New viruses can arise very quickly and, if unchecked, result in major pandemics. Obvious examples being the AIDS and SARS virus. In order to deal with such imminent threats, drug development times need to be cut short. This is only possible by relying on proven strategies and adapting them to the specific features of any new virus or virus variant.

By focusing on general molecular mechanisms of antiviral drugs rather than therapies for individual viruses, this ready reference provides the critical knowledge needed to develop entirely novel therapeutics and to target new viruses. It is edited by Erik de Clercq, a world authority on antiviral drug discovery.

The volume covers a general discussion of antiviral strategies, followed by a broad survey of known viral targets, such as reverse transcriptases, proteases, neuraminidases, RNA polymerases, helicases, and primases, as well as their known inhibitors. The book also contains several case studies of recent successful antiviral drug development.

As a result, medicinal and pharmaceutical chemists, as well as virologists will be able to pinpoint strategies for combating future viral pandemics.

Erik De Clercq, M.D., PhD, is currently President of the Rega Foundation, a member of the Belgian (Flemish) Royal Academy of Medicine and of the Academia Europaea, and a Fellow of the American Association for the Advancement of Science. He is an active Emeritus Professor of the Katholieke Universiteit Leuven (K.U. Leuven), Belgium. He is honorary doctor of the Universities of Ghent, Belgium, Athens, Greece, Fano, Italy, Finner (Stanford), China, Charles (Prague), Czech Republic, and Jihoceska (Ceske Budejovice), Czech Republic, and Tours, France.

For his pioneering efforts in antiviral research, Professor De Clercq received in 1996 the Aventis award from the American Society for Microbiology, and in 2000 the Maxine Price for Biomedical Sciences from the Belgian National Science Foundation. In 2008 he was elected Inventor of the Year by the European Union, jointly with Dr. Anthony Fauci. Prof. De Clercq received the Dr. Paul Janssen Award for Biomedical Research in 2010.

He is the (co)inventor of a number of antiviral drugs, used for the treatment of HSV (valaciclovir, Valtrex®, Zelitrex®), VZV (brivudin, Zostex®, Brivirac®, Zerpex®), CMV (cidofovir, Vistide®), HBV (adefovir dipivoxil, Hepsera®), and HIV infections (AIDS) (tenofovir disoproxil fumarate, Viread®).
Methods and Principles in Medicinal Chemistry

Edited by R. Mannhold, H. Kubinyi, G. Folkers
Editorial Board
H. Buschmann, H. Timmerman, H. van de Waterbeemd, T. Wieland

Previous Volumes of this Series:

Klebl, Bert / Müller, Gerhard / Hamacher, Michael (Eds.)
Protein Kinases as Drug Targets
2011
ISBN: 978-3-527-31790-5
Vol. 49

Sotriffer, Christopher (Ed.)
Virtual Screening
Principles, Challenges, and Practical Guidelines
2011
ISBN: 978-3-527-32636-5
Vol. 48

Rautio, Jarkko (Ed.)
Prodrugs and Targeted Delivery
Towards Better ADME Properties
2011
ISBN: 978-3-527-32603-7
Vol. 47

Smit, Martine J. / Lira, Sergio A. / Leurs, Rob (Eds.)
Chemokine Receptors as Drug Targets
2011
ISBN: 978-3-527-32118-6
Vol. 46

Ghosh, Arun K. (Ed.)
Aspartic Acid Proteases as Therapeutic Targets
2010
ISBN: 978-3-527-31811-7
Vol. 45

Ecker, Gerhard F. / Chiba, Peter (Eds.)
Transporters as Drug Carriers
Structure, Function, Substrates
2009
ISBN: 978-3-527-31661-8
Vol. 44

Faller, Bernhard / Urban, Laszlo (Eds.)
Hit and Lead Profiling
Identification and Optimization of Drug-like Molecules
2009
ISBN: 978-3-527-32331-9
Vol. 43

Sippl, Wolfgang / Jung, Manfred (Eds.)
Epigenetic Targets in Drug Discovery
2009
ISBN: 978-3-527-32355-5
Vol. 42

Todeschini, Roberto / Consonni, Viviana
Molecular Descriptors for Chemoinformatics
Volume I: Alphabetical Listing / Volume II: Appendices, References
2009
ISBN: 978-3-527-31852-0
Vol. 41

van de Waterbeemd, Han / Testa, Bernard (Eds.)
Drug Bioavailability
Estimation of Solubility, Permeability, Absorption and Bioavailability
Second, Completely Revised Edition
2008
ISBN: 978-3-527-32051-6
Vol. 40
Series Editors

Prof. Dr. Raimund Mannhold
Molecular Drug Research Group
Heinrich-Heine-Universität
Universitätsstrasse 1
40225 Düsseldorf
Germany
mannhold@uni-duesseldorf.de

Prof. Dr. Hugo Kubinyi
Donnersbergstrasse 9
67256 Weisenheim am Sand
Germany
kubinyi@t-online.de

Prof. Dr. Gerd Folkers
Collegium Helveticum
STW/ETH Zurich
8092 Zurich
Switzerland
folkers@collegium.ethz.ch

Volume Editor

Prof. Dr. Erik De Clercq
Rega Inst. Medical Research
University of Leuven
Minderbroedersstraat 10
3000 Leuven
Belgium

cover description

Recent approaches on how to combat virus infections, i.e. HIV, HCV, HSV, HCMV and influenza virus.
HIV-Protease, PDB code 3k4v (F. M. Olajuyigbe et al., ACS Med. Chem. Lett. 2010 asap, DOI: 10.1021/ml100046d); protein backbone generated with LigandScout 3.0, intlecigand

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2011 Wiley-VCH Verlag & Co. KGaA,
Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Typesetting Thomson Digital, Noida, India
Printing and Binding betz-druck GmbH, Darmstadt
Cover Design Schulz Grafik-Design, Fußgönheim

Printed in the Federal Republic of Germany
Printed on acid-free paper

ISBN Print: 978-3-527-32696-9
ISBN eBook: 978-3-527-63595-5
ISBN ePDF: 978-3-527-63597-9
ISBN ePUB: 978-3-527-63596-2
ISBN Mobi: 978-3-527-63598-6
Contents

List of Contributors XIII
Preface XVII
A Personal Foreword XIX

1 Outlook of the Antiviral Drug Era, Now More Than 50 Years After
Description of the First Antiviral Drug 1
Erik De Clercq
1.1 Introduction: The Prehistory 1
1.2 Key Events in Antiviral Drug Development 2
1.3 Antiviral Drugs: Current State of the Art 4
1.4 Antiviral Drugs Active against Herpesviruses
(i.e., HSV, VZV, and so on) 4
1.5 Antiviral Drugs Active against Retroviruses (HIV) 8
1.6 Antiviral Drugs Active against Hepatitis B Virus 12
1.7 Antiviral Drugs Active against DNA Viruses at Large 13
1.8 Antiviral Drugs for Influenza A Virus Infections 14
1.9 Antiviral Drugs for Hepatitis C Virus 15
1.10 Antiviral Drugs for Poxviruses (i.e., Variola,
Vaccinia, and so on) 17
1.11 Further Options to Treat Virus Infections 19
1.12 Conclusions 19
References 20

