Edited by
Gernot Friedbacher
and Henning Bubert

Surface and Thin Film
Analysis
Related Titles

Watts, J. F., Wolstenholme, J.
An Introduction to SIMS for Surface and Thin Film Analysis
2011
ISBN: 978-0-470-09132-6

Guo, J. (ed.).
X-Rays in Nanoscience
Spectroscopy, Spectromicroscopy, and Scattering Techniques
2010
ISBN: 978-3-527-32288-6

Birkholz, M.
Thin Film Analysis by X-Ray Scattering
2006
ISBN: 978-3-527-31052-4

Bordo, V. G., Rubahn, H.-G.
Optics and Spectroscopy at Surfaces and Interfaces
2005
ISBN: 978-3-527-40560-2
Surface and Thin Film Analysis

A Compendium of Principles, Instrumentation, and Applications

Second, Completely Revised and Enlarged Edition
Contents

Preface to the First Edition XVI
Preface to the Second Edition XIX
List of Contributors XXI

1 Introduction 1
 John C. Rivière and Henning Bubert

Part One Electron Detection 7

2 X-Ray Photoelectron Spectroscopy (XPS) 9
 Henning Bubert, John C. Rivière, and Wolfgang S.M. Werner
 2.1 Principles 9
 2.2 Instrumentation 12
 2.2.1 Vacuum Requirements 12
 2.2.2 X-Ray Sources 13
 2.2.3 Synchrotron Radiation 16
 2.2.4 Electron Energy Analyzers 16
 2.2.5 Spatial Resolution 18
 2.3 Spectral Information and Chemical Shifts 19
 2.4 Quantification, Depth Profiling, and Imaging 21
 2.4.1 Quantification 21
 2.4.2 Depth Profiling 23
 2.4.3 Imaging 26
 2.5 The Auger Parameter 27
 2.6 Applications 28
 2.6.1 Catalysis 28
 2.6.2 Polymers 30
 2.6.3 Corrosion and Passivation 31
 2.6.4 Adhesion 32
 2.6.5 Superconductors 34
 2.6.6 Semiconductors 35
2.7 Ultraviolet Photoelectron Spectroscopy (UPS) 38
References 39

3 Auger Electron Spectroscopy (AES) 43
Henning Bubert, John C. Rivière, and Wolfgang S.M. Werner
3.1 Principles 43
3.2 Instrumentation 44
3.2.1 Vacuum Requirements 44
3.2.2 Electron Sources 44
3.2.3 Electron-Energy Analyzers 45
3.3 Spectral Information 47
3.4 Quantification and Depth Profiling 51
3.4.1 Quantification 51
3.4.2 Depth Profiling 53
3.5 Applications 54
3.5.1 Grain Boundary Segregation 54
3.5.2 Semiconductor Technology 56
3.5.3 Thin Films and Interfaces 58
3.5.4 Surface Segregation 58
3.6 Scanning Auger Microscopy (SAM) 61
References 64

4 Electron Energy-Loss Spectroscopy (EELS) and Energy-Filtering Transmission Electron Microscopy (EFTEM) 67
Reinhard Schneider
4.1 Principles 68
4.2 Instrumentation 70
4.3 Qualitative Spectral Information 72
4.3.1 Low-Loss Excitations 74
4.3.2 Ionization Losses 77
4.3.3 Fine Structures 79
4.4 Quantification 83
4.5 Imaging of Element Distribution 85
4.6 Summary 88
References 89

5 Low-Energy Electron Diffraction (LEED) 93
Georg Held
5.1 Principles and History 93
5.2 Instrumentation 94
5.3 Qualitative Information 96
5.3.1 LEED Pattern 96
5.3.2 Spot Profile Analysis 100
5.3.3 Applications and Restrictions 100
5.4 Quantitative Structural Information 101
5.4.1 Principles 101
5.4.2 Experimental Techniques 102
5.4.3 Computer Programs 104
5.4.4 Applications and Restrictions 105
5.5 Low-Energy Electron Microscopy 106
5.5.1 Principles of Operation 106
5.5.2 Applications and Restrictions 108
References 108

6 Other Electron-Detecting Techniques 111

John C. Rivière

6.1 Ion (Excited) Auger Electron Spectroscopy (IAES) 111
6.2 Ion Neutralization Spectroscopy (INS) 111
6.3 Inelastic Electron Tunneling Spectroscopy (IETS) 112
Reference 113

