Samarjit Chakraborty
Jorg Eberspacher Editors

‘Advances in
Real-Time Systems

@ Springer

Advances in Real-Time Systems

Samarjit Chakraborty « Jorg Eberspicher
Editors

Advances in Real-Time
Systems

@ Springer

Editors

Samarjit Chakraborty Prof. Dr. Jorg Eberspécher
TU Miinchen TU Miinchen

LS fiir RealzeitComputersysteme LS Kommunikationsnetze
Arcisstr. 21 Arcisstr. 21

80290 Miinchen 80290 Miinchen

Germany Germany
Samarjit.Chakraborty @rcs.ei.tum.de joerg.eberspaecher@tum.de
ISBN 978-3-642-24348-6 e-ISBN 978-3-642-24349-3

DOI 10.1007/978-3-642-24349-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011942997
Mathematics Subject Classification (2000): 01-01, 04-01, 11Axx, 26-01

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

To Georg Firber

on the occasion of his appointment as
Professor Emeritus at TU Miinchen after 34
illustrious years as the Head of the Lehrstuhl

fiir Realzeit-Computersysteme

Preface

This book is a tribute to Georg Férber on the occasion of his appointment as
Professor Emeritus at TU Miinchen after 34 years of service as the Head of the
Lehrstuhl fiir Realzeit-Computersysteme.

Georg Firber was born in 1940 and obtained his PhD in 1967 from TU
Miinchen. In an illustrious career, spanning over 40 years, Prof. Firber contributed
significantly to the area of real-time and embedded systems, in terms of both
education and research. His early research dealt with specification and design of
embedded systems and mapping of such specifications onto appropriate hardware
and software architectures. In particular, he was active in the area of computer-aided
process control, with a focus on distributed and fault-tolerant systems. Later, his
interests broadened into real-time capturing and interpretation of visual information,
especially in the context of robot vision. More recently, he has worked in the area of
cognitive automobiles, e.g., driver assistance systems and autonomous cars. Since a
number of years, Prof. Féarber also took a keen interest in topics at the intersection
of engineering and medicine, in particular in those related to “e-health”.

In parallel to his research and teaching activities, Prof. Fiarber was a highly
successful entrepreneur. In 1969, along with his brother Eberhard Firber, he
founded PCS-Computersysteme GmbH. This company was once considered to be
among the most innovative I'T companies in Munich and led to more than 20 other
spin-offs. Among other products, PCS developed the first UNIX Workstations in
Germany (named CADMUS), which were the only European alternatives to US-
based products for a long time. In 1986, Mannesmann/Kienzle became the majority
stakeholder of PCS, and Georg Firber provided the technical leadership during
1988-89, while on leave from TU Miinchen.

In addition to authoring one of the earliest books on real-time systems, Georg
Férber served as the editor of the journal “Information Technology’ and is a member
of the Board of Trustees of the Fraunhofer-Institute for Information and Data
Processing (Fraunhofer IITB). He has also served in various — often advisory —
capacities at the DFG, the Max Planck Society, and in several other scientific and
industrial councils and German government agencies.

vii

viii Preface

Given Georg Firber’s remarkable achievements and his reputation, we invited a
number of well-known researchers to contribute a collection of chapters reflecting
the state of the art in the area of real-time systems. These chapters cover a
variety of topics spanning over automotive software and electronics, software timing
analysis, models for real-time systems, compilation of real-time programs, real-
time microkernels, and cyber-physical systems. We believe that this collection can
serve as a reference book for graduate-level courses. It will also be helpful to both
researchers in the academia and practitioners from the industry.

Munich, Germany Samarjit Chakraborty
Jorg Eberspdicher

Contents

Partl Theoretical Foundations

System Behaviour Models with Discrete and Dense Time 3
Manfred Broy
Temporal Uncertainties in Cyber-Physical Systems 27

Hermann Kopetz

Large-Scale Linear Computations with Dedicated
Real-Time Architectures...................ooiiiiiiiiiiiiiiiii . 41
Patrick Dewilde and Klaus Diepold

Interface-Based Design of Real-Time Systems 83
Nikolay Stoimenov, Samarjit Chakraborty, and Lothar Thiele

The Logical Execution Time Paradigm 103
Christoph M. Kirsch and Ana Sokolova

PartII Connecting Theory and Practice

6

Improving the Precision of WCET Analysis by Input

Constraints and Model-Derived Flow Constraints 123
Reinhard Wilhelm, Philipp Lucas, Oleg Parshin, Lili Tan,

and Bjoern Wachter

Reconciling Compilation and Timing Analysis.......................... 145
Heiko Falk, Peter Marwedel, and Paul Lokuciejewski

System Level Performance Analysis for Real-Time

Multi-Core and Network Architectures...........................oo.ee 171
Jonas Rox, Mircea Negrean, Simon Schliecker,

and Rolf Ernst

ix

10

Contents

Trustworthy Real-Time Systemscoooiiiiiiiiiiiininn.. 191
Stefan M. Petters, Kevin Elphinstone, and Gernot Heiser

