DRUG REPOSITIONING
About the Cover

Drug repositioning can be a daunting challenge, but one filled with possibility. There is a story in *The Art of Possibility* by Rosamund Stone Zander and Benjamin Zander of a man who comes upon a woman on a beach, surrounded by starfish that have washed ashore. She picks up individual starfish and throws them back into the water, in an almost “ritualistic dance.” The man approaches her: “There are stranded starfish as far as the eye can see. What difference can saving a few of them possibly make?” Smiling, she bends down and once more tosses a starfish out over the water, saying serenely, “It certainly makes a difference to this one.”

Like the woman, drug repositioning sifts through many compounds, particularly those “washed up,” failed compounds, to find the one that makes a difference to patients.

Cover image by Rachel Frail
CONTENTS

ABOUT THE EDITORS xv
ACKNOWLEDGMENTS xvii
CONTRIBUTORS xix

INTRODUCTION 1
Michael J. Barratt and Donald E. Frail

References 5

PART I DRUG REPOSITIONING: BUSINESS CASE, STRATEGIES, AND OPERATIONAL CONSIDERATIONS 7

1. Drug Repositioning: The Business Case and Current Strategies to Repurpose Shelved Candidates and Marketed Drugs 9
John Arrowsmith and Richard Harrison

1.1. Introduction 9
1.2. Is Pharmaceutical R&D Failing? 10
1.3. Why Are Drugs Failing? 15
1.4. Overcoming Failures 18
1.5. Drug Repurposing 19
1.5.1. The Case for Repurposing 19
1.6. Examples of Successful Repurposing 22
1.6.1. Drug Candidates That Lacked Efficacy in their Primary Indications 22
1.6.2. Drugs That Failed for Safety Reasons in the Primary Patient Populations 23
1.6.3. Drug Candidates That Were Discontinued for Strategic Reasons 24
1.7. Repurposing Existing Drugs 25
1.7.1. Line Extensions 25
1.7.2. New Indications for Existing Drugs 26
2. Opportunities and Challenges Associated with Developing Additional Indications for Clinical Development Candidates and Marketed Drugs

Donald E. Frail and Michael J. Barratt

2.1. Introduction 33
2.2. The Value Proposition 34
2.3. Managing the Risk: Organizational Challenges 36
2.4. Practical Considerations, Real Risks, and Mitigation Strategies When Developing Additional Indications for a Candidate or Marketed Drug 38
 2.4.1. Safety 38
 2.4.2. Preclinical Efficacy Testing 39
 2.4.3. Pharmaceutical Sciences Activities: Formulation, Drug Supply, and Packaging 40
 2.4.4. Regulatory 41
 2.4.5. Exclusivity Protection 42
 2.4.6. Parallel Development Programs 46
 2.4.7. Pricing, Reimbursement, and Prescribing Practices 47
2.5. Conclusion 49

References 50

3. Clinical and Operational Considerations in Repositioning Marketed Drugs and Drug Candidates

Damian O’Connell, David J. Sequeira, and Maria L. Miller

3.1. Introduction 53
3.2. Challenges and Opportunities in Establishing a Drug Repositioning Portfolio: Marketed Drug, Lead Candidate, or Backup? 54
 3.2.1. Proof-of-Concept (PoC) Trial Design 54
3.3. Proof-of-Mechanism (PoM) for Repositioned Compounds and the Use of Clinical Probes 57
3.4. Implications of Drug Repositioning for Clinical Planning and Operations 58
 3.4.1. NCE/NBE 59
 3.4.2. Approved Drugs 61
3.5. Conclusion 63

Acknowledgments 64

References 64
4. Regulatory Considerations and Strategies for Drug Repositioning

Ken Phelps

4.1. Introduction

4.2. History/Birth of the 505(b)(2)
 4.2.1. An Era of Increased Scrutiny
 4.2.2. The Birth of 505(b)(2)
 4.2.3. Defining 505(b)(2)
 4.2.4. ANDA Suitability Petition Versus 505(b)(2)
 4.2.5. The Pediatric Rule

4.3. Sources of Information Cited in 505(b)(2) Submissions
 4.3.1. Standards of Acceptability for Referenced Information
 4.3.2. Defining “Substantial Evidence” of Efficacy
 4.3.3. The Quantity of Evidence Required
 4.3.4. Documenting the Quality of Evidence Supporting an Effectiveness Claim
 4.3.5. Reliance on Published Reports of Studies
 4.3.6. Submission of Published Literature Reports Alone
 4.3.7. Reliance on Studies with Limited Monitoring
 4.3.8. FDA Labeling and Summary Basis of Approval (SBA)