Part Two Ion Detection 115

7 Static Secondary Ion Mass Spectrometry (SSIMS) 117

Heinrich F. Arlinghaus

7.1 Principles 117
7.2 Instrumentation 119
7.2.1 Ion Sources 119
7.2.2 Mass Analyzers 120
7.2.2.1 Quadrupole Mass Spectrometers 120
7.2.2.2 Time-of-Flight Mass Spectrometry (TOF-MS) 121
7.3 Quantification 123
7.4 Spectral Information 125
7.5 Applications 127
7.5.1 Oxide Films 128
7.5.2 Interfaces 128
7.5.3 Polymers 131
7.5.4 Biosensors 133
7.5.5 Surface Reactions 134
7.5.6 Imaging 135
7.5.7 Ultra-Shallow Depth Profiling 137
References 138

8 Dynamic Secondary Ion Mass Spectrometry (SIMS) 141

Herbert Hutter

8.1 Principles 141
8.1.1 Compensation of Preferential Sputtering 141
8.1.2 Atomic Mixing 142
8.1.3 Implantation of Primary Ions 142
8.1.4 Crater Bottom Roughening 142
8.1.5 Sputter-Induced Roughness 142
8.1.6 Charging Effects 142
8.2 Instrumentation 143
8.2.1 Ion Sources 143
8.2.1.1 Duoplasmatron 144
8.2.2 Mass Analyzer 144
8.2.2.1 Magnetic Sector Field 144
8.2.2.2 Detector 145
8.3 Spectral Information 146
8.4 Quantification 147
8.4.1 Relative Sensitivity Factors 147
8.4.2 Implantation Standards 147
8.4.3 Metal Ceside (MCs+) Ions 148
8.4.4 Theoretical Models 148
8.4.4.1 Electron Tunneling Model 148
8.4.4.2 Broken Bond Model 148
8.4.4.3 Local Thermodynamic Equilibrium LTE 148
8.5 Mass Spectra 149
8.6 Depth Profiles 149
8.6.1 Dual-Beam Technique for TOF-SIMS Instruments 152
8.6.2 Molecular Depth Profiles 152
8.7 Imaging 152
8.7.1 Scanning SIMS 152
8.7.2 Direct Imaging Mode 153
8.8 Three-Dimensional (3-D)-SIMS 154
8.9 Applications 156
8.9.1 Implantation Profiles 156
8.9.2 Layer Analysis 157
8.9.3 3-D Trace Element Distribution 158
References 159

9 Electron-Impact (EI) Secondary Neutral Mass Spectrometry (SNMS) 161

Michael Kopnarski and Holger Jenett
9.1 Introduction 161
9.2 General Principles of SNMS 162
9.2.1 Postionization via Electron Impact 163
9.2.2 Suppression of Residual Gas and Secondary Ions 164
9.3 Instrumentation and Methods 166
9.3.1 Electron Beam SNMS 166
9.3.2 Plasma SNMS 167
9.4 Spectral Information and Quantification 170
9.5 Element Depth Profiling 172
Contents

9.6 Applications 174
References 175

10 Laser Secondary Neutral Mass Spectrometry (Laser-SNMS) 179
Heinrich F. Arlinghaus

10.1 Principles 179
10.1.1 Nonresonant Laser-SNMS 179
10.1.2 Resonant Laser-SNMS 179
10.1.3 Experimental Set-Up 180
10.1.4 Ionization Schemes 181
10.2 Instrumentation 182
10.3 Spectral Information 183
10.4 Quantification 183
10.5 Applications 184
10.5.1 Nonresonant Laser-SNMS 184
10.5.2 Resonant Laser-SNMS 186
References 189

11 Rutherford Backscattering Spectroscopy (RBS) 191
Leopold Palmetshofer

11.1 Introduction 191
11.2 Principles 191
11.3 Instrumentation 194
11.4 Spectral Information 194
11.5 Quantification 196
11.6 Figures of Merit 197
11.6.1 Mass Resolution 197
11.6.2 Sensitivity 198
11.6.3 Depth Resolution 198
11.6.4 Accuracy 198
11.7 Applications 198
11.8 Related Techniques 201
References 201