Predictably Flexible Real-Time Scheduling 207
Gerhard Fohler

Part III Innovative Application Domains

11

12

13

14

15

16

17

Detailed Visual Recognition of Road Scenes for Guiding
Autonomous Vehicles.................... 225
Ernst D. Dickmanns

System Architecture for Future Driver Assistance Based

on Stereo VISION....... ...t 245
Thomas Wehking, Alexander Wiirz-Wessel,

and Wolfgang Rosenstiel

As Time Goes By: Research on L4-Based Real-Time Systems 257
Hermann Hirtig and Michael Roitzsch

A Real-Time Capable Virtualized Information and

Communication Technology Infrastructure for

Automotive SyStems ..ot 275
S. Drossler, M. Eichhorn, S. Holzknecht, B. Miiller-

Rathgeber, H. Rauchfuss, M. Zwick, E. Biebl, K. Diepold, J.

Eberspicher, A. Herkersdorf, W. Stechele, E. Steinbach, R.

Freymann, K.-E. Steinberg, and H.-U. Michel

Robot Basketball — A New Challenge for Real-Time Control 307
Georg Bitz, Kolja Kiihnlenz, Dirk Wollherr, and Martin Buss

FlexRay Static Segment Scheduling 323
Martin Lukasiewycz, Michael GlaB, Jiirgen Teich, and Paul
Milbredt

Real-Time Knowledge for Cooperative Cognitive Automobiles....... 341
Christoph Stiller and Oliver Pink

Part I
Theoretical Foundations

Chapter 1
System Behaviour Models with Discrete
and Dense Time

Manfred Broy

1.1 Introduction and Motivation

The notion of system is present in many scientific disciplines. Biology speaks of
biological system. There are terms like economic system, ecological system, logical
system. The whole world can be understood as a dynamical system. Describing
systems, their structure and their dynamics by appropriate models is a major
goal of scientific disciplines. However, the different disciplines use quite different
notions, concepts, and models of systems. Mathematics, has developed differential
and integral theory over the centuries as one way of modelling and studying
systems in terms of mathematical models. Relevant system aspects are captured
by real valued variables that change dynamically and continuously depending
on the parameter of time. This way the system dynamics and the dependencies
between the system variables can be described by differential and integral equations.
The engineering discipline of modelling and designing systems applying these
mathematical modelling concepts is control theory.

Another way to capture and specify systems in terms of discrete events is logic.
Logic was developed originally as a branch of philosophy addressing the art and
science of reasoning. As a discipline, logic dates back to Aristotle, who established
its fundamental place in philosophy. Historically, logic was intended as a discipline
of capturing ways of thinking of human beings aiming at crisp lines of arguments.
Over the centuries, logic was further developed mainly as a basis for carrying
out proofs by formal logical deduction, leading to mathematical logic with its
foundations propositional logic and predicate logic in its many variations. With the
arrival of digital systems, logic became more and more also a technical discipline

M. Broy (&)
Institut fiir Informatik, Technische Universitidt Miinchen, 80290 Miinchen, Germany
e-mail: broy @in.tum.de

S. Chakraborty and J. Eberspécher (eds.), Advances in Real-Time Systems, 3
DOI 10.1007/978-3-642-24349-3_1, © Springer-Verlag Berlin Heidelberg 2012

4 M. Broy

for designing logical circuits and electronic devices. With software becoming more
significant in all kinds of information processing applications, more general forms of
logic were invented as the conceptual basis for engineering information processing
systems. For information processing systems, including embedded systems, many
different aspects are captured by various forms of logic both at the technical level
and the application domain level.

The logic of the behaviour of complex discrete event systems can be captured
by families of discrete events that are causally related with logically specified
properties.

In contrast to real-valued function based models of systems such as applied in
control theory, by logics we can capture better ways of arguing about systems.
When capturing requirements about systems such as in requirements engineering
in terms of natural language, a logical way of making requirements precise is
more appropriate than modelling behaviours by real time parameterized continuous
functions. On the other hand, when solving problems in control theory we finally
aim at mathematical descriptions of the system dynamics by differential and integral
equations.

In this paper we aim at a step integrating logical system views with system views
based on differential and integration calculus such as used in control theory. In
contrast to well-known approaches, where the step from a description of systems
by real valued functions into digital systems is performed using techniques of
discretization such as in numerical analysis, we are rather interested in the step
from a logical description of requirements to modelling of system behaviours
by continuous real valued functions and in a formal relationship between the
logical description of requirements and the real valued functions describing systems
dynamics.

We are aiming at systems that interact with their environment. Streams of data
for exchanging input and output capture this interaction. We consider both discrete
and continuous streams.