2 Inhibition of HIV Entry 29
José A. Esté
2.1 Introduction 29
2.2 The HIV Glycoproteins 30
2.2.1 Structure of the HIV-1 Glycoprotein gp120 30
2.2.2 Structure of the HIV-1 Transmembrane Glycoprotein gp41 31
2.3 Mechanism of HIV Entry 32
2.3.1 Virus Attachment 32
2.3.2 Coreceptors: Virus Tropism and Infectivity 33
2.3.3 Virus–Cell Fusion 33
2.3.4 Endocytosis of HIV 33
2.4 Inhibition of HIV Entry 34
2.4.1 Inhibitors of Virus Attachment 34
2.4.1.1 Polyanions as Inhibitors of HIV Attachment 34
2.4.1.2 Small-Molecule Inhibitors of the gp120–CD4 Interaction 36
2.4.2 Postattachment Inhibitors 37
2.4.3 CCR5 Antagonists 38
2.4.3.1 Maraviroc 38
2.4.3.2 Vicriviroc 39
2.4.3.3 Pro-140 39
2.4.3.4 Resistance to CCR5 Antagonists 39
2.4.4 CXCR4 Antagonists 40
2.4.5 Inhibitors of HIV Fusion: Enfuvirtide 41
2.5 Concluding Remarks 42

References 42

3 Targeting Integration Beyond Strand Transfer: Development of Second-Generation HIV Integrase Inhibitors 51
Arnout R.D. Voet, Marc De Maeyer, Frauke Christ, and Zeger Debyser

3.1 HIV: The Causative Agent of AIDS 51
3.1.1 Replication Cycle of HIV 51
3.1.2 Highly Active Antiretroviral Therapy 52
3.2 The Integration Step: A Complex Mechanism with Different Possibilities for Inhibition 53
3.2.1 HIV-1 Integrase 53
3.2.1.1 The Structural Organization of HIV-1 Integrase 54
3.2.2 HIV-1 IN as a Target for HAART 55
3.2.2.1 Integrase Strand Transfer Inhibitors 55
3.2.2.2 Integrase Binding Inhibitors 57
3.3 DNA Binding Inhibitors 59
3.4 Multimerization Inhibitors 60
3.5 Targeting Integrase Cofactor Interactions 62
3.6 Conclusion 64
References 65

4 From Saquinavir to Darunavir: The Impact of 10 Years of Medicinal Chemistry on a Lethal Disease 73
Marie-Pierre de Béthune, Anik Peeters, and Piet Wigerinck

4.1 Introduction 73
4.2 The HIV Protease as a Target for AIDS 73
4.3 The Early Protease Inhibitors 74
4.4 The Medical Need for a “Next”-Generation PI 78
4.5 How Can We Explain the Superior Antiviral Activity of Darunavir? 85
5 Acyclic and Cyclic Nucleoside Phosphonates 91
Richard L. Mackman and Tomas Cihlar 91
5.1 Introduction 91
5.2 Nucleoside Phosphonate Strategy for Antivirals 92
5.3 Acyclic Nucleoside Phosphonates 95
5.3.1 Main Classes and their Structure–Activity Relationships 95
5.3.1.1 HPMP Analogues 95
5.3.1.2 PME Analogues 95
5.3.1.3 PMP and FPMP Analogues 97
5.3.2 Additional Examples of Antiviral ANPs 98
5.4 Cyclic Nucleoside Phosphonates 99
5.4.1 Main Classes and their Structure–Activity Relationships 100
5.4.1.1 Tetrahydrofuran Core 100
5.4.1.2 Cyclopentane and Cyclopentene Cores 103
5.4.2 Examples of CNPs Targeting Viral RNA Polymerases 104
5.5 Prodrugs of Nucleoside Phosphonates 107
5.5.1 Phosphonoesters 107
5.5.2 Phosphonoamidates 109
5.6 Clinical Applications of Antiviral Nucleoside Phosphonates 111
5.6.1 Cidofovir (Vistide®) 112
5.6.2 Adefovir Dipivoxil (Hepsera®) 112
5.6.3 Tenofovir Disoproxil Fumarate (Viread®) 113
5.7 Conclusions 115
References 115

6 Helicase–Primase Inhibitors: A New Approach to Combat Herpes Simplex Virus and Varicella Zoster Virus 129
Subhajit Biswas and Hugh J. Field
6.1 Introduction 129
6.2 The Role of Helicase Primase in the Replication of HSV 130
6.3 Selective Inhibitors of Helicase Primase as Antiherpesvirus Antivirals 131
6.4 HPIs are Effective in Cell Culture and In Vivo 133
6.5 Effects of HPIs on the Establishment and Reactivation from Latency 134
6.6 HPIs: The Biochemical Basis for the Proposed Mechanism of Action 134
6.7 HSV Acquired Resistance to HPIs 135
6.8 Patterns of Cross-Resistance 136
6.9 Further Insight into Mode of HPI Interaction with the HSV HP Complex from the Study of Resistance Mutations 139
6.10 The Frequency and Origin of HPI-Resistance Mutations 140
6.11 UL5 Lys356Asn: a Mutation Conferring High Resistance to HPI 141
6.12 The Origin of Resistance Mutations at High Frequency 142
6.13 Conclusions 142
References 144

7 Cyclophilin Inhibitors 147
Grégoire Vuagniaux, Arnaud Hamel, Rafael Crabbé, Hervé C. Porchet, and Jean-Maurice Dumont
7.1 Introduction 147
7.2 Cyclophilin Overview 148
7.3 Cyclophilin Inhibitors Currently in Clinical Development 148
7.3.1 Chemical Structure 149
7.3.2 CypA PPIase Inhibition and Lack of Immunosuppressive Activity 149
7.4 Cyclophilin and HIV 149
7.4.1 Cyclophilin Inhibitors against HIV-1 151
7.4.1.1 In Vitro Anti-HIV-1 Activity 151
7.4.1.2 Resistance Profile 152
7.4.1.3 In Vivo Activity 152
7.4.1.4 Putative Mechanism of Action of Cyclophilin Inhibitors against HIV-1 152
7.4.1.5 Clinical Activity of Debio 025 against HIV-1 153
7.4.2 No Activity against Simian Immunodeficiency Virus 154
7.4.3 Activity against HIV-2 154
7.5 Cyclophilin and Hepatitis C 155
7.5.1 Putative Role of Cyclophilin in HCV Replication 155
7.5.2 Activity of Cyclophilin Inhibitors in HCV 157
7.5.3 Resistance Profile 158
7.6 Clinical Results in HCV 159
7.6.1 Debio 025 159
7.6.1.1 Randomized, Double-Blind, Placebo-Controlled Study in HIV-1/HCV Coinfected or HIV-1 Monoinfected Patients 159
7.6.1.2 Randomized, Double-Blind, Placebo-Controlled, Escalating Dose Ranging Study of Debio 025 in Combination with Pegasys in Treatment-Naïve Patients with Chronic Hepatitis 159
7.6.2 Study of Debio 025 in Combination with PEG-IFNα2 and Ribavirin in Chronic HCV Genotype 1 Nonresponding Patients 162
7.6.3 Adverse Events 167
7.6.4 NIM811 and SCY635 167
7.7 Activity against Other Viruses 167
7.8 New Noncyclosporine Cyclophilin Inhibitors 168
7.8.1 Peptides and Peptidomimetics 168
7.8.2 CsA Bis-Urea Derivatives 169
7.8.3 Dimedone-Like Molecules 169
7.8.4 Quinoxaline Derivatives 169
7.8.5 Diarylurea Derivatives 170
7.8.6 Other Acylurea Derivatives 171
7.9 Conclusion 173
References 173