12 Low-Energy Ion Scattering (LEIS) 203
Peter Bauer

12.1 Principles 203
12.2 Instrumentation 206
12.3 LEIS Information 208
12.3.1 Energy Information 208
12.3.2 Yield Information 208
12.4 Quantification 211
12.5 Applications of LEIS 211
References 214
13 Elastic Recoil Detection Analysis (ERDA) 217
Oswald Benka
13.1 Introduction 217
13.2 Fundamentals 218
13.3 Particle Identification Methods 220
13.4 Equipment 222
13.5 Data Analysis 223
13.6 Sensitivity and Depth Resolution 223
13.7 Applications 224
References 226

14 Nuclear Reaction Analysis (NRA) 229
Oswald Benka
14.1 Introduction 229
14.2 Principles 231
14.3 Equipment and Depth Resolution 232
14.4 Applications 234
References 236

15 Field Ion Microscopy (FIM) and Atom Probe (AP) 237
Yuri Suchorski and Wolfgang Drachsel
15.1 Introduction 237
15.2 Principles and Instrumentation 239
15.2.1 Field Ion Microscopy 239
15.2.2 Time-of-Flight Atom Probe Techniques 242
15.2.3 Field Ion Appearance Energy Spectroscopy 246
15.3 Applications 248
15.3.1 FIM Applications 248
15.3.1.1 FIM in Catalysis 248
15.3.1.2 Fluctuation-Induced Effects 249
15.3.2 Applications of AP Techniques 252
15.3.2.1 Applications of TOF-AP Techniques 252
15.3.2.2 PFDMS Applications 254
15.3.2.3 FIAES Applications 255
References 257

16 Other Ion-Detecting Techniques 261
John C. Rivière
16.1 Desorption Methods 261
16.1.1 Electron-Stimulated Desorption (ESD) and ESD Ion Angular Distribution (ESDIAD) 261
16.1.2 Thermal Desorption Spectroscopy (TDS) 262
16.2 Glow-Discharge Mass Spectroscopy (GD-MS) 263
16.3 Fast-Atom Bombardment Mass Spectroscopy (FABMS) 263
References 264
Part Three Photon Detection 265

17 Total-Reflection X-Ray Fluorescence (TXRF) Analysis 267
Laszlo Fabry, Siegfried Pahlke, and Burkhard Beckhoff

- **17.1 Principles** 267
- **17.2 Instrumentation** 269
- **17.3 Spectral Information** 275
- **17.4 Quantification** 276
- **17.5 Applications** 277
 - 17.5.1 Particulate and Film-Type Surface Contamination 277
 - 17.5.2 Semiconductors 278
 - 17.5.2.1 Synchrotron Radiation-Based Techniques 280
 - 17.5.2.2 Depth Profiling by TXRF and by Grazing Incidence XRF (GIXRF) for the Characterization of Nanolayers and Ultra-Shallow Junctions 283
 - 17.5.2.3 Vapor-Phase Decomposition (VPD) and Droplet Collection 285
 - 17.5.2.4 Vapor-Phase Treatment (VPT) and Total Reflection X-Ray Fluorescence Analysis 287

References 288

18 Energy-Dispersive X-Ray Spectroscopy (EDXS) 293
Reinhard Schneider

- **18.1 Principles** 293
- **18.2 Practical Aspects of X-Ray Microanalysis and Instrumentation** 295
- **18.3 Qualitative Spectral Information** 303
- **18.4 Quantification** 304
- **18.5 Imaging of Element Distribution** 306
- **18.6 Summary** 308

References 309

19 Grazing Incidence X-Ray Methods for Near-Surface Structural Studies 311
P. Neil Gibson

- **19.1 Principles** 311
 - 19.1.1 The Grazing Incidence X-Ray Geometry 312
 - 19.1.2 Grazing Incidence X-Ray Reflectivity (GXRR) 314
 - 19.1.3 Glancing Angle X-Ray Diffraction 314
 - 19.1.4 ReflexAFS 316
- **19.2 Experimental Techniques and Data Analysis** 317
 - 19.2.1 Grazing Incidence X-Ray Reflectivity (GXRR) 318
 - 19.2.2 Grazing Incidence Asymmetric Bragg (GIAB) Diffraction 319
- **19.3 Applications** 321
 - 19.3.1 Grazing Incidence X-Ray Reflectivity (GXRR) 321
 - 19.3.2 Grazing Incidence Asymmetric Bragg (GIAB) Diffraction 323
 - 19.3.3 Grazing Incidence X-Ray Scattering (GIXS) 324