One way to describe interactive systems is state machines with input and output
also known as Mealy or Moore machines. These are machines, where in given states
input triggers transitions generating new states and output. I/O state machines define
computations, being infinite runs by their transitions. Given an initial state and an
infinite stream of input messages I/O machines produce infinite streams of states and
infinite streams of output messages. In so-called interface abstractions we forget
about the chain of states of computations and just keep the relation between the
input and output streams. This yields what we call an interface abstraction. Talking
only about interface properties we can formulate so-called interface assertions,
which describe logical relationships between the input and the output streams. They
specify the interface behaviour of I/O state machines.

In the following, we aim at techniques for modelling interfaces of discrete as well
as dense and continuous interactive systems. We define models of such systems and
discuss concepts how to specify, compose and relate them.

1 System Behaviour Models with Discrete and Dense Time 5
1.2 Hybrid Interactive Behaviours

The essential difference between a non-interactive and an interactive computation
lies in the way in which input is provided to the computing device before or
during the computation and how output is provided by the computing device to
its environment during or after the computation.

1.2.1 Streams, Channels, and Histories

In this section we briefly introduce the notions of stream, channel, and history.

Throughout this paper, we model interaction by message exchange over sequen-
tial communication media called channels. These message streams can be based
on discrete or dense time and may be discrete or — in the case of dense time —
continuous. In general, in an interactive computation, several communication
channels may participate. In our setting, a channel is simply an identifier for a
communication line. In the following, we distinguish input from output channels.
Throughout the paper, let I be a set of input channels, O be a set of output channels
and M be a set of messages.

A stream may be discrete or continuous. A stream has a data type that determines
the type of messages it carries. A stream can be finite or infinite.

1.2.1.1 Discrete Finite and Infinite Streams

Let M be a set of elements, called messages. We use the following notation (where
set N is specified by N; = N\{0}):

M* denotes the set of finite sequences, with elements of the set M, including the
empty sequence (),

M*® denotes the set of infinite sequences with elements of the set M (that are
represented by the total mappings Ny — M).

By
MY = M* UM™®

we denote the set of discrete untimed streams of elements of set M. Streams of
elements of set M are finite or infinite sequences of elements of set M.

The set of streams has a rich algebraic and topological structure. We make use of
only parts of this structure. We introduce concatenation ~ as an operator on streams
written in infix notation:

MY x MY — MY

On finite streams concatenation is defined as usual on finite sequences. For infinite
streams r, s: N — M and finite stream x € M* we define the result of concatenation
for infinite streams as follows:

6 M. Broy

(Xl...Xny(Sl...) = (Xl...anl...>

We may represent finite streams by total functions {1, ...,t} — M or also by partial
functions Ny — M and infinite streams by total functions N — M.

Streams are used to represent the flow of messages sent over a communication
channel during the lifetime of a system. Of course, in concrete physical systems this
communication takes place in a specific time frame. Hence, it is often convenient or
even essential to be able to refer to time. Moreover, with an explicit notion of time
the theory of feedback loops in networks of communicating components gets even
simpler (see [1]). Therefore we prefer to work with timed streams.

Streams represent histories of communications of data messages transmitted
within a time frame. Given a message set M of type T a uniformly discretely timed
stream is a function

s:Ny - M* ie.seM")®

Actually, given stream s € (M*)* for every time interval t € N the sequence
s(t) denotes the sequence of messages communicated in the time interval t in the
stream s. Let Ry = {t € R : t > 0} be the set of positive real numbers. The basic
idea here is that s(t) represents the sequence of messages communicated in the real
time interval [(t — 1)§ : t6 [where § € R is called the time granularity of the
stream s. A partial stream is given for t € N by a mapping

s:{l,...,t} > M" ie.se M)*
It represent a communication history till time step t. Throughout this paper we work

with a number of simple basic operators and notations for streams and timed streams
respectively that are briefly summarized below:

() empty sequence or empty stream,

(m) one-element sequence containing m as its only element,

s.t t-th element of the stream s (which is a message in case s is an untimed
stream and a finite sequence of messages in case s is a timed stream),

#s length of a stream

syt prefix of length t of the stream s (which is a sequence of messages of length
t, provided #s > t, in the case of an untimed stream and a sequence of t
sequences in case s is a discretely timed stream),

s 1t the stream derived from s by deleting its first t elements (without the first t
sequences of s in the case of a discretely timed streams)

In a uniformly discretely timed stream s € (M*)®° it is specified in which time
intervals which sequences of messages are transmitted. The timing of the messages
within a time interval is not specified, however, only their order is observable.

1 System Behaviour Models with Discrete and Dense Time 7

1.2.1.2 Dense and Discrete Time Domains and Timed Streams

Every subset TD <€ Ry is called a time domain. A time domain TD is called
discrete, if for every number t € R the set

TD, ={x e TD:x < t}

is finite. Obviously, discrete time domains contain minimal elements.
A set S with a linear order < is called dense, if the following formula holds

Vx,yeS:x<y=3zeS:x<z<y

On R we choose the classical linear order <. If a nontrivial time domain TD is
discrete, it is certainly not dense. Vice versa, however, if a time domain is not dense,
it is not necessarily discrete.
Let M be a set of messages and TD be a time domain. A timed stream over time
domain TD is a total mapping
s: TD - M

TD is called the (time) domain of the stream s. We write dom(s) = TD. If TD is
discrete, then the stream s is called discrete, too. If TD is dense, then s is called
dense, t00.

