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Preface to the First Edition

In the late 1990s, I was working for the Norwegian Geological Survey’s Section for 
Hydrogeology and Geochemistry. Despite the Section being choc-a-bloc with brainy 
research scientists, one of my most innovative colleagues was an engineer who called 
me, on what seemed a weekly basis, brimming with enthusiasm for some wizard new 
idea. One day, he started telling me all about something called grunnvarme or ground 
source heat, which was, apparently, very big in Sweden. Initially, it seemed to me to 
be something akin to perpetual motion – space heating from Norwegian rock at 6°C? 
– and in violation of the second law of thermodynamics to boot. Nevertheless, he 
persuaded me that it really did have a sound physical basis. In fact, my chum went 
on to almost single-handedly sell the concept of ground source heat to a Norwegian 
market that was on the brink of an energy crisis. A subsequent dry summer that pulled 
the plug on Norway’s cheap hydroelectric supplies and sent prices soaring was the 
trigger that ground source heat needed to take off. So, firstly, a big thank you to Helge 
Skarphagen (for it was he!), who first got me interested in ground source heat.

On my return to England in 1998, I tried to bore anyone who gave the appearance 
of listening about the virtues of ground source heat (I was by no means the first to 
try this – John Sumner and Robin Curtis, among others, had been evangelists for the 
technology much earlier). It was not until around 2003, however, that interest in 
ground source heat was awakened in Britain and I was lucky enough to fall in with 
a group of entrepreneurs with an eye for turning it into a business. So, secondly, many 
thanks to GeoWarmth of Hexham (now based at Newcastle) for the pleasure of 
working with you, and especially to Dave Spearman, Jonathan Steven, Braid and 
Charlie Aitken, Nick Smith and John Withers.

Oh, and by the way, Jenny, I don’t know what you’ve been up to while I’ve been 
locked in the attic writing this book, but normal parental service will shortly be 
resumed!

David Banks
Chesterfield, Derbyshire, 2007





Preface to the Second Edition

This book is written for an international audience. It aims to aid professionals in 
conceptualising the ground – heat exchanger – building linkages at the heart of ground-
coupled heat exchange systems. Forgive me, therefore, if I focus for a few moments 
on my own recent British experiences in this Preface.

At the time of writing the first edition of this book, the ground source heating and 
cooling industry in the United Kingdom was in its infancy and growing fast. Four 
years later, the profession is much larger but is still regrettably immature.

British ground source heat pump meetings abound with grey-suited salesmen (and 
they are invariably men) warning us to be on our guard against ‘cowboys’, who will 
drag our profession into disrepute by their ignorance. Quite who these ‘cowboys’ are 
is never fully explained . . . probably due to the fact that the speaker himself is a 
‘cowboy’, as are most of the audience. The hard truth is that almost all ground source 
heat practitioners (with a few honourable exceptions) in the United Kingdom are rela-
tively new to the science and are still learning fast. Indeed, I will myself admit to 
being just such a ‘cowboy’. But, hey, being a cowboy can be fun – cowboys are pio-
neers, blazing a trail in unknown terrain. Cowboys can be rough and ready and can 
make mistakes but, with time and experience, they will form the backbone of a new 
frontier community. Westward ho and wagons roll!

The UK ground source heat pump market is still reported to be the fastest growing 
in the world (Lund, 2010). However, I trust that the time is approaching when the 
cowboys are beginning to settle, to form professional communities and to get a 
real grasp of their tools and terrain. We should be reaching a stage where we are 
not merely building ground source heat systems that work, but ones that work 
really efficiently. At the time of writing, the industry is still reeling from the 
implications of a report by the Energy Saving Trust (2010), which found that the 
system performance factors of UK ground source heat pump systems were typically 
as low as between 2 and 3. Such low efficiencies risk not only that the system 
fails to save the owner any money in operational costs, but also that it ultimately 
releases more atmospheric CO2 than a conventional mains gas boiler. This is very 
bad news for the industry. The UK industry has, in response, forced out new 
standards designed to promote significantly more efficient systems (GSHPA, 2011; 
MIS, 2011a,b,c).