8 Alkoxyalkyl Ester Prodrugs of Antiviral Nucleoside Phosphates and Phosphonates 181
James R. Beadle and Karl Y. Hostetler
8.1 Introduction 181
8.2 Enhancing the Oral Activity of Antiviral Compounds: Overview of the Development of Alkoxyalkyl Esterification Approach 182
8.3 Alkylglycerol and Alkoxyalkyl Prodrugs of Phosphonoformate: Enhanced Antiviral Activity and Synergism with AZT 185
8.4 Alkoxyalkyl Esters of Nucleoside 5′-Monophosphates 185
8.5 Oral Prodrugs of Acyclic Nucleoside Phosphonates 189
8.5.1 Cidofovir 189
8.5.1.1 Activity against Poxviruses In Vitro 189
8.5.1.2 Activity against Other Double-Stranded DNA Viruses In Vitro 190
8.5.1.3 Efficacy of Alkoxyalkyl Esters of ANPs in Animal Models of Disease 191
8.5.2 Alkoxyalkyl Esters of (S)-HPMPA 191
8.5.3 Alkoxyalkyl Esters of Tenofovir (HDP-(R)-PMPA) 196
8.5.4 Hexadecyloxypropyl Adefovir and Prodrugs of Other ANPs and Antivirals 197
8.6 Intraocular Delivery of Antiviral Prodrugs for Treatment or Prevention of Cytomegalovirus Retinitis 198
8.6.1 1-O-Octadecyl-sn-glycero-3-phosphonoformate (ODG-PFA) 198
8.6.2 Hexadecyloxypropyl Ganciclovir 5′-Monophosphate (HDP-P-GCV) 199
8.6.3 Hexadecyloxypropyl Esters of Cyclic Cidofovir and Cyclic (S)-HPMPA 200
8.7 Conclusion 201
References 201

9 Maribavir: A Novel Benzimidazole Ribonucleoside for the Prevention and Treatment of Cytomegalovirus Diseases 209
Karen K. Biron
9.1 Cytomegalovirus Diseases: Unmet Challenges 209
9.2 Maribavir: Antiviral Activity 210
9.3 Maribavir: Mechanisms of Action and Resistance 212
9.4 Preclinical Studies 214
9.5 Clinical Development of Maribavir: Early Phase I 215
9.6 Clinical Development in a Transplant Population 218
10 Anti-HCMV Compounds 227
Graciela Andrei and Robert Snoeck

10.1 Introduction 227

10.2 Anti-HCMV Drugs in Clinical Use 229

10.2.1 Classes of Anti-HCMV Drugs 229

10.2.2 Toxicity Associated with Approved Anti-HCMV Drugs 231

10.2.3 Resistance to Anti-HCMV Antivirals 233

10.3 Need for New Anti-HCMV Drugs 234

10.4 Novel Viral Targets 235

10.4.1 Viral Entry Inhibitors 235

10.4.1.1 β-Peptides 235

10.4.1.2 Dendrimers 235

10.4.1.3 Amphipathic DNA Polymers 237

10.4.1.4 Thioureia Derivatives 237

10.4.1.5 Phosphorothioate-Modified Oligonucleotides 237

10.4.2 Inhibitors of Viral Genome Replication 238

10.4.2.1 DNA Polymerase Inhibitors 238

10.4.2.2 Helicase/Primase Inhibitors 245

10.4.2.3 Inhibitors of Protein–Protein Interactions 246

10.4.3 Viral Gene Expression Inhibitors 248

10.4.3.1 Small Interfering RNAs 248

10.4.4 Inhibitors of Virion Assembly and Egress 248

10.4.4.1 Inhibitors of DNA Cleavage/Packaging 248

10.4.4.2 UL97 Protein Kinase (pUL97) Inhibitors 252

10.4.4.3 Viral Protease Inhibitors 256

10.4.5 Additional New Inhibitors of HCMV 256

10.4.5.1 Agonist for HCMV-Encoded Chemokine Receptors 256

10.4.6 HCMV Inhibitors with a Mechanism of Action not Fully Unraveled 258

10.4.6.1 CMV423 258

10.4.6.2 Berberine Chloride, Arylsulfone Derivatives, Lipophilic Alkyl Furano Pyrimidine Dideoxy Nucleosides, and 4′′-Benzoyl-Ureido-TSAO Derivatives 258

10.4.6.3 Leflunomide 259

10.4.6.4 Artesunate 260

10.5 Cellular Targets 260

10.5.1 Inhibitors of Cyclin-Dependent Kinases 261

10.5.2 Inhibitors of Cyclooxygenase 2 262

10.5.3 Proteasome Inhibitors 263

10.6 Conclusions 265

References 266
11 Lethal Mutagenesis as an Unconventional Approach to Combat HIV

Pinar Iyidogan and Karen S. Anderson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>283</td>
</tr>
<tr>
<td>11.2 Viral Fitness and Intrinsic Mutagenesis in RNA Viruses and Retroviruses</td>
<td>284</td>
</tr>
<tr>
<td>11.3 Fundamentals of Lethal Mutagenesis</td>
<td>286</td>
</tr>
<tr>
<td>11.4 Mutagenic Pharmaceuticals as Antiviral Agents</td>
<td>288</td>
</tr>
<tr>
<td>11.4.1 Ribavirin</td>
<td>288</td>
</tr>
<tr>
<td>11.4.2 5-OH-dC</td>
<td>290</td>
</tr>
<tr>
<td>11.4.3 5-AZC</td>
<td>291</td>
</tr>
<tr>
<td>11.5 KP-1212: From Bench to Clinic</td>
<td>292</td>
</tr>
<tr>
<td>11.6 Challenges and Advantages of Lethal Mutagenesis Compared to Conventional Strategies</td>
<td>294</td>
</tr>
<tr>
<td>11.7 Concluding Remarks and Future Perspectives</td>
<td>296</td>
</tr>
</tbody>
</table>

References
298

12 Recent Progress in the Development of HCV Protease Inhibitors

Nagraj Mani, Bhisetti G. Rao, Tara L. Kieffer, and Ann D. Kwong

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>307</td>
</tr>
<tr>
<td>12.2 HCV Therapy</td>
<td>307</td>
</tr>
<tr>
<td>12.2.1 The Role of HCV Protease</td>
<td>308</td>
</tr>
<tr>
<td>12.2.2 HCV Protease Inhibitor Design</td>
<td>310</td>
</tr>
<tr>
<td>12.2.3 Similarities and Differences in HCV Protease Inhibitors</td>
<td>310</td>
</tr>
<tr>
<td>12.2.4 Antiviral Potency and the Emergence of Resistance</td>
<td>316</td>
</tr>
<tr>
<td>12.3 Mechanism of Resistance and Cross-Resistance to NS3 Protease Inhibitors</td>
<td>316</td>
</tr>
<tr>
<td>12.3.1 Pattern of Resistance to Covalent Linear Protease Inhibitors</td>
<td>316</td>
</tr>
<tr>
<td>12.3.2 Pattern of Resistance to Noncovalent Protease Inhibitors</td>
<td>318</td>
</tr>
<tr>
<td>12.3.3 Cross-Resistance between Linear and Macrocyclic HCV Protease Inhibitors</td>
<td>318</td>
</tr>
<tr>
<td>12.4 Antiviral Potency and Clinical Efficacy of HCV Protease Inhibitors</td>
<td>319</td>
</tr>
<tr>
<td>12.4.1 Telaprevir</td>
<td>319</td>
</tr>
<tr>
<td>12.4.2 Boceprevir</td>
<td>320</td>
</tr>
<tr>
<td>12.4.3 Safety Profile of Protease Inhibitors</td>
<td>321</td>
</tr>
<tr>
<td>12.5 Future Directions</td>
<td>321</td>
</tr>
</tbody>
</table>