Stream s is called continuous, if TD is an interval in Ry and M is a metric
space with distance function d such that s is a continuous function on the set TD in
Cauchy’s sense. More precisely s is continuous in t € R if the following formula
holds:

VeeR,e>0:3§€R,6>0:Vx€eTD: |x—Xx’| <§ = d(s(x),s(x’)) < ¢

An interval based timed stream s is given by an interval [t: t’[witht,t" € R4, t < O,
and by the time domain TD C [t: t’[where

s:t:t'[—>M

is a partial function and TD is its domain. We write then interval(s) = [t: t’[and
dom(s) = TD. Note that for the partial functions we denote by interval(s) the set of
potential arguments for function s while dom(s) C [t: t’[defines the set of arguments
for which function s is defined.

A stream s is called permanent, if interval(s) = dom(s). Then s is a total function
on its interval(s).

A special case of a permanent stream s is one who is piecewise constant with
only a discrete set of “discontinuities”. Then we expect a discrete set of time points
(with tp = 0):

{t; 11N}

8 M. Broy

such that in each interval [t; : tj4|[the stream s is constant, i.e. s(t) = d with some
d € T where T is the type of the stream s. A typical example is T = B where stream
s(t) signals whether a certain condition holds or does not at time t.

1.2.1.3 Operations on Timed Streams

For timed streams we define a couple of simple basic operators and notations that
are summarized below:

) empty sequence or empty stream with dom(TD) = @ and interval({)) =
[0:0[= 9,

(m@t) one-message stream containing m as its only message at time t with
dom((m@t)) = {t},

#s number of messages in a stream (which is given by the cardinality
|dom(s)])

S, j-th element in the discrete stream s (which is uniquely determined
provided #s > j holds),

st prefix until time t of the stream s (which is also denoted by s|dom(s) N

[0: tfwhere by f|[M denotes the restriction of a function f: D — R to the
set M C D of arguments),

sTt the stream derived from stream s by deleting its messages until time t
(which is s|dom(s)\(dom(s) N [0: t[)) with domain dom(s)\(dom(s) N
[0: t)and the interval interval(s)\interval(s | t)

Let interval(s) = [0: t[; by s{t” we get a stream for the interval [0: t’[and with
dom(s|t’) = dom(s) N [0: '[. By PTS we denote the set of partial timed streams.
Given time t € R, we denote by PTS(t) the set of partial streams that are either
discrete with dom(s) < [O: t[or that are permanent with domain dom(s) = [O: t[.

Given times t, t* € Ry by PTS[t: t’[we denote the set of partial streams with
interval(s) = [t: t’[that are either discrete with dom(s) C [t: t’[or that are permanent
on their domain dom(s) = [t: t’[.

This way we get the universe of streams over a given universe of messages types.

A time shift of a timed stream s by the time u € R yields stream s™u defined
by the equations

interval(s™u) = [t + u: t + u[< interval(s) = [t: t'[

dom(s™u) = {t +u: t € dom(s)}
and for t € dom(s) defined by the equation
(s™u)(t 4+ u) = s(t)

Given a stream s with interval [t: t’[where t’ < oo (otherwise s”s’ = s) we define
concatenation of stream s with a stream s’ by the equation

1 System Behaviour Models with Discrete and Dense Time 9

interval(s’s’) = [t : t”[< interval(s"™¢") = [t”", t”[Ainterval(s) = [t : t'[

dom(s’s’) = dom(s) U dom(s’™t")
and for t” € dom(s”™s’)

(s"8”)(t”) = s(t”) < t” € dom(s)
(s’s) () = (™) (1) < t” € dom(s"™¢)

This generalizes the operations on discrete streams to operations on timed streams.

1.2.1.4 Time Deltas and Delta Transactions

For timed streams their time granularity is of major interest. A discrete stream s
has a guaranteed message distance § if in each time interval of length § at most one
message or event occurs. Formally

Vie Ry t#(s|[t:t+8[) <1

Here s|[t: t + §[denotes the stream which is the result of restricting stream s (seen
as a mapping) to the set [t: t + §[.

In a time interval of length § a communication stream is given by a finite sequence
of messages, by a continuous function, by a discrete real time sequence, or a mixture
thereof.

1.2.2 Channels

Generally, several communication streams may appear in a system. To distinguish
and identify these streams we use channels. A channel is a named sequential
communication medium. In logical formulas about systems, a channel is simply
an identifier in a system that evaluates to a stream in every execution of the system.

Definition 1.1. Channel snapshot and channel history
Let C be a set of channels; given times t, t” € Ry U {oo} with t < t’ a channel
snapshot is a mapping
x:C — PTS[t: t[

such that x(c) € PTS[t: t*[is a partial or total stream for each channel ¢ € C.