I feel that the time is ripe for a second edition of this book. This edition will not 
merely cover the thermophysics of subsurface heat transfer and the conceptualisation 
of a ground heat exchange system. It will also address many of the key issues involved 
in designing efficient systems: the impact of design loop temperatures and hydraulics, 
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the impact of client pressure to cut capital costs, the influence of building (load side) 
heat delivery decisions and the importance of energy storage. It will attempt to stress 
the importance of considering system design, not merely in terms of thermogeological 
variables, but also in the light of your nation’s physical climate and energy/carbon 
economy.

David Banks
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1
An Introduction

Nature has given us illimitable sources of prepared low-grade heat. Will human organisa-
tions cooperate to provide the machine to use nature’s gift?

John A. Sumner (1976)

Many of you will be familiar with the term geothermal energy. It probably conjures 
mental images of volcanoes or of power stations replete with clouds of steam, deep 
boreholes, whistling turbines and hot saline water. This book is not primarily about 
such geothermal energy, which is typically high temperature (or high enthalpy, in 
technospeak) energy and is accessible only at either specific geological locations or at 
very great depths. This book concerns the relatively new science of thermogeology. 
Thermogeology involves the study of so-called ground source heat: the mundane form 
of heat that is stored in the ground at normal temperatures. Ground source heat is 
much less glamorous than high-temperature geothermal energy, and its use in space 
heating is often invisible to those who are not ‘in the know’. It is hugely important, 
however, as it exists and is accessible everywhere. It genuinely offers an attractive 
and powerful means of delivering CO2-efficient space heating and cooling.

Let me offer the following definition of thermogeology:

Thermogeology is the study of the occurrence, movement and exploitation of low enthalpy 
heat in the relatively shallow geosphere.



2 An Introduction to Thermogeology

By ‘relatively shallow’, we are typically talking of depths of down to 300 m or so. 
By ‘low enthalpy’, we are usually considering temperatures of less than 40°C.1

1.1 Who should read this book?

This book is designed as an introductory text for the following audience:

• graduate and postgraduate level students;
• civil and geotechnical engineers;
• buildings services and heating, ventilation and air conditioning (HVAC) engineers 

who are new to ground source heat;
• applied geologists, especially hydrogeologists;
• architects;
• planners and regulators;
• energy consultants.

1.2 What will this book do and not do?

This book is not a comprehensive manual for designing ground source heating and 
cooling systems for buildings: it is rather intended to introduce the reader to the 
concept of thermogeology. It is also meant to ensure that architects and engineers are 
aware that there is an important geological dimension to ground heat exchange 
schemes. The book aims to cultivate awareness of the possibilities that the geosphere 
offers for space heating and cooling and also of the limitations that constrain the 
applications of ground heat exchange. It aims to equip the reader with a conceptual 
model of how the ground functions as a heat reservoir and to make him or her aware 
of the important parameters that will influence the design of systems utilising this 
reservoir.

While this book will introduce you to design of ground source heat systems and 
even enable you to contribute to the design process, it is important to realise that a 
sustainable and successful design needs the integrated skills of a number of sectors:

• The thermogeologist
• The architect, who must ensure that the building is designed to be heated using 

the relatively low-temperature heating fluids (and cooled by relatively high-
temperature chilled media) that are produced efficiently by most ground source heat 
pump/heat exchange schemes.

1 Although in conventional geothermal science, anything up to around 90°C is still considered ‘low 
enthalpy’!
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• The buildings services/HVAC engineer, who must implement the design and must 
design hydraulically efficient collector and distribution networks, thus ensuring 
that the potential energetic benefits of ground heat exchange systems are not frit-
tered away in pumping costs.

• The electromechanical and electronic engineer, who will be needed to install the 
heat pump and associated control systems

• The pipe welder and the driller, who will be responsible for installing thermally 
efficient, environmentally sound and non-leaky ground heat exchangers.