References 325
19.3.4 RefLEXAFS 325
References 326

20 Glow Discharge Optical Emission Spectroscopy (GD-OES) 329
Volker Hoffmann and Alfred Quentmeier
20.1 Principles 329
20.2 Instrumentation 330
20.2.1 Glow Discharge Sources 330
20.2.2 Spectrometer 334
20.2.3 Signal Acquisition 334
20.3 Spectral Information 335
20.4 Quantification 336
20.5 Depth Profiling 337
20.6 Applications 339
20.6.1 dc GD Sources 340
20.6.2 rf GD Sources 340
References 342

21 Surface Analysis by Laser Ablation 345
Roland Hergenröder and Michail Bolshov
21.1 Introduction 345
21.2 Instrumentation 346
21.2.1 Types of Laser 346
21.2.2 Different Schemes of Laser Ablation 347
21.3 Depth Profiling 348
21.4 Near-Field Ablation 354
21.5 Conclusion 354
References 355

22 Ion Beam Spectrochemical Analysis (IBSCA) 357
Volker Rupertus
22.1 Principles 357
22.2 Instrumentation 358
22.3 Spectral and Analytical Information 360
22.4 Quantitative Analysis by IBSCA 361
22.5 Applications 363
References 366

23 Reflection Absorption IR Spectroscopy (RAIRS) 367
Karsten Hinrichs
23.1 Instrumentation 367
23.2 Principles 368
23.3 Applications 369
23.3.1 RAIRS 369
23.3.2 ATR and SEIRA 372
26.4.1.5 Time-Resolved (Pump-Probe) and Broadband SFG Spectroscopy 423
26.4.1.6 SFG Spectroscopy on Colloidal Nanoparticles and Powder Materials 427
26.4.2 SFG Spectroscopy on Solid–Liquid Interfaces 428
26.4.3 SFG Spectroscopy on Polymer and Biomaterial Interfaces 428
26.4.4 SFG Spectroscopy at Liquid–Gas and Liquid–Liquid Interfaces 429
26.5 Conclusion 430
References 430

27 Other Photon-Detecting Techniques 437
John C. Rivière
27.1 Appearance Potential Methods 437
27.1.1 Soft X-Ray Appearance Potential Spectroscopy (SXAPS) 437
27.2 Inverse Photoemission Spectroscopy (IPES) and Bremsstrahlung Isochromat Spectroscopy (BIS) 437

Part Four Scanning Probe Microscopy 439

28 Introduction 441
Gernot Friedbacher
References 442

29 Atomic Force Microscopy (AFM) 443
Gernot Friedbacher
29.1 Principles 443
29.2 Further Modes of AFM Operation 446
29.2.1 Friction Force Microscopy (FFM) 446
29.2.2 Young’s Modulus Microscopy (YMM) or Force Modulation Microscopy (FMM) 447
29.2.3 Phase Imaging 447
29.2.4 Force–Distance Curve Measurements 447
29.2.5 Pulsed Force Mode AFM 448
29.2.6 Harmonic Imaging and Torsional Resonance Mode 449
29.3 Instrumentation 452
29.4 Applications 455
References 462

30 Scanning Tunneling Microscopy (STM) 465
Gernot Friedbacher
30.1 Principles 465
30.2 Instrumentation 467
30.3 Lateral and Spectroscopic Information 468
30.4 Applications 470
References 479
Preface to the First Edition

The surface of a solid interacts with its environment. It may be changed by the surrounding medium either unintentionally (for example, by corrosion) or intentionally due to technological demands. Intentional changes are made in order to refine or protect surfaces, that is, to generate new surface properties. Such surface changes can be made, for instance, by ion implantation, deposition of thin films, epitaxially grown layers, and other procedures. In all these cases, it is necessary to analyze the surface, the layer or system of layers, the grain boundaries, or other interfaces in order to control the process which finally meets the technological requirements for a purposefully changed surface. A wealth of analytical methods is available to the analyst, and the choice of the method appropriate for the solution of his problem requires a basic knowledge on the methods, techniques, and procedures of surface and thin film analysis.