A snapshot is called finite if t' < oco. By C [t: t'[the set of finite channel snapshots

for channel set C for times t, t’ is denoted. By C the set of all channel snapshots for
channel set C is denoted.

10 M. Broy

A complete channel history is a mapping

x:C — PTS[0: o[

=
such that x(c) is a timed stream for each channel ¢ € C. C the set of complete
channel histories for channel set C. C denotes the set of channel histories where all
channels carry uniformly discretely timed streams s € (M*)°. |

All operations and notations introduced for streams generalize in a straight-
forward way to channel histories applying them to the streams in the histories
elementwise.

For instance given a channel history

x : C — PTS|0 : oo]
by x|[t: t‘[we denote a snapshot
x[[t:t[: C— PTS[t: t]

where each stream x(c) for channels ¢ € C is restricted to the interval [t: t‘[as
follows:

(x[[t: D) = x()[t =]

The remaining operators generalize in analogy from streams to channel histories.

1.2.3 I/O-Behaviours: Interface Behaviours of Hybrid Systems

Let I be a set of typed input channels and O be a set of typed output channels.
Figure 1.1 gives an illustration of the system where the channels are represented
by arrows annotated with their names and their message types. In addition to the
message types that show which elements are communicated via the channels we
indicate which type of stream is associated with the channel — a discrete or a dense
one. We use the prefix Dsc to indicate that a stream is discrete and Prm to indicate
that it is permanent. For instance Dsc Bool is the type of a discrete stream of Boolean
values while Prm Bool is the type of a permanent stream of Boolean values. If no
prefix is used than nothing specific is assumed about the stream.

x0Ty F Yi:S
Fig. 1.1 Hybrid system with Xn: Ty Ym * Sm
its channels

1 System Behaviour Models with Discrete and Dense Time 11

We represent hybrid system behaviours by functions:

= =
F: 1 — p(0)

that model input and output of interactive nondeterministic computations. F maps
every input history onto its set of output histories.

Definition 1.2. Causality
An I/O-behaviour F fulfils the property of causality if there exists some time
distance § € R with § > 0 such that the following formula holds for all histories

= =
X,z€ [,ye O,te Ry

x{t=z{t={ylt+8:y e F(x)} = {ylt+ 3 :y € F(z)}

If the formula holds for § = 0 then F is called causal and if it holds for some delay
8 > 0 then F is called strongly causal and also strongly § causal. |

We assume for I/O-behaviours that they fulfil the law of strong 8 causality
for some § > 0. Strong causality characterizes proper time flow and the fact that
computation takes time. It captures the principle that a reaction to input can happen
only after the input has been received. Since the output at time t is produced while
the input in step t is provided, the output in step t must depend at most on input
provided before time t.

A behaviour F is called deterministic if F(x) is a one element set for each input
history x. Such a behaviour is equivalent to a function

= =
f: 1 - O where F(x) = {f(x)}

f represents a deterministic I/O-behaviour, provided that for some § > 0 the §
causality property holds. Then the following property is valid:

x{t=z{t = fx){t+ 8 =f(z)|t+ 8

As for nondeterministic behaviours this causality property models proper time flow.

Definition 1.3. Realizability
An I/O-behaviour F is called (strongly) realizable, if there exists a (strongly)
causal total function NN
f: 1 -0
such that we have: N
Vx € [:f(x) € F(x).

f is called a realization of F. By [F] we denote the set of all realizations of F. An
output history y € F(x) is called realizable for an 1/O-behaviour F with input x, if
there exists a realization f € [F] with y = f(x). |

12 M. Broy

A § causal function f: :I> — 3 with § > 0 provides a deterministic strategy to
calculate for every input history x a particular output history y = f(x). The strategy
is called correct for input x and output y with respect to an I/O-behaviour F if
y=1f(x) € F(x). According to strong § causality the output y can be computed
inductively in an interactive computation. Only input x|t received till time t
determines the output till time t+§ and, in particular, the output at time t+ §. In
fact, f essentially defines a deterministic “abstract” automaton with input and output
which is, in case of strong § causality, actually a Moore machine. Strong § causality
guarantees that for each time t the output produced after time t till time t + § does
only depend on input received before time t.

Theorem 1.1. Full Realizability
= =
Strongly & causal functions f: C — C always have unique fixpoints y = f(y).

Proof. This is easily proved by an inductive construction of the fixpointy = f(y) as
follows. Since f is strongly causal output f(x)]d does not depend on x at all. So we
define

yi8 =f(x)|8

=
for arbitrarily chosen input x € C. Then history y is constructed inductively as
follows: given

ylié
we define

yI(A+1)8 = fx) L (+1)8

with arbitrary chosen input history x such that

xJi§ = ylié

Note again that then f(x)| (i + 1)§ does not depend on the choice of the history
xJ (i + 1)§ due to strong § causality of f. The construction yields history y such
that the fixpoint equation y = f(y) holds. Moreover, since the construction yields a
unique result the fixpoint is unique. O

The construction indicates the existence of a computation strategy for the fixpoint
y of f.

