CA 90095
USA

Wenbin Lin
University of North Carolina
at Chapel Hill
School of Pharmacy
Department of Chemistry
125 South Road
Chapel Hill, NC 27599
USA

Philip L. Llewellyn
Universités Aix-Marseille I, II,
et III – CNRS
Laboratoire Chimie Provence
(UMR 6264)
Centre de Saint Jérôme
Avenue Escadrille Normandie-Niemen
13397 Marseille
France

Martin R. Lohe
Technische Universität Dresden
Institut für Anorganische Chemie
Bergstrasse 66
01069 Dresden
Germany

Johan A. Martens
Katholieke Universiteit Leuven
Centre for Surface Chemistry
and Catalysis
Kasteelpark Arenberg 23
3001 Leuven
Belgium

Alistair C. McKinlay
University of St. Andrews
EaStChem School of Chemistry
Purdie Building
North Haugh
St. Andrews KY16 9ST
UK
List of Contributors

Russell E. Morris
University of St. Andrews
EaStChem School of Chemistry
Purdie Building
North Haugh
St. Andrews KY16 9ST
UK

Ulrich Müller
BASF SE
GCC/PZ – CNSI
570 Westwood Plaza
Los Angeles, CA 90095
USA

John J. Perry IV
Sandia National Laboratories
Department of Energy Nanomaterials
7011 East Avenue
Livermore, CA 94550
USA

Gerhard D. Pirngruber
IFP Energies Nouvelles
Rond-point de l’échangeur de Solaize
69360 Solaize
France

Alessandra Quadrelli
Université de Lyon
ESCPE Lyon
CNRS UMR 9986
43 boulevard du 11 Novembre 1918
69616 Villeurbanne
France

Jorge A. Rodriguez Navarro
Universidad de Granada
Facultad de Ciencias
Departamento de Química Inorgánica
Av. Fuentenueva S/N
18071 Granada
Spain

Marcus Rose
Technische Universität Dresden
Institut für Anorganische Chemie
Bergstrasse 66
01069 Dresden
Germany

Christian Serre
Université de Versailles St.-Quentin en Yvelines
Institut Lavoisier
UMR CNRS 8180
45 Avenue des Etats-Unis
78035 Versailles
France

Natalia Trukhan
BASF SE
GCC/PZ – CNSI
570 Westwood Plaza
Los Angeles, CA 90095
USA

Fabrizio Turra
SIAD SpA
Stabilimento di Osio Sopra (BG)
SS 525 del Brembo no 1
24040 Osio Sopra, BG
Italy

Lik Hong Wee
Katholieke Universiteit Leuven
Centre for Surface Chemistry and Catalysis
Kasteelpark Arenberg 23
3001 Leuven
Belgium
Part One
Design of Multifunctional Porous MOFs
1
Design of Porous Coordination Polymers/Metal–Organic Frameworks: Past, Present and Future
Satoshi Horike and Susumu Kitagawa

1.1
Introduction

At the end of the 1990s, a new porous compound with an inorganic–organic hybrid framework had an impact on the field of porous materials and represented a new family for porous chemistry. Porous coordination polymers (PCPs), also known as metal–organic frameworks (MOFs), have regular pores ranging from micro- to mesopores, resulting in a large pore surface area, and a highly designable framework, pore shape, pore size, and surface functionality. Their structures are based on organic ligands as linkers and metal centers as the connectors. The rich functionality and designability of the organic ligands and the directability and physical properties of the metal ions are fascinating for the design of various functions, not only conventional adsorptive functions such as storage, separation, and catalysis, but also other physical/chemical functions that can be integrated in the frameworks. Whereas the components of PCPs are connected by coordination bonds and other weak interactions or noncovalent bonds (H-bonds, π-electron stacking, or van der Waals interactions), the interactions lead to structural flexibility and dynamics in the crystalline state, which also promotes the unique character of PCPs in the field of porous materials. As synthetic techniques and knowledge have increased in the last decade, we are now ready to design advanced porous functions by making full use of the chemical components and structural topologies. In this chapter, we introduce the background of PCPs/MOFs with some of the main framework designs and describe the unconventional porous properties of multifunctional porous materials based on ligand–metal networks.