References
322

13 Antiviral RNAi: How to Silence Viruses

Karin J. von Eije and Ben Berkhout

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 The Discovery of RNA Interference</td>
<td>329</td>
</tr>
<tr>
<td>13.2 Therapeutic Application of the RNAi Mechanism</td>
<td>329</td>
</tr>
<tr>
<td>13.3 Mammalian Viruses and the RNAi Mechanism</td>
<td>331</td>
</tr>
</tbody>
</table>
13.4 Basic Design of an RNAi Therapy against Viruses 332
13.5 Selecting Optimal Targets 332
13.6 Prevention of Viral Escape 334
13.7 Multiplexing siRNAs 335
13.8 Delivery Issues 335
13.9 Potential Risks of an RNAi Therapy 336
13.10 Example of an Acute Infection: RSV 337
13.11 Example of a Chronic Infection: HIV-1 337
13.12 Future Perspective 338
References 340

14 Neuraminidase Inhibitors as Anti-Influenza Agents 351
Willard Lew, Michael Z. Wang, Xiaowu Chen, James F. Rooney, and Choung Kim
14.1 Introduction 351
14.2 Influenza Neuraminidase as a Drug Target 353
14.3 Neuraminidase Active Site and Inhibitor Binding 354
14.4 Small-Molecule Inhibitors of Influenza Neuraminidase 355
14.4.1 Zanamivir (Relenza) and Related Compounds 355
14.4.2 Laninamivir (CS-8958): A Long-Acting Neuraminidase Inhibitor 358
14.4.3 Oseltamivir (Tamiflu) 359
14.5 Mechanism of Resistance 364
14.6 Influenza Neuraminidase Inhibitors Based on Other Scaffolds 364
14.6.1 Peramivir (BCX-1812, RWJ-270201) 364
14.6.2 ABT-675 366
14.7 Clinical Use of Neuraminidase Inhibitors 367
14.8 Concluding Remarks 369
References 370

15 From TIBO to Rilpivirine: The Chronicle of the Discovery of the Ideal Nonnucleoside Reverse Transcriptase Inhibitor 377
Erik De Clercq
15.1 Introduction 377
15.2 The TIBO Derivatives 378
15.3 From Loviride to Rilpivirine 380
15.4 Rilpivirine: How Does It Act? 381
15.5 Clinical Proof of Concept 383
15.6 Pharmacokinetics and Drug–Drug Interactions 383
15.7 Potency and Resilience to NNRTI Resistance 384
15.8 Conclusion 385
References 385

Index 391
List of Contributors

Karen S. Anderson
Yale University School of Medicine
Department of Pharmacology
333 Cedar Street
New Haven
CT 06520-8066
USA

Graciela Andrei
K.U. Leuven
Rega Institute for Medical Research
Department of Microbiology and Immunology
Laboratory of Virology and Chemotherapy
Minderbroedersstraat 10
3000 Leuven
Belgium

James R. Beadle
University of California, San Diego
Department of Medicine
Division of Infectious Disease
9500 Gilman Drive
La Jolla
CA 92093-0676
USA

Ben Berkhout
University of Amsterdam
Center for Infection and Immunity (CINIMA)
Department of Medical Microbiology
Laboratory of Experimental Virology
K3-110, Meibergdreef 15
1105 AZ Amsterdam
The Netherlands

Karen K. Biron
Pathfinder Pharmaceuticals, Inc.
413 E. Chapel Hill Street
Durham, NC 27701
USA

Subhajit Biswas
University of Cambridge
Department of Medicine
Level 5, Addenbrooke’s Hospital
Hills Road
Cambridge
CB2 0QQ
UK
List of Contributors

Xiaowu Chen
Gilead Sciences, Inc.
333 Lakeside Drive
Foster City
CA 94404
USA

Frauke Christ
K.U. Leuven
Division of Molecular Medicine
Laboratory for Molecular Virology and Gene Therapy
Kapucijnenvoer 33
3000 Leuven
Flanders
Belgium

Tomas Cihlar
Gilead Sciences, Inc.
333 Lakeside Drive
Foster City
CA 94404
USA

Rafael Crabbé
Debiopharm S.A.
Forum “après-demain”
Chemin Messidor 5-7
CP 5911
1002 Lausanne
Switzerland

Marie-Pierre de Béthune
Tibotec BVBA
Generaal de Wittelaan L 11B 3
2800 Mechelen
Belgium

Zeger Debyser
K.U. Leuven
Division of Molecular Medicine
Laboratory for Molecular Virology and Gene Therapy
Kapucijnenvoer 33
3000 Leuven
Flanders
Belgium

Erik De Clercq
K.U. Leuven
Rega Institute for Medical Research
Minderbroedersstraat 10
3000 Leuven
Belgium

Jean-Maurice Dumont
Debiopharm S.A.
Forum “après-demain”
Chemin Messidor 5-7
CP 5911
1002 Lausanne
Switzerland

José A. Esté
Universitat Autònoma de Barcelona
Hospital Universitari Germans Trias i Pujol
Retrovirology Laboratory IrsiCaixa
Ctra. De Canyet s/n
08916 Badalona
Spain

Hugh J. Field
University of Cambridge
Department of Veterinary Medicine
Madingley Road
Cambridge
CB 30ES
UK
Arnaud Hamel
Debiopharm S.A.
Forum “après-demain”
Chemin Messidor 5-7
CP 5911
1002 Lausanne
Switzerland

Karl Y. Hostetler
University of California, San Diego
Department of Medicine
Division of Infectious Disease
9500 Gilman Drive
La Jolla
CA 92093-0676
USA

Pinar Iyidogan
Yale University School of Medicine
Department of Pharmacology
333 Cedar Street
New Haven
CT 06520-8066
USA

Tara L. Kieffer
Vertex Pharmaceuticals Incorporated
130 Waverly Street
Cambridge
MA 02139
USA

Choung Kim
Gilead Sciences, Inc.
333 Lakeside Drive
Foster City
CA 94404
USA

Ann D. Kwong
Vertex Pharmaceuticals Incorporated
130 Waverly Street
Cambridge
MA 02139
USA

Willard Lew
Gilead Sciences, Inc.
333 Lakeside Drive
Foster City
CA 94404
USA

Richard L. Mackman
Gilead Sciences, Inc.
333 Lakeside Drive
Foster City
CA 94404
USA

Marc De Maeyer
K.U. Leuven
Department of Chemistry
Laboratory for Biomolecular Modeling
Celestijnenlaan 200G
3001 Heverlee
Flanders
Belgium

Nagraj Mani
Vertex Pharmaceuticals Incorporated
130 Waverly Street
Cambridge
MA 02139
USA