Definition 1.4. Full Realizability
An I/O-behaviour F is called fully realizable, if it is realizable and if for all input

histories x € =I>
F(x) = {f(x) : f € [F]}

holds. Then also every output is realizable. |

Full realizability of a behaviour F guarantees that for all output histories y € F(x)
for some input x there is a strategy that computes this output history. In other words,
for each input history x each output history y € F(x) is realizable.

1 System Behaviour Models with Discrete and Dense Time 13
1.2.4 Hybrid State Machines with Input and Output

In this section we introduce the concept of a hybrid state machine with input and
output via channels.

A hybrid state machine (A, A) with input and output communicated over a set I
of input channels and a set O of output channels is given by a state space X, which
represents a set of states, a set A € X of initial states as well as a state transition
function

A:(Exf)ep(ilx@)

For each state ¢ € ¥ and each valuation @ € I of the input channels in I by
sequences a snapshot we obtain by every pair (07,) € A(o, o) a successor state ¢~

and a valuation 8 € O of the output channels consisting of the snapshot of messages
produced on the output channels by the state transition. Such state machines are a
generalization of Mealy machines (more precisely Mealy machines generalized to
infinite state spaces and infinite input/output alphabets).

A state machine (A, A) is called:

e Deterministic, if, for all states 0 € ¥ and inputs «, both A(c, @) and A are sets
with at most one element.

o Total, if for all states 0 € ¥ and all inputs « the sets A(o, @) and A are not
empty; otherwise the machine (A, A) is called partial,

e A (generalized) Moore machine, if the output of A always depends only on the
state and not on the current input of the machine. A Mealy machine is a Moore
machine iff the following equation holds for all input sequences «, &’ and output
sequences f, and all states o

Fo' € Z:(0',B) € A(o,a)) & (Ao’ € T: (¢/,B) € A(o.a'))

» Time based if the states 0 € X in the state space contain a time attribute denoted
by time(c) € R such that for all (¢/, 8) € A(o, @) we have time(o) < time(c”)

e A § step timed state machine for § € R with § > 0 if (A, A) is a time based
machine and if for all (¢’,) € A(o, o) where

time(o) = j6 and interval(a) = [j6:(j+1)4]

we get
time(c”) = time(o) + § and interval(8) = [j8:(j+1)§[.

Hybrid state machines are a straightforward generalisation of Mealy machines.

14 M. Broy
1.2.5 Computations of State Machines

In this section we introduce the idea of computations for § step timed state machines
with input and output.

Figure 1.2 shows a computation of a § step timed state machine with input and
output. Actually a computation comprises three infinite streams:

e The infinite streams x of inputs: X, X2, ... € I

e The infinite streams y of outputs: y;,y2,... € 0
¢ The infinite streams s of states: 0p,01,... € X

Note that every computation can be inductively generated given the input stream x1,
X2, X3, ... and the initial state oy € A by choosing step by step state o;+; and output
Vi+1 by the formula

(i1, Yi+1) € A0, Xi41).

If the state machine is deterministic, then the computation is fully determined by the
initial state oy and the input stream x.

= —
Each input history x € I specifies a stream Xj, X2, ... € I of input snapshots by
(forall j € N)

Xj+1 = X|D5 : (] + 1)8[

Given history x a computation of a state machine (A, A) generates a sequence of
states
{oj:j e N}

and a stream y;, y, ... € O of output snapshots where for all times j € N we have:

(Uj+ls}’j+l) S A(Uj,xj+1) and o0p € A

=
This way every computation specifies an output history y € O that is uniquely
specified by

yllid = G+ Dé[= yj4s

The history y is then called an oufput of the computation of the state machine (A,
A) for input x and initial state 0. We also say that the machine computes the output
history y for the input history x and the initial state oy. This way we can associate
an interface behaviour

X1/y1 X2/ ¥y X3/y3

(o) Gy G G3 ...

0 5 26 36 time

Fig. 1.2 Computation of a § step timed I/O-machine

1 System Behaviour Models with Discrete and Dense Time 15

= =
Fan I — 9(0)

with state machine (A, A) defining Fa a)(x) as the set of all histories that are
outputs of computations of machine (A, A) for input history x. System behaviour
F(a.a) is called the interface abstraction of hybrid state machine (A, A).

1.3 Logical Properties of the Interface Behaviour of Hybrid
Systems and State Machines

Traditionally temporal logic is used to formulate properties about state transition
systems that are represented by state machines. Usually in temporal logic state
machines without input and output are considered such that the formulas of temporal
logic specify properties for the infinite streams of states generated as computations
by these state machines. There are several variations of temporal logic including
so-called linear time temporal logic, which talks about the state traces of a state
machine and branching-time temporal logic, which considers trees of computations
defined by a state machine.