1.2
Background and Ongoing Chemistry of Porous Coordination Polymers

Coordination polymers (CPs) are a family of compounds with extended structures formed by metal ions and organic and/or inorganic ligands with coordination bonds.
They can provide various frameworks constructed from one-, two-, and three-dimensional networks. The late transition metal elements (Cu, Ag, Zn, and Cd) tend to provide this type of framework and the chemistry of CPs has been elucidated with the development of single-crystal X-ray crystallography. The term “coordination polymer” was used in a paper in 1916 [1], but there was no means of demonstrating infinite frameworks without single-crystal X-ray crystallography. A three-dimensional coordination framework connected by a CN bridge was realized in 1936 [2], namely the well-known Prussian Blue compounds. Currently, coordination polymers having porous properties are termed PCPs or porous MOFs, and therefore we suggest “coordination framework” as an all-inclusive term because the chemistry of the background is defined as “chemistry of coordination space.” To understand the background of this chemistry, there are three important concepts: (1) framework, (2) molecular metal–organic hybrid, and (3) porosity.

1) Concept of Framework

It is well known that CPs provide us with one-, two-, and three-dimensional motifs. In particular, the structural concept of a framework was demonstrated by Hofmann and Küspert [3], whose compounds are known as the family of Hofmann compounds having a two-dimensional layer-based architecture. The first X-ray crystallographic structure was obtained in 1949 [4]. The complete three-dimensional framework, the so-called Prussian Blue complex, appeared in 1936 and a comprehensive study was performed by Iwamoto et al. in 1967 [2, 5].

2) Molecular Metal–Organic Hybrid

Hofmann and Prussian Blue compounds have structures bridged by the inorganic ion CN⁻, and therefore have a restricted variety of structures. On the other hand, frameworks having organic linkers afford not only designability but also functionality of frameworks. The X-ray crystal structure of the metal–organic coordination framework of [Cu(adiponitrile)₂]⁻⋅NO₃ appeared in 1959 [6]. Since then, many compounds in this category have been synthesized and characterized crystallographically. Yaghi et al. termed these compounds “metal–organic frameworks (MOFs)” in 1995 [7]. [Cu(adiponitrile)₂]⁻⋅NO₃ contains the NO₃⁻ anion in the voids. Such compounds are regarded as clathrate-type CPs, however, which are not categorized as “porous” compounds. By the late 1990s, many clathrate-type CPs/MOFs had been synthesized.

3) Porosity

Porosity means “the quality or state of being a porous entity, which has many small holes that allow water, air, and so on, to pass through.” The porosity is antithesis to Aristotle’s proposition, “Nature abhors a vacuum.” Indeed, closely packed solid structures formed by molecules and ions can easily form. Researchers have often misunderstood that the crystallographic structure of MOFs having guest species in their voids is a porous material. In 1997, “porosity” was demonstrated to give a compound that maintains a porous structure without guests in the pores; gas sorption experiments under ambient conditions were carried out for stable apohosts [8, 9]. Reversible gas storage properties were identified and the PCPs have attracted wide attention as new porous materials.
Since that point, the number of reports on PCPs has been increasing rapidly, and many researchers have been developing strategies for the design of porosity, some of which are intrinsically unique to PCP materials.

1.2 Background and Ongoing Chemistry of Porous Coordination Polymers

1.2.1 Frameworks with High Surface Area

One of the great advantages of PCPs/MOFs is their high surface area, attributable to the low density of the porous structure. An MOF composed of Zn₄O clusters connected by benzenedicarboxylate (bdc), [Zn₄O(bdc)₃] (MOF-5), was synthesized in 1999 and possesses a cubic structure with an ordered three-dimensional (3D) porous system (Figure 1.1a) [10]. This compound has a BET surface area of 3800 m² g⁻¹ [11]. Many porous compounds have been synthesized on the basis of this structural motif, and this approach has been intensively developed to design important porous frameworks. Some related frameworks, [Zn₄O(btb)₂] (MOF-177) and [Zn₄O(bbc)₂] (MOF-200) {btb = 1,3,5-benzenetribenzoate; bbc = 4,4',4''-[benzene-1,3,5-triylis(benzene-4,1-diyl)]tribenzoate} also possess high porosity; the reported BET surface areas for these compounds are 4746 and 6260 m² g⁻¹, respectively [12, 13]. The self-assembly process of structure growth often faces network interpenetration, which precludes a high surface area, but further