Anik Peeters
Tibotec BVBA
Generaal de Wittelaan L 11B 3
2800 Mechelen
Belgium

Hervé C. Porchet
Debiopharm S.A.
Forum “après-demain”
Chemin Messidor 5-7
CP 5911
1002 Lausanne
Switzerland
Bhisetti G. Rao
Vertex Pharmaceuticals Incorporated
130 Waverly Street
Cambridge
MA 02139
USA

James F. Rooney
Gilead Sciences, Inc.
333 Lakeside Drive
Foster City
CA 94404
USA

Robert Snoeck
K.U. Leuven
Rega Institute for Medical Research
Department of Microbiology and Immunology
Laboratory of Virology and Chemotherapy
Minderbroedersstraat 10
3000 Leuven
Belgium

Arnout R.D. Voet
K.U. Leuven
Department of Chemistry
Laboratory for Biomolecular Modeling
Celestijnenlaan 200G
3001 Heverlee
Flanders
Belgium

Karin J. von Eije
University of Amsterdam
Center for Infection and Immunity (CINIMA)
Department of Medical Microbiology
Laboratory of Experimental Virology
K3-110, Meibergdreef 15
1105 AZ Amsterdam
The Netherlands

Grégoire Vuagniaux
Debiopharm S.A.
Forum “après-demain”
Chemin Messidor 5-7
CP 5911
1002 Lausanne
Switzerland

Michael Z. Wang
Gilead Sciences, Inc.
333 Lakeside Drive
Foster City
CA 94404
USA

Piet Wigerinck
Galapagos NV
Generaal de Wittelaan L11A3
2800 Mechelen
Belgium
Preface

The World Community Grid, an association connecting numerous individual computers to generate massive computational power for ligand docking, has recently focused on antiviral drug research. Whether this strategy will succeed or not, the mission signifies a large public and scientific interest and medical need in the development of new antiviral drugs. The naïve dream of eradicating and providing a sustained cure to infectious diseases is over. Viruses are active and fast drivers of evolution and the human body as a habitat is one of their favorable playgrounds to achieve adaptations, which unfortunately turn out to be pathogenic for our species in many cases.

Hence, we face the same situation as in the field of antibiotics, a situation that has been described metaphorically as the race of the Red Queen. In Lewis Carroll’s classic, *Through the Looking-Glass*, the Red Queen, a living chess piece that Alice meets, has to run in place as quickly as she can to simply stay in the same place. In order to get anywhere else, she says, you must run twice as fast. Continuous effort has to be made to compete with viral evolutionary strategy. Stagnation in viral research results in a loss of terrain.

Here, the book by Erik De Clercq provides an evaluation of the situation. Historical aspects of half a century of antiviral research pave the way for the most recent strategies ranging from new small-molecule inhibitors to complex gene therapeutic interferences with viral replication.

There are few who would be more qualified to provide a synopsis of ups and downs, successes and pitfalls of viral research. Erik has been awarded the Descartes Prize for anti-HIV strategies, published a well-praised book on viral biological warfare and made the Rega Institute and the University of Leuven a renowned hot spot of antiviral research. From the 1980s, a long list of important scientific contributions stands witness to his research in the fields of chemotherapy of virus infections and malignant diseases, molecular mechanism of action of antiviral and antitumor agents, enzyme targets for antiviral and antitumor agents, nucleoside and nucleotide analogues for various targets in viral replication, gene therapy strategies using virus-encoded thymidine kinase, and tumor cell differentiation inducers.

Erik De Clercq has gathered leading experts from industry and academia to report on their views and their achieved innovations in the field of antiviral drug strategies.
The 15 chapters cover a broad range of efforts to cope with viral pathogenic effects by using the arsenal within the realm of medicinal chemistry. The book may also provide a certain basis for self-reflection about the gains and losses and how to learn from the conceptually related fields of antibiotic and antitumor research.

The series editors are indebted to the authors and the editor who made this comprehensive book possible. We are convinced that the book represents an important contribution to the body of knowledge in the field of antiviral research.

We also want to express our gratitude to Nicola Oberbeckmann-Winter, Heike Nöthe and Frank Weinreich of Wiley-VCH for their invaluable support to this project.

November 2010
Düsseldorf
Weisenheim am Sand
Zurich

Raimund Mannhold
Hugo Kubinyi
Gerd Folkers
A Personal Foreword

When my good friend Hugo Kubinyi asked me to put together this book, I was very reluctant for several reasons: why should I, a retired professor, undertake this initiative and knock as I had done so many times before, often in vain, at the doors of young(er) and (more) active colleagues who had much more in mind and at hand than contributing to an old colleague’s book... but Hugo was so persuasive and persistent I could not refuse to engage myself in putting together one more book. Here are the fruits of this endeavor. I do not know whether I will (be able or willing to) ever repeat the exercise, but I was pleased to note that most of those whom I contacted instantly replied they would help. I am immensely grateful to all those who contributed to this volume. In present times, with increasing demands on the goodwill of capable scientists, this is not obvious. This explains why I am so thankful to all of you who did contribute.

This book is not a comprehensive coverage on antiviral drugs, rather a snapshot on the current state of the art; even so, it brings a flavor of present-day research on antiviral drug strategies, and it does not afford the final solution to the antiviral drugs, not even the beginning thereof, but, hopefully, the end of the beginning. Antivirals are today where antibiotics stood exactly 30 years ago. The first antiviral (idoxuridine) dates back to 50 years and the first antibiotic (penicillin) to 80 years ago. In our further conquest of antivirals, we should learn from the successes and failures of antibiotics research. This book is just meant to add a small contribution to the continuously evolving conquest of science in the field of antiviral research that has since its conception always been in the shadow of its big brother, antibiotics, but I trust one day antivirals will be in the same limelight as antibiotics were 30 years before them, and hopefully researchers in the antiviral field will in the meantime have learned from both the successes and the failures of the antibiotic experts.

Quo vadis, antivirals? Fifty years after idoxuridine and, shortly thereafter, trifluridine, were recognized as antiviral agents specifically active against herpes simplex virus (HSV), and twenty-five years after the first antiretroviral drug azidothymidine was described, the antiviral drug area has come of age. Old viruses have remained, new ones have emerged, but the ingenuity and perseverance in creating and developing new approaches have continued unabatedly. With this book, my colleagues, contributors to this endeavor, want to pay tribute to the field of antiviral
research and leave an enduring stamp on the never vanishing hope of finding the ideal antiviral(s).

The chapters presented in this volume on antiviral drug strategies are as follows:

1. Outlook of the antiviral drug era, now more than 50 years after description of the first antiviral drug
2. Inhibition of HIV entry
4. From saquinavir to darunavir: The impact of 10 years of medicinal chemistry on a lethal disease
5. Acyclic and cyclic nucleoside phosphonates
6. Helicase–primase inhibitors: A new approach to combat herpes simplex and varicella zoster virus
7. Cyclophilin inhibitors
8. Alkoxyalkyl ester prodrugs of antiviral nucleoside phosphates and phosphonates
10. Anti-HCMV compounds
11. Lethal mutagenesis as an unconventional approach to combat HIV
12. Recent progress in the development of HCV protease inhibitors
13. Antiviral RNAi: How to silence viruses
14. Neuraminidase inhibitors as anti-influenza agents
15. From TIBO to rilpivirine: The chronicle of the discovery of the ideal nonnucleoside reverse transcriptase inhibitor

July 2010

Leuven

Erik De Clercq
1

Outlook of the Antiviral Drug Era, Now More Than 50 Years After Description of the First Antiviral Drug

Erik De Clercq

1.1

Introduction: The Prehistory

More than 50 years ago, the synthesis of IDU (iododeoxyuridine), a thymidine analogue, was described by Prusoff [1]. This compound would later become the first antiviral drug to be licensed for (topical) use in the treatment of herpes simplex virus (HSV) infections of the eye. In this sense, the advent of IDU marked the birth of the antiviral drug era. There are now about 50 licensed antiviral compounds, half of them are used for the treatment of AIDS, of which the viral origin was first recognized 27 years ago [2, 3] (2008 Nobel Prize for Medicine or Physiology was awarded to Françoise Barré-Sinoussi and Luc Montagnier for their discovery of human immunodeficiency virus and to Harald zur Hausen for demonstrating the link between human papilloma virus (HPV) and cervical cancer).