Since we are not mainly interested in states but rather in interface behaviour in
terms of input and output streams of computations, classical temporal logic seems
not the right choice for us. Moreover, temporal logic is limited in its expressive
power. Although we could introduce a version of temporal logic that talks about
input and output of computations, we prefer to talk about the interface behaviour in
terms of more general and more expressive interface assertions, given by predicates
that contain the channel identifiers of the syntactic interface of a system as identifiers
for streams. An interface assertion is a formula, which refers to the input and output
channels of the systems as variables for timed streams. This way we write logical
formulas that express properties of the input and output streams of hybrid systems.
These formulas are written in classical predicate logic using, in addition, a number
of basic operators for streams.

1.3.1 Events in Continuous Streams

A permanent continuous stream s is represented by a continuous function. The
values of the function define the valuation of an attribute of the system at any chosen
point in time. This defines for each time a kind of interface state. An event then can
be defined as ““a significant change in state”.

With a continuous stream s we associate a certain (logical) event at time t if s
fulfils a particular property at time t. Simple examples would be that the continuous
stream s has reached a particular value at time t, or assumes a maximum or a
minimum at time t, or that its values in an interval around t lie in a certain range.

16 M. Broy

In full generality, an event e is a predicate
e:PTSxR; —> B

We say that an event occurs at time t in the hybrid stream s if e(s, t) holds. Events
provide a logical view onto hybrid streams. By definition there are lots of events.
Which events are of relevance for a system has to be determined depending on
the logics of the application. Typical examples would be “target speed reached”,
“temperature too high”, “speed too high” or “signal available”.

Actually an infinite number of events may occur in a given stream. Given a stream
s, a set of events E and a time t € R the set

{t eft:t+e[: Ve e E:e(s,)}

is called the (t, &)-footprint for an event set E on stream s. A (t, ¢)-footprint may
be discrete, dense or durable. Accordingly, we call an event durable, if it holds for
all time points in some interval, which means that its footprint is identical to the set
[t:t+ gf.

An event e is called flickering at time t in stream s, if one of the following
formulas is valid:

(@) YeeR,e>0:3t,t" elt,t+¢[:e(s,t) A—e(s, t”)
(b) YeeR,y,e>0:3t,t" €lte, tf N R, :e(s, t') A —e(s, t”)

In case (a) event e is called flickering after t, in case (b) flickering before t.
We say that an event is not Zeno, if it is never flickering. We say that for a stream
aanevente is

* Switched on at time t, if e(s, t) AVe € Ry, e > 0: 3t € [t —e, t[: —e(s, 1)
o Switched off at time t, if e(s, t) AVe € Ry, e > 0: 3t € [t,t + ¢[: —e(s, 1)

and e is not flickering in s at time t.

Given event e, by —e we denote the complement event of e.

We call a set of events E e-discrete for a stream s if for a real number ¢ € Ry
all (t, e)-footprints for s and E contain at most one element. Then there is at most
one event from the event set E in every time interval of length ¢. In this case we can
associate a discrete stream of events with the continuous stream s.

We are interested in associating a timed discrete stream of events with each
hybrid stream to capture the event logics of histories. Given some time granularity
8 € Ry we relate a discrete stream r € (E*)*° with each timed stream s € PTS
by

e Defining a set E of events
e Mapping the hybrid stream s to a discrete stream r = dis(s, E) by a function

dis : PTS x E — (E)*®

1 System Behaviour Models with Discrete and Dense Time 17

The set E is called the set of logical observations. To define the set of events E we
assume a set of given events Eg. Since the set Ey may not have discrete footprints
and may contain durable events for streams s € PTS we replace durable events e by
two events e, and e,, where durable event e is starting at time t, characterizing the
beginning and the end of the phase in which the event is durable by choosing and
specifying:

eq(s,t) =ger JE € RLN\{O}: VY e Ry Nt —e it : —e(s,t)
AVU € RpN)t: t+ €[:e(s,t)

€u(s,t) =qer It € RL\{O}: VI e Ry N[t—e:t] :e(s,t)
AVU € RpN)t: t+¢f @ —e(s,t)

This gives us a set of events E’ derived from E by replacing all durable events by the
shown two events. This approach does work only, however, if the stream s avoids
flickering and Zeno’s paradox.

To avoid Zeno’s paradox and generally flickering events we use a finite time
granularity § > 0 and define the set of events E from E’ as follows. We replace
each event e € E’ by an event eg that is specified as follows. We make that sure we
debounce events such that every event in E’ can occur only once in each interval of
length §. To do this we first assume a linear strict order <py, defining priorities on
the set of E” specifying the importance of events. Based on these priorities we define
the event ey, for each event e

1 1
eprio(s,) = (e(s,) A—Id € E', e Ry N |:t - ES,H— 58:| 2d(s,t) Ae <prip d)

i.e., eprio (5, t) is an event with highest priority in the interval [t — 8.t + 38]. Now
we define the set of events
E = {epio : ¢ € E}

Given the set of events E we define a function
disg : PTS — (E*)*°
as follows:
disg(s)(i) = () & —~Fe € E, te [i§ : (1 + 1)J[: e(s,t)
disg(s)(i) = (e) & Fe € E, te [i§: (i + 1)d[: e(s,t)

Note that this definition is consistent since due to our construction every (t, §)-
footprint carries at most one event.