Therefore, the goal of this book is to give the analyst—whether a newcomer wishing to acquaint with new methods or a materials analyst seeking information on methods that are not available in his own laboratory—a clue about the principles, instrumentation, and applications of the methods, techniques, and procedures of surface and thin film analysis. The first step into this direction was the chapter *Surface and Thin Film Analysis* of *Ullmann’s Encyclopedia of Industrial Chemistry* (Vol. B6, Wiley-VCH, Weinheim 2002), in which practitioners give a brief outline of various important methods.

The present book is based on that chapter. It has essentially been extended by new sections dealing with electron energy loss spectroscopy (EELS), low-energy electron diffraction (LEED), elastic recoil detection analysis (ERDA), nuclear reaction analysis (NRA), energy dispersive X-ray spectroscopy (EDXS), X-ray diffraction (XRD), surface analysis by laser ablation (LA), and ion-beam spectrochemical analysis (IBSCA). Thus, the book now comprises the most important methods and should help the analyst to make decisions on the proper choice of methods for a given problem. Except for atomic force microscopy (AFM) and scanning tunneling microscopy (STM), microscopic methods, as essential as they are for the characterization of surfaces, are only briefly discussed when combined with a spectroscopic method. Methods of only limited importance for the solution of very special problems, or without availability of commercial equipment, are not considered or
only briefly mentioned in the sections entitled *Other Electron/Ion/Photon Detecting Techniques*.

Furthermore, the objective was not to issue a voluminous book, but a clearly arranged one outlining the basic principles and major applications of important methods of surface and thin film analysis. For more detailed information on any of these topics, the reader is referred to the special literature given in the references.

The editors are gratefully indebted to all contributors who were ready to redirect time from their research, educational, and private activities in order to contribute to this book. They also wish to thank Mrs Silke Kittel for her tireless help in developing our editorial ideas.

Autumn 2001

Henning Bubert
Holger Jenett
Preface to the Second Edition

The first edition of this book was very well received on the market and, after becoming “out-of-print”, a variety of ideas was discussed to produce a second edition. It became clear to us very quickly that, instead of an unchanged reprint of the first edition, the opportunity should be taken to update the information in the book and to add new chapters based on feedback from our readers. Fortunately, all authors of the first edition immediately supported this idea, though some were no longer available to actively contribute to the revisions due to changes in their professional careers.

Almost all chapters of this book have been thoroughly revised, taking into consideration new developments on the described methods as well as valuable feedback from the First Edition. Although a complete collection of surface analytical techniques would be beyond the scope of a compendium such as this, new chapters on field ion microscopy (FIM) and atom probe (AP), sum frequency generation (SFG), and scanning near-field optical microscopy (SNOM) have been added.

With regard to Appendix B the point must be addressed that, due to a rapidly changing market that is characterized by the frequent takeover of one company (or of their subsidiaries) by another, it became rather difficult to produce a compilation that was fully consistent with regard to the names of brands, branches, and company owners. However, the given internet addresses should serve to guide readers to the desired information and contacts to their local distributors.

The editors would like to thank all authors for revising and updating their chapters from the First Edition of the book, and all new authors for writing the new chapters and for revising some of the chapters already in existence. To those authors who were unable to revise their chapters themselves, we are certainly indebted that they agreed to a revision of their chapters by new authors. Without this consent between “old” and “new” authors the revision of this book would not have been possible.

Finally, we would like to thank Dr. Manfred Köhl and Mrs. Lesley Belfit from Wiley-VCH for their continued support to move this book project forward, as well as Mrs. Bernadette Cabo for the helpful and pleasant communication during the production process.

April 2011

Gernot Friedbacher
Henning Bubert
List of Contributors

Heinrich F. Arlinghaus
Westfälische Wilhelms-Universität Münster
Physikalisches Institut
Wilhelm-Klemm-Str. 10
48149 Münster
Germany

Oswald Benka
Johannes Kepler Universität Linz
Institut für Experimentalphysik
Altenbergerstr. 69
4040 Linz
Austria

Athula Bandara
University of Peradeniya
Department of Chemistry
Peradeniya (20400)
Sri Lanka

Michail Bolshov
Russian Academy of Sciences
Institute of Spectroscopy
Fizicheskaja street 5
142092 Troitsk, Moscow Region
Russia