Was IDU truly the first antiviral? In retrospect, the antiviral chemotherapy era had a rather slow and unremarkable start. The first compounds quoted to have antiviral activity (against vaccinia virus) were the thiosemicarbazones [4, 5]. These compounds were also found effective against vaccinia virus infection in mice and rabbits [6–8], and one of the thiosemicarbazones, that is, N-methylisatin-β-thiosemicarbazone, even entered clinical studies for the prophylaxis of smallpox [9] just when the smallpox vaccination took over and made any further attempts to develop an antipoxvirus drug apparently superfluous.

Then came the benzimidazole derivatives as inhibitors of influenza virus multiplication [10, 11], but despite the reported effectiveness of the 5,6-dichloro-1-β-D-ribofuranosyl benzimidazole (DRB) [10, 11] against influenza virus multiplication, it was not pursued further as a potential anti-influenza virus agent. Another benzimidazole derivative, 2-(1-hydroxybenzyl)benzimidazole (HBB), was found active against the multiplication of poliovirus (and other enteroviruses) [12–14], but with the successful implementation of the poliovirus vaccine, just as we had witnessed for smallpox, interest in developing an antiviral drug for poliovirus infections vanished.

IDU, soon to be followed by TFT (trifluorothymidine), could be considered as the third, and successful, attempt to herald the antiviral chemotherapy era. IDU was first
considered as a potential antitumor agent [15] before it was shown by Herrmann to be active against HSV and vaccinia virus [16]. That IDU and TFT finally became antiviral drugs for the topical treatment of HSV eye infections, in particular HSV keratitis, is due to the pioneering work of Kaufman [17, 18].

1.2 Key Events in Antiviral Drug Development

Table 1.1 presents the key events in antiviral drug discovery, 1959 being the year when IDU was first described [1]. Ribavirin was the first low molecular weight compound described as a broad-spectrum antiviral agent (in 1972) by Sidwell et al. [19]. The combination of ribavirin with (pegylated) interferon-α has now become a standard treatment [20] for patients with chronic hepatitis C. That virus infections could be specifically tackled, without harm to the host cell, was heralded by the advent (in 1977) of acyclovir [21, 22], which is today still considered as the gold standard for the treatment of HSV infections. Two years after the discovery of HIV, in 1985, the first antiretrovirus agent (to become a drug 2 years later), AZT (zidovudine) was described [23], and this opened the search for, and development of, a wealth of new 2',3'-dideoxynucleoside analogues, now collectively referred to as nucleoside reverse transcriptase inhibitors (NRTIs).

In 1986, we described the first of a new class of broad-spectrum anti-DNA virus agents [24], namely, acyclic nucleoside phosphonates, several of which are active against the HIV and HBV reverse transcriptase and, therefore, referred to as nucleotide reverse transcriptase inhibitors (NtRTIs). Then followed in December 1989 and 1990 the description of a new concept for inhibiting the HIV-1 reverse transcriptase by nonnucleoside analogues (i.e., HEPT [25, 26] and TIBO [27]), giving rise to a still growing class of antiviral drugs, the nonnucleoside reverse transcriptase inhibitors (NNRTIs). With saquinavir, the year 1990 marked the birth of the rational design of HIV protease inhibitors (HIV PIs), which, in the mean time, has yielded 10 licensed drugs.

In 1992, we described an unusual class of compounds, the bicyclams as HIV inhibitors interacting with a viral uncoating event [28]. These compounds (prototype: AMD3100) would be, later on, shown to act as CXCR4 antagonists. Together with the CCR5 antagonists (the only licensed anti-HIV drug of this class of compounds being maraviroc), CXCR4 and CCR5 antagonists can be considered coreceptor inhibitors (CRIs), targeted at the coreceptor usage of X4 and R5 HIV strains, respectively. The year 1993 marked the description of two totally different strategic options: (i) that of DP-178, which later on would become known as enfuvirtide as an HIV fusion inhibitor (FI) [29] and (ii) that of 4-guanidino-Neu5Ac2en, which later on would become known as zanamivir as a neuraminidase-based inhibitor (NAI) of influenza virus replication [30]. Then followed in 1998 the seminal observation that HSV replication could be inhibited at the DNA helicase–primase level by a 2-aminothiazole (T157602) [31] that would later give impetus to the development of helicase–primase inhibitors (HPIs) as potential anti-HSV drugs.
Table 1.1 Milestones in antiviral drug discovery: year when key compounds were first described.

<table>
<thead>
<tr>
<th>Year</th>
<th>(NRTIs)</th>
<th>(NtRTIs)</th>
<th>(HIV PIs)</th>
<th>(NAIs)</th>
<th>(INIs)</th>
<th>(HCV PIs)</th>
<th>(Poxviruses inhibitors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>IDU</td>
<td>TMT01</td>
<td>AZT</td>
<td></td>
<td>T157602</td>
<td></td>
<td>BIL-179S</td>
</tr>
<tr>
<td>1969</td>
<td>Ribavirin</td>
<td>Acyclovir</td>
<td>ddT</td>
<td></td>
<td>Enfuvirtide</td>
<td></td>
<td>BAY 57-1293</td>
</tr>
<tr>
<td>1985</td>
<td>Acyclovir</td>
<td>ddC</td>
<td>ddC</td>
<td></td>
<td>4'-Azidocytidine</td>
<td></td>
<td>(NRRIs)</td>
</tr>
<tr>
<td>1992</td>
<td>Bicyclams</td>
<td>AZT</td>
<td>d4T</td>
<td></td>
<td>GS-327073</td>
<td></td>
<td>GS-327073</td>
</tr>
<tr>
<td>1993</td>
<td>2'-C-methyl nucleosides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Metabolites
- AZT: azidothymidine
- ddC: 2',3'-didehydro-2',3'-dideoxythymidine
- d4T: 2',3'-dideoxy-3'-thiacytidine
- ddI: 2',3'-dideoxyinosine
- ddC: 2',3'-dideoxycytidine
- d4T: 2',3'-dideoxythymidine
- dT: deoxythymidine
- ABC: 2',3'-dideoxy-3'-thiacytidine
- TIBO: 2',3'-dideoxyinosine
- HEPT: 2',3'-dideoxycytidine
- NFV: nevirapine
- EFV: efavirenz
- DRV: darunavir
- ATV: atazanavir
- TMC: tipranavir
- LPV: lopinavir
- NVP: nelfinavir
- Ritonavir
- BVDU: 2-bromo-2-deoxyuridine
- BCNAs: 2-bromo-2'-deoxy-5-nitroarabinofuranoside
- IDU: intravenous idoxuridine
- TMT01: thymidine 5'-triphosphate
ddI: 2',3'-dideoxyinosine
- ddC: 2',3'-dideoxycytidine
- d4T: 2',3'-dideoxythymidine