4.4. Where to Find the Public Information Needed for 505(b)(2) Submissions
 4.4.1. Publications
 4.4.2. Databases

4.5. Intellectual Property and Data Exclusivity

4.6. 505(b)(2) Case Studies
 4.6.1. NovoLog®—Approval for a New Route for Insulin Administration, Based on a Single Clinical Study
 4.6.2. Makena®—Use of a Publicly Funded Study
 4.6.3. TRIESENCE®—An NDA with Minimal New Studies
 4.6.4. COLCrys®—A Drug Marketed for Centuries without Proper Use and Understanding, Finally Approved Under 505(b)(2)
 4.6.5. Ulesfia™—A Common Cosmetic Excipient Given New Molecular Entity Status Under 505(b)(2)
 4.6.6. CAFCIT®—An Example of a Common Commodity Approved Under 505(b)(2) as a New Molecular Entity and Given Orphan Status
Contents

4.7. Prodrugs
 4.7.1. Case Study: Valacyclovir—An Example of a Type IB Prodrug

4.8. Summary

References

PART II APPLICATION OF TECHNOLOGY PLATFORMS TO UNCOVER NEW INDICATIONS AND REPURPOSE EXISTING DRUGS

5. Computational and Bioinformatic Strategies for Drug Repositioning
 Richard Mazzarella and Craig Webb

 5.1. Introduction
 5.2. Knowledge Mining and Integration Strategies
 5.2.1. Genetic Analysis Methods
 5.2.2. Connectivity Map Strategy
 5.2.3. Network Analysis Methods
 5.3. Case Study: Application of Computational Drug Repositioning Approaches in the Van Andel Research Institute Personalized Medicine Initiative
 5.4. Summary and Future Directions

References

6. Mining Scientific and Clinical Databases to Identify Novel Uses for Existing Drugs
 Christos Andronis, Anuj Sharma, Spyros Deftereos, Vassilis Virvilis, Ourania Konstanti, Andreas Persidis, and Aris Persidis

 6.1. Introduction
 6.2. Data Sources
 6.2.1. Bioinformatics-Related Resources
 6.2.2. Microarray Repositories
 6.2.3. Pathway Databases
 6.2.4. Cheminformatics-Related Resources
 6.2.5. Drug Target Space
 6.2.6. Drug and Disease Data Sources
 6.3. Ontologies
 6.3.1. The Medical Subject Headings (MeSH) Thesaurus
 6.3.2. UMLS
 6.4. Literature Corpora and Mining
 6.4.1. Information Extraction
 6.4.2. Publicly Available Literature Mining Corpora
CONTENTS

6.5. Strategies to Infer Novel Associations between Drugs, Drug Targets, and Human Diseases: Case Studies 148
6.5.1. Graph and Machine Learning Approaches Integrating Chemical Data 148
6.5.2. Gene Expression Profiling and Machine Learning 152
6.5.3. Structural Data and Machine Learning 152
6.5.4. Text Mining 153
6.5.5. Ontology-Based Approaches 155
6.6. Further Reading 156
6.7. Closing Remarks 156
References 157

7. Predicting the Polypharmacology of Drugs: Identifying New Uses through Chemoinformatics, Structural Informatics, and Molecular Modeling-Based Approaches 163
Li Xie, Sarah L. Kinnings, Lei Xie, and Philip E. Bourne
7.1. Introduction 163
7.2. The Concept of Polypharmacology and Its Relationship to Drug Resistance, Side Effects, and Drug Repositioning 164
7.3. The Importance of Drug Repositioning in the Pharmaceutical Industry 168
7.4. Chemical and Protein Structure-Based Approaches 170
7.4.1. Ligand Similarity-Based Approaches 170
7.4.2. Ligand Binding Site Similarity-Based Approaches 177
7.4.3. Structure-Based Virtual Ligand Screening 185
7.5. Molecular Activity Similarity-Based Methods 188
7.6. Other Approaches through Data and Text Mining 192
7.7. Conclusion 193
References 194