Peter Bauer
Johannes Kepler Universität Linz
Institut für Experimentalphysik
Altenbergerstr. 69
4020 Linz
Austria

Henning Bubert
Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V.
Otto-Hahn-Str. 6b
44227 Dortmund
Germany

Burkhard Beckhoff
Physikalisch-Technische Bundesanstalt (PTB)
X-ray Spectrometry
Abbeestr. 2-12
10587 Berlin
Germany

Volker Deckert
Friedrich Schiller Universität Jena
Institut für Physikalische Chemie
Helmholtzweg 4
07743 Jena
Germany
and
IPHT Institut für Photonische Technologien e.V.
Albert-Einstein-Str. 9
07745 Jena
Germany
List of Contributors

Wolfgang Drachsel
Technische Universität Wien
Institut für Materialchemie
Getreidemarkt 9
1060 Wien
Austria

Laszlo Fabry
Wacker Chemie AG
Johannes-Hess-Str. 24
84489 Burghausen
Germany

Gernot Friedbacher
Technische Universität Wien
Institut für Chemische Technologien und Analytik
Getreidemarkt 9/164-IAC
1060 Wien
Austria

P. Neil Gibson
European Commission – Joint Research Centre
Institute for Health and Consumer Protection
TP 500
21027 Ispra, VA
Italy

Bernd Gruska
SENTECH Instruments GmbH
Schwarzschildstr. 2
12489 Berlin
Germany

Georg Held
University of Reading
Department of Chemistry
Whiteknights
P.O. Box 224
Reading, Berkshire RG6 6AD
UK

Roland Hergenröder
Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V.
Otto-Hahn-Str. 6b
44227 Dortmund
Germany

Wieland Hill
LIOS Technology GmbH
Schanzenstr. 39
51063 Köln
Germany

Karsten Hinrichs
Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V.
Department Berlin
Albert-Einstein-Str. 9
12489 Berlin
Germany

Volker Hoffmann
Leibniz-Institut für Festkörper- und Werkstoffforschung IFW
Institut für Komplexe Materialien
Helmholtzstr. 20
01069 Dresden
Germany

Herbert Hutter
Technische Universität Wien
Institut für Chemische Technologien und Analytik
Getreidemarkt 9/164-IAC
1060 Wien
Austria

Holger Jenett
Albrecht-Dürer-Gymnasium
Heinitzstr. 73
58097 Hagen
Germany
Michael Kopnarski
Institut für Oberflächen- und Schichtanalytik IFOS GmbH
Trippstadter Str. 120
67663 Kaiserslautern
Germany

Bernhard Lendl
Technische Universität Wien
Institut für Chemische Technologien und Analytik
Getreidemarkt 9/164-UPA
1060 Wien
Austria

Siegfried Pahlke
Analytical Consulting
Keltenstr. 7
84375 Kirchdorf am Inn
Germany

Leopold Palmetshofer
Johannes Kepler Universität Linz
Institut für Halbleiter- und Festkörperphysik
Altenbergerstr. 69
4040 Linz
Austria

Alfred Quentmeier
Zum Paradies 2a
34516 Vöhl
Germany

Marc Richter
IPHT Institut für Photonische Technologien e.V.
Albert-Einstein-Str. 9
07745 Jena
Germany

John C. Rivière
Oxford University
Begbroke Science Park (OUBSP)
Department of Materials
Sandy Lane
Yarnton
Kidlington OX5 1PF
UK

Volker Rupertus
SCHOTT AG
Corporate Research & Technology Development
Process Technology and Characterization
Hattenbergstr. 10
55122 Mainz
Germany

Günter Rupprechter
Technische Universität Wien
Institut für Materialchemie
Getreidemarkt 9
1060 Wien
Austria

Reinhard Schneider
Karlsruher Institut für Technologie (KIT)
Laboratorium für Elektronenmikroskopie
Engesserstr. 7
76131 Karlsruhe
Germany

Yuri Suchorski
Technische Universität Wien
Institut für Materialchemie
Getreidemarkt 9
1060 Wien
Austria
Wolfgang S.M. Werner
Technische Universität Wien
Institut für Angewandte Physik
Wiedner Hauptstr. 8
1040 Wien
Austria
1
Introduction