Drug Classes
- NRTIs: nucleoside reverse transcriptase inhibitors
- NtRTIs: nucleotide reverse transcriptase inhibitors
- NNRTIs: nonnucleoside reverse transcriptase inhibitors
- NINs: integrase inhibitors
- HIV PIs: HIV protease inhibitors
- CRIs: coreceptor inhibitors
- NAs: neuraminidase inhibitors
- HPIs: helicase–primase inhibitors
- HCV PIs: HCV protease inhibitors
- NNRRIs: nonnucleoside RNA replicase inhibitors
- NRRIs: nucleoside RNA replicate inhibitors
- FIs: fusion inhibitors
- RIs: RNA replicase inhibitors
- FIIs: RNA polymerase inhibitors
- NHIs: nuclease inhibitors
- TNIs: tyrosine kinase inhibitors
- VAs: viral entry inhibitors
- PIs: proteinase inhibitors
- SIs: serum protease inhibitors
- CRIs: coreceptor inhibitors
- (--)FTC: emtricitabine
Although considered an attractive target for two decades or so, the HIV integrase became a realistic target only when Hazuda et al. [32] demonstrated in 2000 it to be inhibited by the so-called diketo acids, which have yielded one integrase inhibitor (INI) that has already been formally approved (raltegravir) and another one under development (elvitegravir). Also described in 2000 was a pestivirus inhibitor (VP32947) [33] that hallmarkd the search for inhibitors targeted at the RNA-dependent RNA polymerase (RdRp) of not only pestiviruses but also hepaciviruses (nonnucleoside RNA replicase inhibitors (NNRRIs)). In 2003, Lamarre et al. published their pioneering observation that hepatitis C virus (HCV) replication could be inhibited by ciluprevir [34], which (although the compound itself was not further developed) generated the search for other HCV PIs. Also in 2003, Migliaccio et al. [35] reported that 2’-C-methyl-substituted ribonucleosides were inhibitory to the replication of HCV and other flaviviruses by acting as nonobligate chain terminators, thus inciting the search for nucleoside RNA replicase inhibitors (NRRIs).

While, since the days of methisazone, interest in developing antivirals for poxvirus infections (i.e., smallpox) died, the advent in 2005 of ST-246 testifies to the renewed interest in this area [36], and this is further demonstrated by the observations that poxvirus infections can be successfully suppressed through inhibitors of tyrosine kinases (Gleevec [37] and CI-1033 [38]).

1.3 Antiviral Drugs: Current State of the Art

Most of the antiviral agents that have been approved, and are used in the treatment of virus infections, are targeted at HIV, HBV, HCV, influenza virus, HSV, and other herpesviruses such as varicella zoster virus (VZV) and cytomegalovirus (CMV). More compounds for the treatment of HIV, HBV, HCV, HSV, VZV, CMV, and influenza virus and several other viral infections, for example, poxvirus (e.g., variola, vaccinia, and monkeypox), respiratory syncytial virus, hemorrhagic fever virus (e.g., Lassa, Rift Valley, Ebola, yellow fever, and dengue), and enterovirus (e.g., polio, Coxsackie, and Echo), either are in clinical or preclinical development or still have to be developed. The antiviral compounds that have been approved by the US FDA (Food and Drug Administration) are listed in Table 1.2.

1.4 Antiviral Drugs Active against Herpesviruses (i.e., HSV, VZV, and so on)

Starting from IDU and TFT, many more 5-substituted 2’-deoxyuridines were synthesized [39], the most prominent antiviral drug of this class of compounds being (E)-5-(2-bromovinyl)-2’-deoxyuridine (BVDU) [40]. Although selectively active against both HSV-1 and VZV, BVDU has been developed specifically for the treatment of VZV infections (i.e., herpes zoster) [41].
Table 1.2 Antiviral drugs approved by the US FDA.

<table>
<thead>
<tr>
<th>Registered brand name</th>
<th>Generic name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-HIV compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleoside reverse transcriptase inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrovir</td>
<td>Zidovudine (AZT)</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Videx®, Videx® EC</td>
<td>Didanosine (ddI)</td>
<td>Bristol–Myers Squibb</td>
</tr>
<tr>
<td>Hivid®</td>
<td>Zalcitabine (ddC)</td>
<td>Roche</td>
</tr>
<tr>
<td>Zerit®</td>
<td>Stavudine (d4T)</td>
<td>Bristol–Myers Squibb</td>
</tr>
<tr>
<td>Epivir®, Zeffix®</td>
<td>Lamivudine (3TC)</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Ziagen®</td>
<td>Abacavir (ABC)</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Emtriva®</td>
<td>Emtricitabine ((−)FTC)</td>
<td>Gilead Sciences</td>
</tr>
<tr>
<td>Combivir®</td>
<td>Lamivudine + zidovudine</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Trizivir®</td>
<td>Abacavir + lamivudine + zidovudine</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Epzicom®</td>
<td>Abacavir + lamivudine</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Nucleotide reverse transcriptase inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viread®</td>
<td>Tenofovir disoproxil fumarate</td>
<td>Gilead Sciences</td>
</tr>
<tr>
<td>Truvada®</td>
<td>Tenofovir disoproxil fumarate + emtricitabine</td>
<td>Gilead Sciences</td>
</tr>
<tr>
<td>Atripla®</td>
<td>Tenofovir disoproxil fumarate + emtricitabine + efavirenz</td>
<td>Gilead Sciences and Bristol–Myers Squibb</td>
</tr>
<tr>
<td>Nonnucleoside reverse transcriptase inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viramune®</td>
<td>Nevirapine</td>
<td>Boehringer Ingelheim</td>
</tr>
<tr>
<td>Rescriptor®</td>
<td>Delavirdine</td>
<td>Pfizer</td>
</tr>
<tr>
<td>Sustiva®, Stocrin®</td>
<td>Efavirenz</td>
<td>Bristol–Myers Squibb</td>
</tr>
<tr>
<td>Intellence®</td>
<td>Etravirine</td>
<td>Tibotec</td>
</tr>
<tr>
<td>Protease inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortovase®</td>
<td>Saquinavir</td>
<td>Roche</td>
</tr>
<tr>
<td>Norvir®</td>
<td>Ritonavir</td>
<td>Abbott</td>
</tr>
<tr>
<td>Crixivan®</td>
<td>Indinavir</td>
<td>Merck</td>
</tr>
<tr>
<td>Viracept®</td>
<td>Nelfinavir</td>
<td>Pfizer</td>
</tr>
<tr>
<td>Agenerase®, Prozet®</td>
<td>Amprenavir</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Kaletra®</td>
<td>Lopinavir + ritonavir</td>
<td>Abbott</td>
</tr>
<tr>
<td>Reyataz®</td>
<td>Atazanavir</td>
<td>Bristol–Myers Squibb</td>
</tr>
<tr>
<td>Lexiva®</td>
<td>Fosamprenavir</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Aptivus®</td>
<td>Tipranavir</td>
<td>Boehringer Ingelheim</td>
</tr>
<tr>
<td>Prezista®</td>
<td>Darunavir</td>
<td>Tibotec</td>
</tr>
<tr>
<td>Viral entry inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coreceptor inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selzentry®, Celsentri®</td>
<td>Maraviroc</td>
<td>Pfizer</td>
</tr>
<tr>
<td>Fusion inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuzeon®</td>
<td>Enfuvirtide (T-20)</td>
<td>Roche</td>
</tr>
</tbody>
</table>