![Figure 1.1](image_url)
Figure 1.1 Partial crystal structures of (a) [Zn₄O(bdc)₃] (MOF-5, BET surface area = 3800 m² g⁻¹) and (b) Zn₄O(t₂dc)(btb)₄/₃ (UMCM-2, t₂dc = thieno-3,2-bithiophene-2,5-dicarboxylate, BET surface area = 5200 m² g⁻¹) constructed from Zn₄O clusters.
improvements in the design of pore network topologies could avoid interpenetration to achieve extremely high surface areas.

Porous frameworks constructed from two or more kinds of ligands are in some cases effective in the design of high surface area compounds. Zn₄O(t₂dc)(bbl)₄/₃ (UMCM-2) (t₂dc = thieno-3,2-bithiophene-2,5-dicarboxylate) (Figure 1.1b) is also made up of Zn₄O clusters and two distinct ligands contribute to the construction of the porous framework [14]. There is a narrow distribution of micropores at 1.4–1.6 and 1.6–1.8 nm and a mesopore at 2.4–3.0 nm and the calculated BET surface reaches 5200 m² g⁻¹.

Another framework, [Cr₃F(H₂O)O(bdc)₃] (MIL-101), is made from the linkage of terephthalate and chromium trimer units that consist of three Cr cations and the μ₃O oxygen anion [15]. The pore space is constructed from two cages with diameters of 2.9 and 3.4 nm which are connected with windows with diameters of 1.2 and 1.45 nm, respectively. The compound has a BET surface area of 4100 m² g⁻¹ and, compared with the Zn₄O-type metal cluster, the framework is more stable against water and other chemical species and it has also been utilized as a porous matrix for post-synthesis or hybridization with other species such as metal particles [16].

A paddle-wheel-type dimetal cluster is a popular building unit to construct frameworks. Many transition metals can form this type of cluster and it affords square grid extended networks. [Cu(H₂O)]₃(n-tei) (PCN-66) is prepared by the combination of 4,4',4''-nitrilotris(benzene-4,1-diyl)tris(ethyne-2,1-diyl)tissuexphthalate (n-tei) and a Cu²⁺ paddle-wheel cluster and the BET surface area is 4000 m² g⁻¹ [17]. Isostructures have been made using other hexatopic carboxylate ligands and it is anticipated that even higher surface areas can be designed.

So far, these compounds represent carbon-containing materials with one of the highest surface areas and the feature of complete crystallinity is a significant platform for a high capacity of gas uptake and it also acts as accumulation areas for other materials such as metal particles, functional molecules and polymers, and gases with high density.

1.2.2 Lewis Acidic Frameworks

The design of porous frameworks having guest interaction sites has also been intensively investigated. Especially unsaturated metal sites on the pore interior, which act as Lewis acid sites, have been synthesized because of interest in the storage of gases such as H₂ and CO₂ and for heterogeneous catalysis.

[Cu₃(btc)₂] (HKUST-1), based on Cu₂ paddle-wheel units linked by benzenetri-carboxylic acid (btc) is one of the early PCPs with unsaturated metal sites [18]. This compound possesses a 3D channel with a pore size of 1 nm and has high thermal stability and aqueous durability. The axial sites of Cu²⁺ are accessible to guests and gas capture and heterogeneous catalysis have been reported [19, 20]. This motif is available for other metal ions such as W, Fe, and Cr, and [Cr₃(btc)₂] shows O₂ adsorption at 298 K with a Type I isotherm with which adsorption occurs at very low