• The owner, who needs to appreciate that an efficient ground heat exchange system 
must be operated in a wholly different way to a conventional gas boiler (e.g. ground 
source heat pumps often run at much lower output temperatures than a gas boiler 
and will therefore be less thermally responsive).

If you are a geologist, you must realise that you are not equipped to design the infra-
structure that delivers heat or cooling to a building. If you are an HVAC engineer, 
you should acknowledge that a geologist can shed light on the ‘black hole’ that is 
your ground source heat borehole or trench. In other words, you need to talk to each 
other and work together! For those who wish to delve into the hugely important ‘grey 
area’ where geology interfaces in detail with buildings engineering, to the extent of 
consideration of pipe materials and diameters, manifolds and heat exchangers, I rec-
ommend that you consult one of several excellent manuals or software packages 
available. In particular, I would name the following:

• the manual of Kavanaugh and Rafferty (1997) – despite its insistence on using such 
unfamiliar units as Btu ft−1 °F−1, so beloved of our American cousins;

• the set of manuals issued by the International Ground Source Heating Association 
(IGSHPA) – IGSHPA (1988), Bose (1989), Eckhart (1991), Jones (1995), Hiller (2000), 
and IGSHPA (2007);

• the recent book by Ochsner (2008a);
• the newly developed Geotrainet (2011) manual, which has a specifically European 

perspective and has been written by some of the continent’s foremost thermophysi-
cists, thermogeologists and HVAC engineers;

• the German Engineers’ Association standards (VDI, 2000, 2001a,b, 2004, 2008);
• numerous excellent booklets aimed at different national user communities, such 

as that of the Energy Saving Trust (2007).

1.3 Why should you read this book?

You should read this book because thermogeology is important for the survival of 
planet Earth! Although specialists may argue about the magnitude of climate change 
ascribable to greenhouse gases, there is a broad consensus (IPCC, 2007) that the con-
tinued emission of fossil carbon (in the form of CO2) to our atmosphere has the 
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potential to detrimentally alter our planet’s climate and ecology. Protocols negotiated 
via international conferences, such as those at Rio de Janeiro (the so-called Earth 
Summit) in 1992 and at Kyoto in 1997, have attempted to commit nations to dramati-
cally reducing their emissions of greenhouse gases [carbon dioxide, methane, nitrous 
oxide, sulphur hexafluoride, hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs)] 
during the next decades.

Even if you do not believe in the concept of anthropogenic climate change, recent 
geopolitical events should have convinced us that it is unwise to be wholly dependent 
on fossil fuel resources located in unstable parts of the world or within nations whose 
interests may not coincide with ours. Demand for fossil fuels is increasingly outstrip-
ping supply: the result of this is the rise in oil prices over the last decade. This price 
hike is truly shocking, not least because most people seem so unconcerned by it. A 
mere 10 years ago, in 1999, developers of a new international oil pipeline were wor-
rying that the investment would become uneconomic if the crude oil price fell below 
$15 USD per barrel. At the time of writing, Brent crude is some $105 per barrel, and 
peaked in 2008 at over $140 (Figure 1.1). The increasingly efficient use of the fuel 
resources we do have access to, and the promotion of local energy sources, must be 
to our long-term benefit.

I would not dare to argue that the usage of ground source heat alone will allow us 
to meet all these objectives. Indeed, many doubt that we will be able to adequately 
reduce fossil carbon emissions soon enough to significantly brake the effects of global 
warming. If we are to make an appreciable impact on net fossil carbon emissions, 
however, we will undoubtedly need to consider a wide variety of strategies, including 
the following:

Figure 1.1 Spot prices for Brent Crude Oil in the period 1987–2010 (USD per barrel). Based on 
the data from the US Energy Information Administration (EIA).
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1. A reduction in energy consumption, for example, by more efficient usage of our 
energy reserves.

2. Utilisation of energy sources not dependent on fossil carbon. The most strategically 
important of these non-fossil-carbon sources is probably nuclear power (although 
uranium resources are finite), followed by hydroelectric power. Wind, wave, 
biomass, geothermal and solar powers also fall in this category.