John C. Rivière and Henning Bubert

Wherever the properties of a solid surface are important, it is also important to have the means to measure those properties. The surfaces of solids play an overriding part in a remarkably large number of processes, phenomena, and materials of technological importance. These include: catalysis; corrosion, passivation, and rusting; adhesion; tribology, friction, and wear; brittle fracture of metals and ceramics; microelectronics; composites; surface treatments of polymers and plastics; protective coatings; superconductors; and solid-surface reactions of all types with gases, liquids, or other solids. The surfaces in question are not always external; processes occurring at inner surfaces such as interfaces and grain boundaries are often just as critical to the behavior of the material. In all of the above examples, the nature of a process or of the behavior of a material can be understood completely only if information about both the surface composition (i.e., the types of atoms present and their concentrations) and the surface chemistry (i.e., the chemical states of the atoms) is available. Furthermore, knowledge of the arrangement of surface atoms (i.e., the surface structure) is also necessary.

First of all, what is meant by a solid surface? Ideally, the surface should be defined as the plane at which the solid terminates—that is, the last atom layer before the adjacent phase (vacuum, vapor, liquid, or another solid) begins. Unfortunately such a definition is impractical, because the effect of termination extends into the solid beyond the outermost atom layer. Indeed, the current definition is based on that knowledge, and the surface is thus regarded as consisting of that number of atom layers over which the effect of termination of the solid decays until bulk properties are reached. In practice, this decay distance is of the order of 5–20 nm.

By a fortunate coincidence, the depth into the solid from which information is provided by the techniques described here matches the above definition of a surface in many cases. These techniques are, therefore, surface-specific; in other words, the information they provide comes only from that very shallow depth of a few atom layers. Other techniques can be surface-sensitive, in that they would normally be regarded as techniques for bulk analysis, but have sufficient sensitivity for certain elements that can be analyzed only if they are present on the surface.
1 Introduction

Why should surfaces be so important? The answer is twofold. First, the properties of surface atoms are usually different from those of the same atoms in the bulk; and second, because in any interaction of a solid with another phase the surface atoms are the first to be encountered. Even at the surface of a perfect single crystal the surface atoms behave differently from those in the bulk, simply because they do not have the same number of nearest neighbors; their electronic distributions are altered, and hence their reactivity. Their structural arrangement is often also different. When the surface of a polycrystalline or glassy multielemental solid is considered—such as that of an alloy or a chemical compound—the situation can be very complex. The processes of preparation or fabrication can produce a material, the surface composition of which is quite different from that of the bulk, in terms of both constituent and impurity elements. Subsequent treatment (e.g., thermal and chemical) will almost certainly change the surface composition to something different again. The surface is highly unlikely to be smooth, and roughness at both the micro and macro level can be present, leading to the likelihood that many surface atoms will be situated at corners and edges and on protuberances (i.e., in positions of increased reactivity). Surfaces exposed to the atmosphere, which include many of those of technological interest, will acquire a contaminant layer that is one to two atom layers thick, containing principally carbon and oxygen but also other impurities present in the local environment. Atmospheric exposure might also cause oxidation. Because of all these possibilities, the surface region must be considered as a separate entity, effectively a separate quasi-two-dimensional (2-D) phase overlaying the normal bulk phase. Analysis of the properties of such a quasi phase necessitates the use of techniques in which the information provided originates only or largely within the phase—that is, the surface-specific techniques described in this volume.

Nearly all these techniques involve interrogation of the surface with a particle probe. The function of the probe is to excite surface atoms into states giving rise to the emission of one or more of a variety of secondary particles such as electrons, photons, ions, and neutrals. Since the primary particles used in the probing beam can also be electrons or photons, or ions or neutrals, many separate techniques are possible, each based on a different primary–secondary particle combination. Most of these possibilities have now been established, but in fact not all the resulting techniques are of general application—some due to the restricted or specialized nature of the information obtained, and others due to difficult experimental requirements. In this book, therefore, most space is devoted to those surface analytical techniques that are widely applied and readily available commercially, whereas much briefer descriptions are provided of some others, the use of which is less common but which—under appropriate circumstances, particularly in basic research—can provide vital information.

Since the various types of particle can appear in both primary excitation and secondary emission, most authors and reviewers have found it convenient to group the techniques in a matrix, in which the rows refer to the nature of the exciting particle and the columns to the nature of the emitted particle. Such a matrix of techniques is provided in Table 1.1, which uses widely accepted acronyms. The
meanings of the acronyms, together with some of the alternatives that have appeared in the literature, are provided in Listing 1.1.