The time distance § determines the time granularity of the stream disg(s). If a
finer or coarser time granularity is needed for disg(s) the time granularity can be

18 M. Broy

high

low

sO=01% % %

min < s < high

time

Fig. 1.3 Continuous stream s and discrete and durable events

changed according to [1]. Then after deriving disg(s) we may coarsen disg(s) which
may lead to histories with more than one message in one time interval.

In principle, we may use the same construct to deal with durable events. Then
durable events e are replaced by a sequence of discrete events eg that are repeated
every 6-time step as long as event e lasts. This is called sampling and provides an
alternative to the approach treating durable events by introducing the event e, and
the event e,, indicating the end of the durable event.

Fact 1.1. Associating discrete streams with hybrid streams

Let E’ be an arbitrary set of events and E be defined as above, then for every
stream s € PTS the set of events from E defines a discrete stream disg(s) € (E*)*
of events in E.

Note that this form of associating discrete streams with continuous ones is
essentially different from the techniques of discretisation used in numerical analysis
or in control theory, where continuous functions are approximated by discrete step
functions, where the distances between the discrete time points are chosen fine
enough such that the functions are approximated precisely enough.

Figure 1.3 shows a continuous stream s and some examples of discrete and
durable events.
Given event sets for all channels in set C, we get this way a function

= -
Dis:C — C

that maps histories of hybrid streams onto histories of discrete streams of events.

1 System Behaviour Models with Discrete and Dense Time 19
1.3.2 Assertions Specifying Hybrid Systems

To formulate properties about hybrid state machines with input and output we use
interface assertions that refer to streams communicated via the input and output
channels of the state machine. An interface assertion is a formula in predicate
logic that contains the input and output channels of the state machines as logical
identifiers for timed streams. The validity of such assertions for state machines is
described in the following.

We work with templates to specify systems very much along the lines of [2] as
demonstrated in the following example:

Example 1.1. Specification of hybrid systems

As a simple example we specify a hybrid system called Amplifier with a
permanent and a discrete input stream and a permanent output stream.

System Amplifier (§: Real: § > 0)

in v: Prm Real, c: Dsc Real
out r: Prm Real
Vte Ry
r(t + 8) = lt(c,)" v(t)
0<t<d=r(t)=0
where
Vte Ry :
It(c,t) = c(max{s” € dom(c) : s” < t—§}) « {s” € dom(c) : s” <
t—38} £ 0
lt(c,t) =0 < {s” edom(c) : 8" <t—68} =0
This example shows an amplifier that amplifies the permanent input on channel v

by the last actual value received on the discrete channel ¢ and sends it as output on
channel r with a time delay §.

As the example shows, we use a mixture of plain higher order predicate logic
and functional calculus. This leads to a specific logic that may be supported by
interactive theorem provers (see [3]). Another possibility is domain specific logical
calculi. Duration calculus (DC), for instance, is an interval logic for real-time
systems (see [4]).

1.4 Composition

So far we have introduced a mathematical model for systems. Systems can be
composed to larger systems by composition.

20 M. Broy
1.4.1 Composing Systems

In this chapter we study the composition of systems. We introduce the composition
operator for composing two systems. Systems are composed by parallel composition
with feedback following the approach of [2].

1.4.1.1 Composition of Systems in Terms of Their Interface Behaviour

The definition of composition of systems given by their interface behaviour reads as
follows:

Definition 1.5. Composition of systems

Given two interfaces F; € IF[l; » Oj] and F, € IF[l; » O;], with type
consistent channels and where O; N O, = @, we define a composition for the
feedback channels C; = O; NI, and C, = O, N I; by the expression

Fl1 ® F2

The system F; ® F, € IF[I » O] is defined as follows (let C = 1; UO; UL, U O,
where I = (Il\Cz) U (Iz\Cl) and O = (O]\C]) U (Oz\Cz))

= = =
Vxe] :(FI®F2)(x)={ye0:3zeC :y=120
Ax = z|I A z|O; € Fl1(z|I)) A z|O; € Fy(z|11)}

The channels in set C; U C, are called internal for the composed system F; ® F,. [

The idea of the composition of systems as defined above is graphically illustrated
in Fig. 1.4.

In a composed system F; ® F,, the channels in the channel sets C; and C, are
used for internal communication.

Given specifying assertions S; and S, for the systems F; and F,, the specifying
assertion for F; ® F, is given by the assertion 3 C;, C,: S| A S,, where internal
channels C; and C, are hidden by the existential quantifier.

1\C, 0,\C,
—L 2 ,F
I\C c 0,\C
1 2 Fl l= F2 2 2 Cl
0,\C, c, L\C, DRI
« e ——— 1,\C 0,\C,
—

Fig. 1.4 Composition F; ® F, (in two layouts)