3. Alternative disposal routes for fossil carbon dioxide, other than atmospheric emis-
sion: for example, underground sequestration by injection using deep boreholes.

I will argue, however, that utilisation of ground source heat allows us to signifi-
cantly address issues (1) and (2). Application of ground source heat pumps (see Chapter 
4) allows us to use electrical energy highly efficiently to transport renewable environ-
mental energy into our homes (Box 1.1).

If the environmental or macroeconomic arguments don’t sway you, try this one for 
size: Because the regulatory framework in my country is forcing me to install energy-
efficient technologies! The Kyoto Protocol is gradually being translated into European 
and national legislation, such as the British Buildings Regulations, which not only 
require highly thermally efficient buildings, but also low-carbon space heating and 
cooling technologies. Local planning authorities may demand a certain percentage of 
‘renewable energy’ before a new development can be permitted. Ground source heating 
or cooling may offer an architect a means of satisfying ever more stringent building 
regulations. It may assist a developer in getting into the good books of the local plan-
ning committee.

Energy is an elusive concept. In its broadest sense, energy can be related to the 
ability to do work. Light energy can be converted, via a photovoltaic cell, to 
electrical energy that can be used to power an electrical motor, which can do 
work. The chemical energy locked up in coal can be converted to heat energy by 
combustion and thence to mechanical energy in a steam engine, allowing work 
to be done. In fact, William Thomson (Lord Kelvin) demonstrated an equivalence 
between energy and work. Both are measured in joules (J).

Work (W) can defined as the product of the force (F) required to move an object 
and the distance (L) it is moved. In other words,

W FL=

Force is measured in newtons and has a dimensionality [M][L][T]−2. Thus, work 
and energy have the same dimensionality [M][L]2[T]−2 and 1 J = 1 kg m2 s−2.

Power is defined as the rate of doing work or of transferring energy. The unit 
of power is the watt (W), with dimensionality [M][L]2[T]−3.

1 watt = 1 joule per second = 1 J s−1 = 1 kg m2 s−3.

BOX 1.1 Energy, Work and Power
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Finally, the most powerful argument of all: Because you can make money from 
ground source heat. You may be an entrepreneur who has spotted the subsidies, 
grants and tax breaks that are available to those who install ground source heating 
schemes. You may be a consultant wanting to offer a new service to a client. You 
may be a drilling contractor – it is worth mentioning that, in Norway and the United 
Kingdom, drillers are reporting that they are now earning more from drilling ground 
source heat boreholes than from their traditional business of drilling water wells. 
You may be a property developer who has sat down and looked cool and hard at the 
economics of ground source heat, compared it with conventional systems and con-
cluded that the former makes not only environmental sense, but also economic sense.

1.4 Thermogeology and hydrogeology

You don’t have to be a hydrogeologist to study thermogeology, but it certainly helps. 
A practical hydrogeologist often tries to exploit the earth’s store of groundwater by 
drilling wells and using some kind of pump to raise the water to the surface where it 
can be used. A thermogeologist exploits the earth’s heat reservoir by drilling boreholes 
and using a ground source heat pump to raise the temperature of the heat to a useful 
level. The analogy does not stop here, however. There is a direct mathematical 
analogy between groundwater flow and subsurface heat flow.

We all know that water, left to its own devices, flows downhill or from areas of high 
pressure to low pressure. Strictly speaking, we say that water flows from locations of 
high head to areas of low head (Box 1.2). Head is a mathematical concept which com-
bines both pressure and elevation into a single value. Similarly, we all know that heat 
tends to flow from hot objects to cold objects. In fact, a formula, known as Fourier’s 
law, was named after the French physicist Joseph Fourier. It permits us to quantify 
the heat flow conducted through a block of a given material (Figure 1.2):

 Q A
d
dx

= −λ θ
 (1.1)

where
Q = flow of heat in joules per second, which equals watts (J s−1 = W),
λ = thermal conductivity of the material (W m−1 K−1),
A = cross-sectional area of the block of material under consideration (m2),
θ = temperature (°C or K),
x = distance coordinate in the direction of decreasing temperature (note that heat 

flows in the direction of decreasing temperature: hence the negative sign in the 
equation),

d
dx

θ
 = temperature gradient (K m−1).