A few techniques cannot be classified according to the nature of the exciting particle, because they do not employ primary particles but depend instead on the application either of heat or a high electric field. These techniques are listed in Table 1.2.

<table>
<thead>
<tr>
<th>Detection</th>
<th>Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>e⁻</td>
<td>AES, EELS, AEFS, LEED, LEED</td>
</tr>
<tr>
<td></td>
<td>SAM</td>
</tr>
<tr>
<td>A⁺, A⁻, A⁰</td>
<td>ESD, ESDIAD</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>hv</td>
<td>EDXS, SXAPS, IPES</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Some of the techniques in Table 1.1 have angle-resolved variants, with the prefix AR (e.g., ARUPS), or use Fourier-transform methods, with the prefix FT (e.g., FT-RAIRS).

<table>
<thead>
<tr>
<th>Detection</th>
<th>Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A⁺</td>
<td>TDS</td>
</tr>
<tr>
<td>A⁻</td>
<td>TDS</td>
</tr>
<tr>
<td>e⁻</td>
<td>IETS</td>
</tr>
<tr>
<td>(Displacement)</td>
<td></td>
</tr>
</tbody>
</table>
Listing 1.1. Meanings of the surface analysis acronyms, and their alternatives, that appear in Tables 1.1 and 1.2.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Electron Excitation</td>
<td>AES, Auger electron spectroscopy</td>
</tr>
<tr>
<td></td>
<td>BIS, Bremsstrahlung isochromat spectroscopy (or ILS, ionization loss spectroscopy)</td>
</tr>
<tr>
<td></td>
<td>EDXS, Energy-dispersive X-ray spectroscopy</td>
</tr>
<tr>
<td></td>
<td>EELS, Electron energy loss spectroscopy</td>
</tr>
<tr>
<td></td>
<td>EFTEM, Energy-filtered transmission electron microscopy</td>
</tr>
<tr>
<td></td>
<td>ESD, Electron-stimulated desorption (or EID, electron-induced desorption)</td>
</tr>
<tr>
<td></td>
<td>ESDLAD, Electron-stimulated desorption ion angular distribution</td>
</tr>
<tr>
<td></td>
<td>IPES, Inverse photoemission spectroscopy</td>
</tr>
<tr>
<td></td>
<td>LEED, Low-energy electron diffraction</td>
</tr>
<tr>
<td></td>
<td>RHEED, Reflection high-energy electron diffraction</td>
</tr>
<tr>
<td></td>
<td>SXAPS, Soft X-ray appearance potential spectroscopy (or APS, appearance potential spectroscopy)</td>
</tr>
<tr>
<td></td>
<td>SAM, Scanning Auger microscopy</td>
</tr>
<tr>
<td>2. Ion Excitation</td>
<td>ERDA, Elastic recoil detection analysis</td>
</tr>
<tr>
<td></td>
<td>GDMS, Glow discharge mass spectrometry</td>
</tr>
<tr>
<td></td>
<td>GD-OES, Glow discharge optical emission spectroscopy</td>
</tr>
<tr>
<td></td>
<td>IAES, Ion (excited) Auger electron spectroscopy</td>
</tr>
<tr>
<td></td>
<td>IBSCA, Ion beam spectrochemical analysis (or SCANIIIR, surface composition by analysis of neutral and ion impact radiation or BLE, bombardment-induced light emission)</td>
</tr>
<tr>
<td></td>
<td>INS, Ion neutralization spectroscopy</td>
</tr>
<tr>
<td></td>
<td>LEIS, Low-energy ion scattering (or ISS, Ion-scattering spectroscopy)</td>
</tr>
<tr>
<td></td>
<td>NRA, Nuclear reaction analysis</td>
</tr>
<tr>
<td></td>
<td>RBS, Rutherford back-scattering spectroscopy (or HEIS, high-energy ion scattering)</td>
</tr>
<tr>
<td></td>
<td>SIMS, Secondary-ion mass spectrometry (SSIMS, static secondary-ion mass spectrometry) (DSIMS, dynamic secondary-ion mass spectrometry)</td>
</tr>
</tbody>
</table>