8. Systematic Phenotypic Screening for Novel Synergistic Combinations: A New Paradigm for Repositioning Existing Drugs 207
Margaret S. Lee
8.1. Introduction 207
8.2. Fundamental Approaches 208
8.3. Keys to Success 211
8.3.1. What’s in a Model? 211
8.3.2. Complex Biology 216
8.3.3. Screening Operations 220
8.3.4. Data Collection and Analysis 224
8.4. Opportunities and Challenges in Combination Drug Development
 8.4.1. Intellectual Property 226
 8.4.2. Reverse Pharmacology 227
 8.4.3. Preclinical Translation 227
 8.4.4. Embodiment of the Drug Product 228
 8.4.5. Clinical Development 230
8.5. Case Studies 233
 8.5.1. Synavive™—The Fixed Dose Combination of Prednisolone and Dipyridamole 233
 8.5.2. Adenosine A2A Receptor Agonist Synergies 239
8.6. Concluding Remarks 243
Acknowledgments 245
References 245

9. Phenotypic In Vivo Screening to Identify New, Unpredicted Indications for Existing Drugs and Drug Candidates 253
 Michael S. Saporito, Christopher A. Lipinski, and Andrew G. Reaume

9.1. Introduction 253
9.2. Settings for In Vivo Drug Repositioning 254
 9.2.1. Post-Approval Clinical Studies 254
 9.2.2. Preapproval Clinical Studies 255
 9.2.3. Predevelopment In Vivo Studies 255
9.3. In Vivo Models 257
 9.3.1. Target-Based In Vivo Models 258
 9.3.2. Pathology-Based In Vivo Models 260
9.4. Advantages of Compound Screening in Phenotypic In Vivo Models 261
 9.4.1. Broad Target Screening 261
 9.4.2. CNS Diseases 264
 9.4.3. Network Modulation and Polypharmacology 265
9.5. Design of an Optimal Drug Repositioning Platform 266
 9.5.1. Evolution of High-Throughput Focused Phenotypic Strategies 266
 9.5.2. Low-Throughput, Broad Spectrum Strategies 266
 9.5.3. theraTRACE®: A High-Throughput, Broad Therapeutic Area Approach 267
 9.5.4. Design of the theraTRACE® Platform 269
9.6. Results from Phenotypic Screening Studies 276
 9.6.1. On-Target Activities 277
 9.6.2. Off-Target Activities 279
9.7. Compound Selection for Drug Repositioning 279
9.8. Exclusivity Strategies for Repositioned Drugs Identified by Phenotypic Screening 281
9.9. Summary 282
References 283

10. Old Drugs Yield New Discoveries: Examples from the Prodrug, Chiral Switch, and Site-Selective Deuteration Strategies 291

Adam J. Morgan, Bhaumik A. Pandya, Craig E. Masse, and Scott L. Harbeson

10.1. Introduction 291
10.2. Prodrug Approach 292
10.2.1. Introduction 292
10.2.2. Fosamprenavir (Lexiva®) 294
10.2.3. Lisdexamfetamine (Vyvanse®) 296
10.2.4. Fospropofol (Lusedra®) 297
10.2.5. Paliperidone Palmitate (Invega® Sustenna®) 299
10.2.6. Gabapentin Enacarbil (Horizant®) 301
10.2.7. Conclusions 303
10.3. Chiral Switch Approach 303
10.3.1. Introduction 303
10.3.2. Omeprazole (Prilosec®) to Esomeprazole (Nexium®) 306
10.3.3. d,l-threo-Methylphenidate HCl (Ritalin®) to d-threo-Methylphenidate HCl (Focalin®) 309
10.3.4. Citalopram (Celexa®) to Escitalopram (Lexapro®) 310
10.3.5. Cetirizine (Zyrtec®) to Levocetrizine (Xyzal®) 312
10.3.6. Atracurium (Tracrium®) to Cisatracurium (Nimbex®) 315
10.3.7. Bupivacaine (Marcaine®/Sensorcaine®) to Levobupivacaine (Chirocaine®) 317
10.3.8. Conclusion 318
10.4. Site-Selective Deuteration Approach 319
10.4.1. Introduction 319
10.4.2. Primary Deuterium Isotope Effect 319
10.4.3. Deuterium Effects upon Pharmacology, Metabolism, and Pharmacokinetics 321
10.4.4. CTP-518, Deuterated Atazanavir 325
10.4.5. BDD-10103, Deuterated Tolperisone 326
10.4.6. SD-254, Deuterated Venlafaxine 327
10.4.7. Fludalanine (MK-641) 328
10.4.8. CTP-347, Deuterated Paroxetine 329
10.5. Conclusion 331
References 332
PART III ACADEMIC AND NONPROFIT INITIATIVES AND THE ROLE OF ALLIANCES IN THE DRUG REPOSITIONING INDUSTRY