The hydrogeologists have a similar law, Darcy’s law, which describes the flow of 
water through a block of porous material, such as sand:
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Figure 1.2 The principle of Fourier’s law. Consider an insulated bar of material of cross-sectional 
area 1 m2 and length 10 m. If one end is kept at 20°C and the other end at 10°C, the temperature 
gradient is 10 K per 10 m, or 1 K m−1. Fourier’s law predicts that heat will be conducted from the 
warm end to the cool end at a rate of λ J s−1, where λ is the thermal conductivity of the material (in 
W m−1 K−1). We assume that no heat is lost by convection or radiation.

l

l

J s–1

We know intuitively that water tends to flow downhill (from higher to lower 
elevation). We also know that it tends to flow from high to low pressure. We can 
also intuitively feel that water elevation and pressure are somehow equivalent. 
In a swimming pool, water is static: it does not flow from the water surface to 
the base of the pool. The higher elevation of the water surface is somehow com-
pensated by the greater pressure at the bottom of the pool.

The concept of head (h) combines elevation (z) and pressure (P). Pressure (with 
dimension [M][L]−1[T]−2) is converted to an equivalent elevation by dividing it by 
the water’s density (ρw: dimension [M][L]−3) and the acceleration due to gravity 
(g: dimension [L][T]−2), giving the formula

h z
P

gw

= +
ρ

Groundwater always flows from regions of high head to regions of low head. 
Head is thus a measure of groundwater’s potential energy: it provides the poten-
tial energy gradient along which groundwater flows according to Darcy’s law.

BOX 1.2 Head
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 Z KA
dh
dx

= −  (1.2)

where
Z = flow of water (m3 s−1),
K = hydraulic conductivity of the material (m s−1), often referred to as the permeabil-

ity of the material,
A = cross-sectional area of the block of material under consideration (m2),
h = head (m),
x = distance coordinate in the direction of decreasing head (m),
dh
dx

 = head gradient (dimensionless).

A hydrogeologist is interested in quantifying the properties of the ground to ascer-
tain whether it is a favourable target for drilling a water well (Misstear et al., 2006). 
Two properties are of relevance. Firstly, the permeability (or hydraulic conductivity) 

Food is the first thing – morals follow on.
Bertolt Brecht, A Threepenny Opera

Abraham Maslow (1908–1970) was an American humanist and psychologist, who 
studied and categorised fundamental human needs. His ideas are often summa-
rised in some form of tiered structure – a hierarchy of needs – where the lowest 
levels of need must be fulfilled before a human can pursue happiness and aspire 
to satisfy his or her higher-level needs. The most familiar conceptualisation 
involves the following:

Tier 5 – Self-actualisation: includes art, morality
Tier 4 – Esteem: self-respect, respect of others, sense of achievement
Tier 3 – Belonging: friendship, family
Tier 2 – Safety: employment, resources, health, property
Tier 1 – The fundamentals: sex, respiration, food, water, homeostasis, excretion, 

sleep

Humble hydrogeologists, environmental geochemists and thermogeologists 
may not be glamorous, but they can comfort themselves with the fact that they 
are satisfying basic human needs in Tier 1. Hydrogeologists provide potable water 
and secure disposal of wastes via pit latrines and landfills; environmental geo-
chemists ensure that our soils are fit for cultivation. Thermogeologists contribute 
to ensuring homeostasis – a flashy word that basically means a controlled envi-
ronment (shelter), of which space heating and cooling are fundamental aspects.

For sex and sleep, the Geologist’s Directory may not be able to assist you.