Continued
Table 1.2 (Continued)

<table>
<thead>
<tr>
<th>Registered brand name</th>
<th>Generic name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrase inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isentress®</td>
<td>Raltegravir</td>
<td>Merck</td>
</tr>
<tr>
<td>Anti-HBV compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epivir®, Zeffix®</td>
<td>Lamivudine (3TC)</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Hepsera®</td>
<td>Adefovir dipivoxil</td>
<td>Gilead Sciences</td>
</tr>
<tr>
<td>Baraclude®</td>
<td>Entecavir</td>
<td>Bristol-Myers Squibb</td>
</tr>
<tr>
<td>Tyzeka®, Sebivo®</td>
<td>Telbivudine</td>
<td>Idenix Pharmaceuticals</td>
</tr>
<tr>
<td>Viread®</td>
<td>Tenofovir disoproxil fumarate</td>
<td>Gilead Sciences</td>
</tr>
<tr>
<td>Intron A®</td>
<td>Interferon-α-2b</td>
<td>Schering-Plough</td>
</tr>
<tr>
<td>Pegvasys®</td>
<td>Pegylated interferon-α-2a</td>
<td>Roche</td>
</tr>
<tr>
<td>Antitherpesvirus compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSV and VZV inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zovirax®</td>
<td>Acyclovir (ACV)</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Zelitrex®, Valtrex®</td>
<td>Valaciclovir (VACV)</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Denavir®, Vectavir®</td>
<td>Penciclovir (PCV)</td>
<td>Novartis</td>
</tr>
<tr>
<td>Famvir®</td>
<td>Famciclovir (FCV)</td>
<td>Novartis</td>
</tr>
<tr>
<td>Herpid®, Stoxil®, Idoxene®, Virudox®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viroptic®</td>
<td>Trifluridine (TFT)</td>
<td>King Pharmaceuticals</td>
</tr>
<tr>
<td>Zostex®, Brivirac®, Zerplex®</td>
<td>Brivudin (BVDU)</td>
<td>Berlin Chemie/Menarini</td>
</tr>
<tr>
<td>CMV inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cymevene®, Cytovene®</td>
<td>Ganciclovir (GCV)</td>
<td>Roche</td>
</tr>
<tr>
<td>Valcyte®</td>
<td>Valganciclovir (VGCV)</td>
<td>Roche</td>
</tr>
<tr>
<td>Foscavir®</td>
<td>Foscarnet</td>
<td>Astra Zeneca</td>
</tr>
<tr>
<td>Vistide®</td>
<td>Cidofovir (CDV)</td>
<td>Pfizer</td>
</tr>
<tr>
<td>Vitrovec®</td>
<td>Fomivirsen</td>
<td>Novartis</td>
</tr>
<tr>
<td>Anti-influenza virus compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetry®, Mantadix®, Amantadine</td>
<td>Amantadine</td>
<td>Endo Pharmaceuticals</td>
</tr>
<tr>
<td>Flumadine®</td>
<td>Rimantadine</td>
<td>Forest Laboratories</td>
</tr>
<tr>
<td>Relenza®</td>
<td>Zanamivir</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Tamiflu®</td>
<td>Oseltamivir</td>
<td>Roche</td>
</tr>
<tr>
<td>Virazole®, Virazid®, Viramid®</td>
<td>Ribavirin</td>
<td>Valeant Pharmaceuticals</td>
</tr>
<tr>
<td>Anti-HCV compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebetol®</td>
<td>Ribavirin</td>
<td>Schering-Plough</td>
</tr>
<tr>
<td>Copegus®</td>
<td>Ribavirin</td>
<td>Roche</td>
</tr>
<tr>
<td>Pegvasys®</td>
<td>Pegylated interferon-α-2a</td>
<td>Roche</td>
</tr>
<tr>
<td>Roferon A®</td>
<td>Interferon-α-2a</td>
<td>Roche</td>
</tr>
<tr>
<td>Intron A®</td>
<td>Interferon-α-2b</td>
<td>Schering-Plough</td>
</tr>
<tr>
<td>PEG-Intron®</td>
<td>Pegylated interferon-α-2b</td>
<td>Schering-Plough</td>
</tr>
<tr>
<td>Rebetron®</td>
<td>Interferon-α-2b + ribavirin</td>
<td>Schering-Plough</td>
</tr>
</tbody>
</table>

a) Not formally approved by the US FDA.
BVDU owes its antiviral selectivity to a specific phosphorylation by the HSV-1- and VZV-encoded thymidine kinase, just as acyclovir does, but compared to acyclovir, BVDU is a much more potent inhibitor of VZV replication. If BVDU is further converted to a bicyclic furano[2,3-d]pyrimidine nucleoside analogue (BCNA) carrying an aliphatic side chain interrupted by a phenyl moiety [42, 43], as in Cf 1743, the compound becomes exquisitely and exclusively active against VZV.

Although BVDU and acyclovir belong, respectively, to the pyrimidine and purine nucleoside analogues, they share, structurally, the same carboxamide pharmacophore (Figure 1.1), which may explain why they are both specifically recognized as substrate by the HSV- and VZV-encoded thymidine kinases. The same pharmacophore is found in other acyclic guanosine analogues such as ganciclovir and penciclovir and

![Figure 1.1 Pharmacophores in antiviral agents.](image-url)
penciclovir, again explaining the specificity of these compounds against HSV and VZV. Remarkably, the same pharmacophore is also found in ribavirin, which was described as a broad-spectrum antiviral agent, 5 years before acyclovir was reported (see Table 1.1), but in the case of ribavirin, the presence of the ribofuranosyl moiety primarily directs its antiviral activity spectrum toward RNA viruses due to an inhibitory action at the level of the IMP dehydrogenase [44–46].

While BVDU and acyclovir interact in their active triphosphate form with the viral DNA polymerase, the first phosphorylation step by the viral thymidine kinase required only to initiate the activation process, the HPIs seem to be directly targeted at the HSV helicase–primase UL5–UL8–UL52 complex [47]. The first HPI reported to inhibit HSV replication via interaction with the helicase component of this complex [31] was the 2-aminothiazole T-157602. The HPIs that were subsequently described and also found to be more effective than acyclovir and famciclovir against HSV infections in murine models of HSV-1 and HSV-2 infection [48–51], namely, BILS 179BS and BAY 57-1293, are also built upon the 2-aminothiazole scaffold (Figure 1.1). HPIs represent an exciting new avenue in the development of antivirals active against herpesviruses [47], but whether they represent an alternative (or additional) strategy to acyclovir (and acyclic guanosine analogues in general) will depend on their exact spectrum of antiviral activity, whether or not encompassing VZV (an issue that presently can only be speculated upon), and the readiness by which they elicit resistance mutations [52, 53] (an issue that needs continued vigilance).

1.5 Antiviral Drugs Active against Retroviruses (HIV)

The best known class of the antiretroviral agents is that of the nucleoside reverse transcriptase inhibitors, now containing seven members – zidovudine, didanosine,