11. Repurposing Drugs for Tropical Diseases: Case Studies and Open-Source Screening Initiatives

Curtis R. Chong

11.1. Introduction 347
11.2. Drug Development for Neglected Diseases 348
11.3. Drug Repurposing in Malaria
 11.3.1. Dapsone 352
 11.3.2. Fosmidomycin 353
 11.3.3. Pafuramidine (DB289) 354
11.4. Drug Repurposing in Leishmania
 11.4.1. Miltefosine 355
 11.4.2. Amphotericin 356
 11.4.3. Paromomycin 357
11.5. Drug Repurposing in African Trypanosomiasis (Sleeping Sickness)
 11.5.1. Eflornithine 358
11.6. Open-Source Screening Initiatives—A Systematic Approach to Identifying New Uses for Existing Drugs 361
11.7. High-Throughput Screening of Existing Drugs for Tropical Diseases: The Johns Hopkins Clinical Compound Screening Initiative 362
11.8. Identification of Astemizole as an Antimalarial Agent by Screening a Clinical Compound Library 363
11.9. Screening of Existing Drug Libraries for Other Tropical Diseases 368
11.10. Conclusions and Future Directions

References 373

12. Drug Repositioning Efforts by Nonprofit Foundations

Donald E. Frail

12.1. Introduction 389

Louis DeGennaro, Aaron Schimmer, James Kasper, and Richard Winneker

12.2. Repositioning of Drugs for Hematological Malignancies: Perspective from the Leukemia & Lymphoma Society

12.2.1. Introduction 391
12.2.2. The Hematological Malignancies 391
12.2.3. The Leukemia & Lymphoma Society (LLS) 392
12.2.4. The Therapy Acceleration Program (TAP) of the LLS 392
12.2.5. Biotechnology Accelerator (BA) Division 392
12.2.6. Clinical Trials (CT) Division 393
12.2.7. Academic Concierge (AC) Division 393
12.2.8. Partnering to Reposition a Drug to Treat Hematological Malignancies—A Case Study of Ciclopirox Olamine (CPX) 395
12.2.9. Summary and Lessons Learned 399
12.3. Repositioning Drugs for Parkinson’s Disease: Perspective from the Michael J. Fox Foundation 399
Todd B. Sherer, Alison Urkowitz, and Kuldip D. Dave
12.3.1. Parkinson’s Disease: Research Challenges and Opportunities 399
12.3.2. The Michael J. Fox Foundation for Parkinson’s Research 401
12.3.3. MJFF’s Work in Drug Repositioning 403
12.3.4. Repositioning Drugs for PD: Disease-Modifying Therapy Case Studies 405
12.3.5. Repositioning Drugs for PD: Symptomatic Treatments for PD 409
12.3.6. An Open, Investigator-Initiated Solicitation: Repositioning Drugs for PD 2011 413
12.3.7. Conclusions from MJFF Drug Repositioning Efforts for PD 417
12.4. Repositioning Drugs for Polycystic Kidney Disease: Perspectives from the Polycystic Kidney Disease Foundation 418
Jill Panetta and John McCall
12.4.1. Introduction: Accelerating Treatments for Patients (ATP) Program 418
12.4.2. PKD 418
12.4.3. Drug Repurposing: De-Risking and Expediting the Drug Discovery and Development Process 420
12.4.4. The PKD Foundation Methodology 421
12.4.5. Lessons Learned To Date 425
References 426

Aris Persidis and Elizabeth T. Stark
13.1. Introduction 433
13.2. Large Pharmaceutical Companies 434
13.2.1. Extracting Maximum Value from the R&D Portfolio 434
13.2.2. Sharing Financial Risk 435
13.2.3. Speed to Market 436
13.2.4. Loss of Exclusivity 436
13.3. Franchise Growth for Specialty Pharmaceutical Companies 437
13.4. Small Biotechnology Companies—Reducing the Risk of Company Failure 438
13.4.1. Case Studies 438
13.5. Expanding the Value Proposition for Venture Capital 439
13.6. Speed and Safety for Patient Advocacy Groups 440
13.7. Academia—Access to Drugs for Research Use 441
13.8. Future Prospects for Business Deals in the Repositioning Industry 441
13.9. References 443

Akinori Mochizuki and Makiko Aoyama

14.1. Introduction 445
14.2. Historical Perspective 446
14.3. DRP® 447
14.3.1. Knowledge-Base Versus Serendipitous Screening 449
14.3.2. In-House Versus Collaboration 449
14.3.3. High-Throughput Screening (In Vitro) Versus Animal Model 450
14.3.4. Marketed Drug Versus Halted Drug 450
14.4. Accessing Halted Compounds 451
14.5. Establishing a Strong Screening Network 452
14.6. Patenting 453
14.7. Limitations 453
14.7.1. Compound Material 453
14.7.2. Dependence on Screening Partners 454
14.7.3. Patent Ownership 454
14.7.4. Value Capture of Findings Outside of Therapeutic Focus 454
14.8. Long-Term Perspective—Future of Repositioning 454
14.9. Conclusion 455