BOX 1.3 Maslow, Geology and Human Needs
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2 The word aestifer may sound like a very artificial concoction – but it has an ancient pedigree (Banks, 
2009a). Virgil (in the Georgics, Liber II) and Marcus Cicero (in Aratea) used the term aestifer astronomi-
cally to describe (respectively) the dog-star Sirius and the constellation Cancer as the harbingers of sum-
mer’s heat. Lucretius used the word in around 60 BC in his work “De Rerum Natura” to describe the 
heat-bearing nature of the sun’s radiation (Possanza 2001).

is an intrinsic property of the rock or sediment that describes how good that material 
is at allowing groundwater to flow through it. Secondly, the storage coefficient 
describes how much groundwater is released from pore spaces or fractures in a unit 
volume of rock, for a 1 m decline in groundwater head. A body of rock that has suf-
ficient groundwater storage and sufficient permeability to permit economic abstrac-
tion of groundwater is called an aquifer (from the Latin ‘water’ + ‘bearing’).

In thermogeology, we again deal with two parameters describing how good a body 
of rock is at storing and conducting heat. These are the volumetric heat capacity (SVC) 
and the thermal conductivity (λ). The former describes how much heat is released 
from a unit volume of rock as a result of a 1 K decline in temperature, while the latter 
is defined by Fourier’s law (Equation 1.1). We could define an aestifer as a body of 
rock with adequate thermal conductivity and volumetric heat capacity to permit the 
economic extraction of heat (from the Latin aestus, meaning ‘heat’ or ‘summer’).2 In 
reality, however, all rocks can be economically exploited (depending on the scale of 
the system required – see Chapter 4; Box 1.3) for their heat content, rendering the 
definition rather superfluous.

Table 1.1 summarises the key analogies between thermogeology and hydrogeology, 
to which we will return later in the book.

Table 1.1 The key analogies between the sciences of hydrogeology and thermogeology (see 
Banks, 2009a). Note that θo = average natural undisturbed temperature of an aestifer, T = transmis-
sivity, t = time, s = drawdown and W( ) is the well function (see Theis, 1935).

Hydrogeology Thermogeology

What are we studying? Groundwater flow Subsurface heat flow
Key physical law Darcy’s law Fourier’s law (conduction only)

Z KA
dh
dx

= − Q A
d
dx

= −λ θ

Flow Z = groundwater flow (m3 s−1) Q = conductive heat flow = (J s−1 or W)
q = heat flow per metre of borehole 
(W m−1)

Property of conduction K = hydraulic conductivity (m s−1) λ = thermal conductivity (W m−1 K−1)
Measure of potential energy h = groundwater head (m) θ = temperature (°C or K)
Measure of storage S = groundwater storage (related 

to porosity)
SVC or SC = specific heat capacity 
(J m−3 K−1 or J kg−1 K−1)

Exploitable unit of rock Aquifer (Lat. aqua: water) Aestifer (Lat. aestus: heat)
Transient radial flow Theis equation Carslaw’s equation

s
Z
T

W
r S
Tt

= 



4 4

2

π
θ θ

πλ λo
q

W
r S

t
− = 



4 4

2
VC

Tool of exploitation Well and pump Borehole or trench and heat pump
Measure of well/borehole 
efficiency

Well loss = CZ 2 where C is a 
constant

Borehole thermal loss = Rbq where 
Rb = borehole thermal resistance
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1.1 An aquifer is composed of sand with a hydraulic conductivity of 3 × 10−4 m s−1 
and is 30 m thick. It is fully saturated with water, and the groundwater head 
declines by 8 m every 1 km from north to south. Estimate the total ground-
water flow through 1 km width of the aquifer every year.

1.2 A small, insulated core of granite, with a thermal conductivity of 3.1 W m−1 K−1, 
a diameter of 30 mm and a length of 55 mm is placed between two metal 
plates. One of the plates is kept at 22°C, while the other is heated to 28°C. 
What is the flow of heat through the core of rock?

1.3 Think about the following sentences:
A stream of water, flowing from high topographic elevation to low eleva-

tion is able to turn a water wheel, which can perform mechanical work.
We can use mechanical energy (work) to power a pump, which can lift 

water from a well up to a water tower.

Try to construct analogous sentences for the concept of heat flow, rather than 
water flow. Take a look at Sections 4.1 and 4.2 if you get into trouble.

STUDY QUESTIONS