APPENDIX ADDITIONAL DRUG REPOSITIONING RESOURCES AND LINKS 457
Mark A. Mitchell and Michael J. Barratt

INDEX 469
Michael J. Barratt was a founding member and Senior Director of Pfizer’s Indications Discovery Unit, where he led the Biomarker, Computational Biology, and Screening initiatives and later took on responsibility for academic alliances, a key element in the Unit’s external drug repositioning efforts. Previously, Michael has held positions as Head of Molecular Pharmacology and Head of Dermatology Molecular Sciences for Pfizer in Ann Arbor, Michigan, and Skin Research Platform Leader for Unilever in New Jersey. With broad experience in drug discovery technologies and preclinical/early clinical drug development spanning multiple therapeutic, Michael has been involved in bringing more than 15 drug candidates into the clinic. In addition, he has fostered and led numerous strategic alliances in both the pharmaceutical and consumer health industries. Michael earned a degree in Biochemistry from Exeter College, Oxford University and obtained his PhD in Molecular Sciences from King’s College London, where he also completed a postdoctoral fellowship.

Donald E. Frail is currently Vice President, Science, in the New Opportunities iMED at AstraZeneca, a research unit focused on identifying developing new medicines through external partnerships and drug repositioning. Prior to this, Don founded and led the Indications Discovery Unit at Pfizer, a dedicated research unit focused on drug repositioning, and was an architect of the groundbreaking partnership between Washington University School of Medicine and the Indications Discovery Unit. He has also held positions as Site Head for Pfizer’s St. Louis Laboratories, Head of Biology for the St. Louis Laboratories, Head of Central Nervous Systems Research at Pharmacia, and positions at Women’s Health at Wyeth and Neuroscience at Abbott. He has been involved in bringing more than 20 potential new medicines into the clinic across multiple indications. He obtained his PhD in Biochemistry from McGill University and completed a postdoctoral fellowship at Washington University School of Medicine.
ACKNOWLEDGMENTS

This book is dedicated to the many scientists who have worked tirelessly to produce the outstanding drug candidates that provide opportunities for drug repositioning and hope for patients. We thank all of our authors for sharing their expertise through insightful contributions. We also thank our colleagues in industry and academia, who have provided incredibly thoughtful perspectives and debates over the past few years. Our appreciation and gratitude are also extended to Lauren Frail for her expertise in indexing this first comprehensive work on this subject. Finally, none of this would have been possible without the understanding and patience of our families, to whom we are indebted for affording us the time to work on this project.
CONTRIBUTORS

Christos Andronis, Biovista Inc., Charlottesville, Virginia, USA
Makiko Aoyama, Sosei R&D Ltd., London, UK
John Arrowsmith, Thomson Reuters, London, UK
Michael J. Barratt, Washington University School of Medicine, St. Louis, Missouri, USA
Philip E. Bourne, University of California, San Diego, La Jolla, California, USA
Curtis R. Chong, Massachusetts General Hospital, Boston, Massachusetts, USA
Kuldip D. Dave, Michael J. Fox Foundation for Parkinson’s Research, New York, New York, USA
Spyros Deftereos, Biovista Inc., Charlottesville, Virginia, USA
Louis DeGennaro, The Leukemia & Lymphoma Society, White Plains, New York, USA
Donald E. Frail, AstraZeneca Pharmaceuticals, Waltham, Massachusetts, USA
Scott L. Harbeson, Concert Pharmaceuticals, Lexington, Massachusetts, USA
Richard Harrison, Thomson Reuters, Philadelphia, Pennsylvania, USA
James Kasper, The Leukemia & Lymphoma Society, White Plains, New York, USA
Sarah L. Kinnings, University of California, San Diego, La Jolla, California, USA
Ouariana Konstanti, Biovista Inc., Charlottesville, Virginia, USA
Margaret S. Lee, Zalicus Inc., Cambridge, Massachusetts, USA
Christopher A. Lipinski, Melior Discovery, Inc., Waterford, Connecticut, USA
Craig E. Masse, Nimbus Discovery, Inc., Cambridge, Massachusetts, USA
Richard Mazzarella, Appistry, Inc., St. Louis, Missouri, USA
John McCall, Polycystic Kidney Disease Foundation, Kansas City, Missouri, USA
Maria L. Miller, BioMed-Valley Discoveries, Inc., Kansas City, Missouri, USA
Mark A. Mitchell, Pfizer Inc., St. Louis, Missouri, USA
Contributors

Akinori Mochizuki, Sosei Group Corporation, Tokyo, Japan
Adam J. Morgan, Concert Pharmaceuticals, Lexington, Massachusetts, USA
Damian O’Connell, Bayer HealthCare Pharmaceuticals, Berlin, Germany
Bhaumik A. Pandya, Concert Pharmaceuticals, Lexington, Massachusetts, USA
Jill Panetta, Polycystic Kidney Disease Foundation, Kansas City, Missouri, USA
Andreas Persidis, Biovista Inc., Charlottesville, Virginia, USA
Aris Persidis, Biovista Inc., Charlottesville, Virginia, USA
Ken Phelps, Camargo Pharmaceutical Services, LLC, Cincinnati, Ohio, USA
Andrew G. Reaume, Melior Discovery, Inc., Exton, Pennsylvania, USA
Michael S. Saporito, Melior Discovery, Inc., Exton, Pennsylvania, USA
Aaron Schimmer, Ontario Cancer Institute, Toronto, Ontario, Canada
David J. Sequeira, Upsher-Smith Laboratories, Maple Grove, Minnesota, USA
Anuj Sharma, Biovista Inc., Charlottesville, Virginia, USA
Todd B. Sherer, Michael J. Fox Foundation for Parkinson’s Research, New York, New York, USA
Elizabeth T. Stark, Pfizer Inc., St. Louis, Missouri, USA
Alison Urkowitz, Michael J. Fox Foundation for Parkinson’s Research, New York, New York, USA
Vassilis Virvilis, Biovista Inc., Charlottesville, Virginia, USA
Craig Webb, Van Andel Research Institute, Grand Rapids, Michigan, USA
Richard Winneker, The Leukemia & Lymphoma Society, White Plains, New York, USA
Lei Xie, University of California, San Diego, La Jolla, California, USA; and Hunter College, the City University of New York, New York, New York, USA
Li Xie, University of California, San Diego, La Jolla, California, USA
Drug repositioning, also commonly referred to as drug reprofiling or repurposing, has become an increasingly important part of the drug development process for many companies in recent years. The process of identifying new indications for existing drugs, discontinued, or “shelved” assets and candidates currently under development for other conditions—activities we refer to as “indications discovery”—is an attractive way to maximize return on prior and current preclinical and clinical investment in assets that were originally designed with different patient populations in mind. It is widely appreciated that the business impetus to recoup the vast investments in pharmaceutical research and development (R&D) is enormous. As discussed by Arrowsmith and Harrison in Chapter 1, output of new medical entities (NMEs) approved by the U.S. Food and Drug Administration (FDA) has remained steady at around 25 per year over the last decade, while pharmaceutical R&D expenditure has increased over 50% in the same time frame [1, 2]. Against this backdrop of escalating costs associated with increased development timelines and requirements, along with growing regulatory and reimbursement pressures, drug repositioning has emerged as a lower cost and potentially faster approach than *de novo* drug discovery and development. The objective of Part I of this book is to examine in detail the medical and commercial drivers underpinning the repositioning industry, and to highlight the key strategic, technical, operational, and regulatory considerations for drug repositioning programs.

Among the numerous case studies that are described throughout this book, perhaps the best known example of successful implementation of drug repositioning is that of the blockbuster and first approved treatment for erectile dysfunction (ED), Viagra® (sildenafil citrate). The story of the development of this drug, which was originally being developed by Pfizer for the treatment
of angina, offers a fascinating insight into how keen observation and good science can unlock the full potential of safe biotherapeutics that are either already marketed or, as was the case for sildenafil, under development for other indications [3]. This example serves to highlight some of the essential elements that underpin the rationale behind, and opportunities that exist in, drug repositioning.

At its core, drug repositioning takes advantage of three fundamental principles. First is the reality of biological redundancy, namely that “druggable” biological targets can contribute to the etiologies of seemingly unrelated conditions, due to common underlying pathology and/or shared biological signaling networks. In the mid-1980s, the biological target of Viagra®, an enzyme called phosphodiesterase 5 (PDE5), was being studied for its involvement in regulating nitric oxide (NO) signaling in smooth muscle cells associated with coronary blood vessels. NO activates the enzyme guanylate cyclase, which results in increased levels of cyclic guanosine monophosphate (cGMP), leading to smooth muscle relaxation, increased blood flow, and the associated hemodynamic effects characteristic of nitrates. cGMP PDE enzymes such as PDE5 inactivate cGMP by converting it into guanosine monophosphate (GMP), and attenuate NO signaling. With this underlying biology in mind, sildenafil was at the time being considered as an antiangina therapy. After initial clinical trials in angina indicated modest hemodynamic effects (i.e., efficacy) but dose-limiting adverse events including erections, attention turned to ED, where the role of NO/cGMP was emerging at the time; but the role of PDE5 in the corpus cavernosum of the penis had not previously been appreciated [3]. New biology was thus uncovered and the rest, as they say, is history.

A second key driver for drug repositioning, which is also highlighted by the Viagra® story, is that the pharmaceutical drug discovery process is typically therapy area–focused and sequential, meaning that a candidate is usually designed and developed single-mindedly for one disease, regardless of whether the drug target may have roles in other diseases in different therapy areas. Because of this focus—though less frequent now than in the past—consideration of alternative therapeutic applications for a candidate may not occur until it either succeeds in the primary indication (typically in Phase III or beyond), or fails. Even then, repositioning or “indications discovery” efforts are not guaranteed and certainly rarely systematic, due to potential stigma associated with a failed asset, or risk aversion in a successful primary project team that “owns” the candidate, or simply lack of cross-therapeutic expertise/ mindset. As described in Chapter 2 of the book, one consequence of this for a pharmaceutical company’s pipeline is that valuable patent life may be lost by delaying exploration of other opportunities, particularly if the candidate’s safety, pharmacokinetics (PK), and pharmacology have been adequately demonstrated—often several years previously—in Phase I studies. Thus, repositioning applies not only to previously shelved candidates or marketed drugs, but increasingly to candidates that are still under clinical development in a primary indication.
Among the key elements of any repurposing program are the unique clinical, regulatory, and logistical considerations of conducting patient studies with candidates in secondary indications. The purpose of Chapter 3 is to outline some of the requirements for generating a robust data package for a second indication, as well as to highlight some of the often underappreciated challenges of repositioning candidates to different patient populations, where the safety package, route of administration, site of action, and PK/pharmacodynamic (PD) requirements can all differ. Part I concludes with a review of some unique regulatory and market exclusivity opportunities that can be applied to repositioned candidates (Chapter 4).

Fortunately, for both companies and the patients they serve, the traditional, sequential approach to drug discovery is changing. Increasingly, companies are leveraging internal expertise and external collaborators in a more cross-therapeutic manner to assess the applicability of pipeline or shelved candidates (and in some cases, external opportunities) in alternative indications that may be in noncore areas, in a more systematic and intentional way. A key component of a systematic approach to repositioning is the application of bio- and chemoinformatics-based approaches to interrogate vast amounts of internal and published preclinical/clinical data (both on the drug candidates themselves and their cognate biological targets/pathways) to generate new hypotheses for experimental testing. Part II of this book—“Application of Technology Platforms to Uncover New Indications and Repurpose Existing Drugs”—addresses this aspect and outlines a number of computational strategies, tools, and databases that have been developed or successfully applied to repositioning studies. Authors in this section have been drawn from large pharmaceutical and biotechnology companies, as well as academia, in order to provide a wide spectrum of perspectives. Chapters in this section include descriptions and case studies using the numerous information sources that are publicly available to facilitate repositioning.

Also covered in Part II of the book is the topic of screening approaches for drug repositioning. As a complementary strategy to “hypothesis-driven” indications discovery, screening clinical candidates or marketed drugs in disease-relevant in vitro assays or animal models in an unbiased manner increases the probability of uncovering not only previously unknown connections between drug targets and diseases, but also the potential to reveal pharmacologically important “off-target” effects of a candidate. Off-target biology—the elicitation of useful pharmacology by a drug that was not intended or appreciated at the time of development—is a third and important driver for drug repositioning, particularly for older compounds that were less extensively profiled than present day candidates. For example, amantadine, originally developed for influenza through its ability to interfere with the viral M2 protein [4], was later found to have, among other activities, dopaminergic and noradrenergic effects and was subsequently repurposed for Parkinson’s disease [5]. Another well-known example is thalidomide. Originally prescribed as a sedative, it was found to have antiemetic effects leading to its use by pregnant
women in the late 1950s and early 1960s with tragic teratogenic consequences for the developing fetus [6]. Despite these tragic beginnings, thalidomide has since been found to have a number of pharmacologically beneficial effects including antitumor necrosis factor (TNF) and antiangiogenic activities and has been approved for use in erythema nodosum leprosum (ENL) and multiple myeloma [7].

From the perspective of drug repositioning, phenotypic, disease-relevant *in vitro* screening assays, or animal models are unbiased with respect to “on-target” or “off-target” effects; any activity that modulates the endpoint being measured will be detected, regardless of cause. Although often more complex to prosecute and automate than conventional target-based biochemical assays used in the drug discovery process, such models provide the significant benefit of enabling an investigator to probe all the possible activities of a candidate, or cohort of candidates, across a wide therapeutic spectrum of disease models. Examples of cell-based screening approaches, including searching for novel synergistic combinations of marketed drugs, are described in the Chapter 8 by Lee, while the application of “multiplexed” *in vivo* screening platforms to identify new indications clinical candidates is described in Chapter 9 by Saporito et al.

The final chapter in Part II by Morgan et al. addresses a common strategy employed for drug repositioning or “drug salvaging,” namely the development of chemically modified analogs of approved agents which are either metabolized *in vivo* into the parent drug molecule (prodrugs), or may themselves be viewed essentially as NCEs, in the case of deuterium-labeled analogs. Also covered in this chapter is the “chiral switch” approach, namely single enantiomer variants of previously approved chiral drug mixtures. Collectively, such strategies have yielded numerous clinically relevant, enhanced drug properties including increased bioavailability, improved PK profiles, more convenient dosing regimens, dramatic changes in tissue distribution, and decreased adverse events. A number of case studies are provided to illustrate these concepts.

It is noteworthy that many of the strategies covered in Part II have been driven by specialist companies that have developed and validated technology platforms to provide unique and cost-effective screening/repurposing services to the pharmaceutical/biotechnology industry. In many cases, these same companies have utilized their own platforms together with strategic alliances with large pharmaceutical companies to build internal pipelines of repurposed drugs of their own.

In Part III of the book, we turn our attention to repositioning approaches being pursued outside the industry, but often in partnership with it; specifically some of the efforts being championed in academia and by not-for-profit organizations/foundations. One of the increasingly important contributions that academic investigators and foundations provide in the field of drug discovery in general—and repositioning in particular—is their advocacy for rare or neglected diseases (sometimes collectively termed orphan diseases), which are frequently overlooked by big pharmaceutical companies due to lack of
commercial return. In the United States, the Rare Disease Act of 2002 [8] defines rare disease strictly according to prevalence, specifically as “any disease or condition that affects less than 200,000 persons in the United States,” or about 1 in 1500 people. A similar definition exists in Europe [9]. Neglected diseases [10] generally refer to a group of tropical infections prevalent in developing countries of Africa, Asia, and south/central America but essentially nonexistent in developed nations (e.g., parasitic trypanosomal and helminth infections, bacterial infections such as cholera, and viral episodes such as dengue fever). Chapter 11, written by Curtis Chong, describes several examples of repositioned candidates for diseases of the developing world that have been identified through open source screening campaigns such as the Johns Hopkins Clinical Compound Screening Initiative. Chapter 12 provides case studies from several different patient advocacy groups/foundations to highlight the unique work these organizations perform, as well as the tremendous potential advantages afforded by repositioning for patients suffering from rare diseases whose existing treatment options are often extremely limited. The book concludes with an overview of some of the business thinking that is currently being applied to drug repositioning within the pharmaceutical and biotechnology sectors with an emphasis on partnerships between the various stakeholders that are engaged in this sector. Chapter 13 highlights the increasing use of strategic alliances and risk-sharing partnerships as approaches to increase the industry’s clinical development capacity and number of successful proof-of-concepts and recoup value on otherwise stalled assets. This chapter examines the various drivers for each party in such alliances and assesses the potential of current and future repositioning joint ventures between industry, academia, and not-for-profit organizations. Finally, Chapter 14 exemplifies some of the key considerations for drug repositioning partnerships through a case study on the Japanese biopharmaceutical company Sosei, which pioneered a unique business platform for reprofiling previously shelved drug candidates using a sophisticated shared risk partnership model.

The Appendix at the end of the book seeks to provide a compilation of valuable resources for the prospective repositioner, providing information on drug repositioning and reformulation companies, databases, relevant government resources and organizations, links to regulatory agency guidance, along with academic and nonprofit organization initiatives related to repositioning.

We hope that the book is as informative to the reader as it has been enlightening to compile.

REFERENCES

PART I

DRUG REPOSITIONING: BUSINESS CASE, STRATEGIES, AND OPERATIONAL CONSIDERATIONS